21,801 4,366 2MB
Pages 98 Page size 625 x 786 pts Year 2011
NEW CAMBRIDGE STATISTICAL TABLES D. V. LINDLEY & W. E SCOTT
Second Edition
CAMBRIDGE UNIVERSITY PRESS
CONTENTS PREFACES
page 3
TABLES: 1 The Binomial Distribution Function 2 The Poisson Distribution Function 3 Binomial Coefficients 4 The Normal Distribution Function 5 Percentage Points of the Normal Distribution 6 Logarithms of Factorials 7 The )(2-Distribution Function 8 Percentage Points of the )(2-Distribution 9 The t-Distribution Function 10 Percentage Points of the t-Distribution 11 Percentage Points of Behrens' Distribution 12 Percentage Points of the F-Distribution 13 Percentage Points of the Correlation Coefficient r when p = 0 14 Percentage Points of Spearman's S 15 Percentage Points of Kendall's K 16 The z-Transformation of the Correlation Coefficient 17 The Inverse of the z-Transformation Percentage Points of the Distribution of the Number of Runs 18 19 Upper Percentage Points of the Two-Sample Kolmogorov—Smirnov Distribution 20 Percentage Points of Wilcoxon's Signed-Rank Distribution 21 Percentage Points of the Mann—Whitney Distribution 22A Expected Values of Normal Order Statistics (Normal Scores) 22B Sums of Squares of Normal Scores 23 Upper Percentage Points of the One-Sample Kolmogorov—Smirnov Distribution 24 Upper Percentage Points of Friedman's Distribution 25 Upper Percentage Points of the Kruskal—Wallis Distribution 26 Hypergeometric Probabilities 27 Random Sampling Numbers 28 Random Normal Deviates 29 Bayesian Confidence Limits for a Binomial Parameter 30 Bayesian Confidence Limits for a Poisson Mean Bayesian Confidence Limits for the Square of a Multiple Correlation 31 Coefficient A NOTE ON INTERPOLATION CONSTANTS
4 24 33 34 35 36 37 40 42 45 46 50 56 57 57 58 59 60 62 65 66 68 70 70 71 72 74 78 79 80 88 89 96 96
CONVENTION. To prevent the tables becoming too dense with figures, the convention has been adopted of omitting the leading figure when this does not change too often, only including it at the beginning of a set of five entries, or when it changes. (Table 23 provides an example.)
PREFACE TO THE FIRST EDITION The raison d'etre of this set of tables is the same as that of the set it replaces, the Cambridge Elementary Statistical Tables (Lindley and Miller, 1953), and is described in the first paragraph of their preface. This set of tables is concerned only with the commoner and more familiar and elementary of the many statistical functions and tests of significance now available. It is hoped that the values provided will meet the majority of the needs of many users of statistical methods in scientific research, technology and industry in a compact and handy form, and that the collection will provide a convenient set of tables for the teaching and study of statistics in schools and universities. The concept of what constitutes a familiar or elementary statistical procedure has changed in 30 years and, as a result, many statistical tables not in the earlier set have been included, together with tables of the binomial, hypergeometric and Poisson distributions. A large part of the earlier set of tables consisted of functions of the integers. These are now readily available elsewhere, or can be found using even the simplest of pocket calculators, and have therefore been omitted. The binomial, Poisson, hypergeometric, normal, X2 and t distributions have been fully tabulated so that all values within the ranges of the arguments chosen can be found. Linear, and in some cases quadratic or harmonic, interpolation will sometimes be necessary and a note on this has been provided. Most of the other tables give only the percentage points of distributions, sufficient to carry out significance tests at the usual 5 per cent and i per cent levels, both one- and two-sided, and there are also some io per cent, 2.5 per cent and 0•1 per cent points. Limitation of space has forced the number of levels to be reduced in some cases. Besides distributions, there are tables of binomial coefficients, random sampling numbers, random normal deviates and logarithms of factorials. Each table is accompanied by a brief description of what is tabulated and, where the table is for a specific usage, a description of that is given. With the exception of Table 26, no attempt has been made to provide accounts of other statistical procedures that use the tables or to illustate their use with numerical examples, it being felt that these are more appropriate in an accompanying text or otherwise provided by the teacher. The choice of which tables to include has been influenced by the student's need to follow prescribed syllabuses and to pass the associated examinations. The inclusion of a table does not therefore imply the authors' endorsement of the technique associated with it. This is true of some significance tests, which could be more informatively replaced by robust estimates of the parameter being tested, together with a standard error.
All significance tests are dubious because the interpretation to be placed on the phrase 'significant at 5%' depends on the sample size: it is more indicative of the falsity of the null hypothesis with a small sample than with a large one. In addition, any test of the hypothesis that a parameter takes a specified value is dubious because significance at a prescribed level can generally be achieved by taking a large enough sample (cf. M. H. DeGroot, Probability and Statistics (1975), Addison-Wesley, p. 421). All the values here are exact to the number of places given, except that in Table 14 the values for n > 17 were calculated by an Edgeworth series approximation described in 'Critical values of the coefficient of rank correlation for testing the hypothesis of independence' by G. J. Glasser and R. F. Winter, Biometrika 48 (1961), pp. 444-8. Nearly all the tables have been newly computed for this publication and compared with existing compilations: the exceptions, in which we have used material from other sources, are listed below: Table 14, n = 12 to 16, is taken from 'The null distribution of Spearman's S when n = 13(1)16', by A. Otten, Statistica Neerlandica, 27 (1973), pp. 19-20, by permission of the editor. Table 24, k = 6, n = 5 and 6, is taken from 'Extended tables of the distribution of Friedman's S-statistic in the two-way layout', by Robert E. Odeh, Commun. Statist. — Simula Computa., B6 (I), 29-48 (1977), by permission of Marcel Dekker, Inc., and from Table 39 of The Pocket Book of Statistical Tables, by Robert E. Odeh, Donald B. Owen, Z. W. Birnbaum and Lloyd Fisher, Marcel Dekker (1977), by permission of Marcel Dekker, Inc. Table 25, k = 3, 4, 5, is partly taken from 'Exact probability levels for the Kruskal—Wallis test', by Ronald L. Iman, Dana Quade and Douglas A. Alexander, Selected Tables in Mathematical Statistics, Vol. 3 (1975), by permission of the American Mathematical Society; k = 3 is also partly taken from the MS thesis of Douglas A. Alexander, University of North Carolina at Chapel Hill (1968), by permission of Douglas A. Alexander. We should like to thank the staff of the University Press for their helpful advice and co-operation during the printing of the tables. We should also like to thank the staff of Heriot-Watt University's Computer Centre and Mr Ian Sweeney for help with some computing aspects. 10
January 1984
PREFACE TO THE SECOND EDITION The only change from the first edition is the inclusion of tables of Bayesian confidence intervals for the binomial and Poisson distributions and for the square of a multiple correlation coefficient.
D. V Lindley Periton Lane, Minehead Somerset, TA24 8AQ, U.K.
2
W. F Scott Department of Actuarial Mathematics and Statistics, Heriot-Watt University Riccarton, Edinburgh EHI4 4AS, U.K.
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
n= 2
r =o
1
n= 3 r =o p=
i
P = 0.01 0.9801
0.9999
0 '9997
*9996
0•01 •02
0.9703
'9604
*9412
'9988
'9409 •9216
.9991 '9984
.03 '04
.9127 .8847
'9974 .9953
'02 '03 '04 0'05
0.9025 •8836
0 '9975
0'05
0'8574
•8306
0.9928 •9896
•8044
'9860
'7787 '7536
•9818 '9772
'07
'8649
•9964 '9951
.68
'8464
'993 6
•06 •07 .08
•09
•8281
•9919
'09
0. zo
0•8roo
•I I •I2
'7921
0'10 0'7290 0'9720 ' II '7050 '9664
'7744
'13 •14
'7569 .7396
0.9900 '9879 '9856 '9831 .9804
'12 '13 •x4
•6815 '6585 •6361
0'15
0'7225
•7056
0.6141 .5927
•6889
0.9775 '9744 '9711
0'15
•16 •17
-6724
•9676
'17 •18
•6561
•9639
'19
0'20 •21 '22 '23
o'6400 •6241
0.9600 '9559
0'5120 '4930
'6084 '5929
'9516
'24
'5776
'9471 '9424
0'20 '21 '22 '23
'24
0'25
•5625
0 '9375
•26
'5476 '5329
•9324 •9271
0'25 '26
•5184
•9216
'5041
'9159
0'30
0.4900
0.3430
'4761
0.9100 '9039
0'30
'31
.31
•3285
'32
'4624
'8976
'32
'3144
'33 .34
'4489
•8911 .8844
'33
.3008
'4356
'34
'2875
•66
•18 •19
z
The function tabulated is
0.9999 .9998 .9997 '9995 '9993
0.9990 '9987 .9983 '9603 '9537 '9978 .9467 .9973
0.9393 .9314 '9231 .9145 '9054
0.9966 '9959 .9951 .9942 '9931
0'8960
0'9920
'4390
•8862 •8761 •8656 '8548
.9907 '9894 •9878 •9862
0'4219
0.8438
0 '9844
'8324 '8207
'9824 '9803
•28
'4052 '3890 '3732
'29
'3579
•8087 '7965
'9780 '9756
0.7840 '7713 '7583 .7452 .7318
0 '9730
•x 6
'5718
•5514 '5314
F(r1n, p) = E (n) pt(i_p)n-t
0.9999
Pr {X < r} = F(rIn, p). Note that Pr {X 3 r} = 1 -Pr {X < r= I F(r iln, p). F(nin, p) = I, and the values for p > 0.5 may be -
•27 '28 '29
6.35
•36 '37 '38 .39
0.4225 •4096 .3969 '3844 .3721
'43 •44
0'2746
0.7182
•36
•2621
'7045
•37 .38
•2500
•6966
.9493
.2383
.6765
. 9451
'39
'2270
•662,3
'9407
0.8400 •8319 '3364 •82 36 •8151 '3249 •3136 •8064
0'40
0•2160
•41
'2054
0.6480 .6335
0.9360 .9311
'42
'1951
'6190
'9259
'43 •44
•1852 •1756
•6043
•9205 '9148
6.1664 '1575 '1489
0'5748
•1406 .1327
'5300 '5150
0.3025
0 '7975
0.45
•46
•2916 '2809
•7884 .7791
•46
'7696
•49
.2704 •26or
0'50
0'2500
.48
0.9571 '9533
0'35
•8704 •8631 .8556 .8479
0 '45
.47
'9702 '9672 .9641 •9607
0'8775
040 0.3600 .41 .3481 '42
•27
'7599
'47 '48 '49
0'7500
0'50
•5896
.5599 '5449
0.9089 .9027 .8962 •8894 •8824
F(rIn, p) =
0'5000
0'8750
4
-
F(n r -
-
'In, x
-
p).
The probability of exactly r occurrences, Pr {X = r}, is equal to -
F(r
-
1ln, p ) = (nr) Pr(I
Linear interpolation in p is satisfactory over much of the table but there are places where quadratic interpolation is necessary for high accuracy. When r = o, x or n-1 a direct calculation is to be preferred:
F(o1n, p) = (i - p)n , F(1 In, p) = (1 -p)"-1[1 + (n- 1)p]
F(n- iln, p) = 1 -p".
and
For n > 20 the number of occurrences X is approximately normally distributed with mean np and variance np(1 p); hence, including for continuity, we have -
F(rin, p) * (1)(s)
npand 0(s) is the normal distribution A/np(i p)
where s = r+
-
-
function (see Table 4). The approximation can usually be improved by using the formula
F(rin, p) * 0(s) where y
I -
Y e-is (s2 - x) 6 A/27/
2P
Vnp(i -p)
An alternative approximation for n > zo when p is small and np is of moderate size is to use the Poisson distribution: F(rIn, p) * F(rI#) where # = np and F(r1,a) is the Poisson distribution function (see Table 2). If 1 p is small and n(i p) is of moderate size a similar approximation gives -
F(rin, p) *
-
-
F(n r -
-
11,a)
where u = n(i p). Omitted entries to the left and right of tabulated values are o and I respectively, to four decimal places. -
0'1250
-
found using the result
F(r1n, p)
'4746 '4565
t
t
for r = o, r, n- 1, n < 20 and p 5 O. 5 ; n is sometimes referred to as the index and p as the parameter of the distribution. F(rin, p) is the probability that X, the number of occurrences in n independent trials of an event with probability p of occurrence in each trial, is less than or equal to r; that is,
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n =4 p
= o•ox '02
.03 .04 0.05
7= 0
0.9606 -9224 .8853 •8493
I
I
0•0I '02
0'9510
0'9990
'9039
.8587
'9998
.81 54
.9962 .9915 '9852
0 '9999
-03 •04
0 '9995
0'05
0 '7738
0 '9774
'9992 '9987 •9981 '9973
-o6 •o8
'7339 '6957 '6 591
.9681 '9575 '9456
0.9988 •998o •9969 '9955
0 '9999
.09
'6240
.9326
'9937
'9999 '9998 '9997
0.9963 '9951 '9937 .9921 '9902
0'9999 '9999 '9998 '9997 '9996
0•10 'II
0.5905
0.9185 '9035 -8875 .8708 .8533
0 '9914
0 '9995
.9888 .9857 '982, .9780
'9993 '9991 '9987 '9983
0'9995
(Yr5 •i6
0'4437
0 '9734
0 '9999
'17
0.9978 '9971 .9964 '9955 '9945 0 '9933
0 '9997
'9919 •9903 •9886 •9866
'9996 '9995 '9994 '9992
p
.07 •o8
.7164
'09
•6857
0.9860 •9801 '9733 '9656 '9570
o•io
0.6561
0 '9477
'II •12
•6z74 '5997
•13 '14
.5729 '5470
'9376 '9268 '9153 '9032
0'15
0.5220
•i6
'4979
•17
'4746
0.8905 '8772 .8634
•18 •19
.4521 '4305
'8344
0.9880 .9856 .9829 '9798 .9765
0'20 •21
0.4096
0.8192
0.9728
'3895
'22
•3702 •3515
'8037 .7878 '7715 '7550
•9688 '9644 '9597 '9547
•8491
.23 .24
'3336
0'25
0 '3164
•26
'2999
0.7383 .7213
•27
•2840
*7041
•28 '29
•2687 '2541
•6868 '6693
0.9492 '9434 '9372 •9306 '9237
0'30
0.2401
0.6517
0.9163
'31 '32
-2267 •2138
'6340 '6163
'9085 •9004
'33 '34
•2015 '1897
•5985 •5807
0.35 •36 '37
0.1785 •1678 '1 575
0.5630
•38
'1478
'39
•1385
0'40
0•1296
'41
•1212 •1132 •1056
'42 '43 '44
0'45 -46 '47 '48 •49
o.5o
'5453
.5276 -5100 '4925 0.4752 .4580 '4410 '4241
=
0 '9999
0.8145 •7807 '7481
•o6
3
0 '9994
'9977 '9948 •9909
n =5
7' = 0
2
'07
•12 •x3
'14
'5584 •5277
'4984 '4704
0.9984
0'20
0.3277
0 '7373
•9981 '9977 '9972 .9967
•21
'7167 '6959
.23
'3077 •2887 *2707
'24
.2536
.6539
0.9421 '9341 .9256 '9164 .9067
0 '9961
0'25
0 '2373
0.6328
0.8965
0 '9844
0 '9990
'9954 '9947 '9939 '9929
•26
•2219
•8857
*9819
'27
*2073
•6117 •5907
'5697 '5489
'8743 •8624 '8499
'9792 '9762 '9728
.9988 •9986 '9983 '9979
0•5282 '5077 '4875 '4675 '4478
0•8369 •8234 '8095 '7950 •7801
0.9692 '9653 .9610 '9564 '9514
0 '9976
0.7648 '7491 '7330 '7165 '6997
0.9460 .9402 '9340 '9274 '9204
0 '9947
0.6826 •665, '6475 •6295 •6114
0.9130 •8967 •8879 '8786
0.9898 •9884 •9869 '9853 '9835
0 '5931
0.9815 '9794 '9771 '9745
'22
'6749
0'30
*9908
'31
0•1681 '1564
'32
'1454
•8918 '8829
'9895 •9881 •9866
'33 '34
'1350 -1252
0.8735 -8638 '8536 •8431 .8321
0.9850 -9832 '9813 '9791 '9769
0.35
0.1160
•36 •38
•1074 '0992 •09,6
'39
.0845
0.4284 '4094 '3907 '3724 '3545
0•82.08 •8091 '7970 •7845 '7717
0 '9744
0.40
0.0778
0'3370
'9717 •9689 •9658 •9625
'41 '42 '43 '44
.0715 •o6o2 •0551
'3199 '3033 •2871
0 '9590
0'45
0.0503
'9552 '9512 '9469 '9424
'46 '47 '48 '49
'0459
.0731
'3431
•0677
•3276
0.0625
0.3125
0.6875
0'9999
'3487
0'9919
0.7585 '7450 .7311 '7169 •7023
0 '9999
•i8
'1935
0.3910 '3748 '3588
'9997 '9994
'19
•1804
0.0915 •0850 '0789
4
'3939 '3707
-4182
.28
'4074
3
0.8352 •8165 '7973 '7776 '7576
'9993 '9992 '9990 .9987
'29
'0983
2
'37
-0656
'2714
•9051
'9999 '9999 '9998 '9998
'9971 •9966 - 9961 '9955
'9940 '9931 '9921 '9910
-2272
'5561
•2135 •2002
'5375
0.8688 '8585 '8478 .8365
'5187
'8248
'9718
0•50 0'0313 0'1875 0'9375 See page 4 for explanation of the use of this table.
0'5000
0.8125
0.9688
5
'0418 '0380
'0345
0•2562 '2415
•9682 '9625 '9563 '9495
'5747
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n =6
r
= 0
p = 0•01
0.9415
'02
'8858 •8330
.03 •04 0'05
•06 .07 •o8 .09
0•25
•26 .27 -28 •29
n =7
r=o
I
2
3
p = 0•01
0'9321
•o2 -03 .04
•8681 -8080
0'9980 •9921 •9829 •9706
0.9997 '9991 •9980
0.9999
0.9556 •9382 •9187 •8974 •8745
0.9962 '9937 •9903 .9860 •9807
0.9998 '9996 '9993 '9988 •9982
0 '9743
0'9973
'3773 '3479
0.8503 •825o .7988 .7719 '7444
•9669 •9584 '9487 •9380
•9961 '9946 .9928 •9906
•z6
0.3206 •2951
0.7166 •6885
0.9262 .9134 .8995 .8846 •8687
0.9879 .9847 •9811 .9769 •9721
'4702
0•8520 .8343 •8159 '7967 *7769
0'9667 •9606 '9539 '9464 .9383
0'4449
0'7564
0'9294
•4204 •3965 '3734 •3510
'7354 .7139 •6919 •6696
•9198 .9095 .8984 •8866
0'6471
•6243 •6013 •5783 '5553
0.8740 •8606 •8466 •8318 .8163
0.9978 .9962 '9942 .9915 •9882
0.9999 '9998 '9997 '9995 '9992
0'9842 '9794 '9739 .9676 .9605
0.9987 .9982 '9975 -9966 '9955
0'9999 '9999 '9999 '9998 '9997
0:::
'4046
0'8857 .8655 .8444 .8224 '7997
0.3771 .3513 •3269 •3040 •2824
0-7765 .7528 •7287 •7044 .6799
0'9527 .9440 '9345 '9241 .9130
0.9941 .9925 .9906 •9884 .9859
0.9996 '9995 '9993 '9990 '9987
0'15
0'2621 •2431
0'9011 •8885 •8750 •8609 .8461
0•9830 '9798 *9761 .9720 .9674
0 '9984
'2252 '2084 '1927
0'6554 •6308 '6063 •5820 '5578
.9980 '9975 .9969 '9962
0.1780 •1642
0.5339 •5104
•1513 •1393 •1281
'4872 '4420
0.8306 •8144 '7977 .7804 •7626
o•9624 .9569 .9508 '9443 '9372
0'7443 •7256 '7064 .687o •6672
0.7351 -6899 . 6470 -6064 '5679
'4970
•23 .24
5
4
0.9672 '9541 '9392 •9227 *9048
•7828
0.5314
0'20 '21 '22
3
0'9998 '9995 -9988
'II -12 '13 '14
•i6 •17 •18 •19
2
0.9985 '9943 .9875 .9784
010
0'15
I
'4644 '4336
'4644
0'05
•06 .07 •o8 •09
*7514
0.6983 .6485 •6017
.5578 •5168 0:4783 4423 *4087
'12 •13 '14
•17
'2714
'6604
•18 •19
'2493 •2288
.6323 •6044
0'9999 '9999 '9999 '9999 '9998
0'20
0'2097
•2X .22 •23 •24
•1920 '1757 '1605 *1465
0'5767 '5494 •5225 *4960
0'9954 '9944 '9933 .9921 •9907
0.9998 '9997 '9996 '9995 '9994
0.25 •26 •27 •28 .29
0'1335 '1215 '1105
0.9295 •9213 •9125 .9031 •8931
0.9891 .9873 '9852 '9830 •9805
0.9993 '9991 .9989 .9987 .9985
0'30
0'0824
.31 •32 •33 •34
•0745 •0606 .0546
0.3294 '3086 •2887 •2696 .2513
'1003 •0910
0.30 •31 -32 .33 •34
0.1176 .1079 .0905 •0827
0.4202 •3988 '3780 '3578 •3381
0.35 •36 •37 •38 -39
0.0754 •0687 •0625 0568 .0515
0.3191 •3006 •2828 •2657 •2492
0.6471 •6268 -6063 .5857 *5650
0.8826 -8714 .8596 .8473 '8343
0.9777 '9746 '9712 .9675 '9635
0.9982 '9978 '9974 '9970 '9965
0.35 •36 '37 •38 •39
0'0490 •0440 '0394 •0352 -0314
0'2338 '2172 •2013 •1863 '1721
0'5323 '5094 '4866 '4641 '4419
0'8002 .7833 .7659 '7479 •7293
0'40
0-0467
0.8208 '8067 •7920 .7768 •7610
0.9590 •9542 '9490 '9434 '9373
0'0280
0'1586
0'4199
'9952 '9945 '9937 '9927
•41 -42 .43 •44
.0249
'0343 •0308
0.5443 •5236 •5029 .4823 •4618
0'40
'0422 '0381
0'2333 •2181 -2035 •1895 •1762
0'9959
'41 •42 '43 •44
'0195 -0173
.1459 '1340 •1228 •1123
'3983 '3771 '3564 •3362
0'7102 -6906 -6706 •6502 •6294
'46 •47 •48 •49
0.0277 •0248 '0222 0198 •0176
0.1636 .1515 •1401 •1293 •1190
0.4415 '4214 •4015 •3820 '3627
0.7447 •7279 '7107 •6930 *6748
0.9308 •9238 •9163 •9083 '8997
0.9917 •9905 '9892 •9878 *9862
0.45 -46 '47 •48 '49
0'0152 '0134 •0117 •0103 •0090
0'1024 '0932 •o847 •0767 •o693
0'3164 •2973 .2787 •2607 '2433
0'6083 '5869 . 5654 '5437 '5219
0'50
0.0156
0.1094
0'3438
0.6562
0.8906
0.9844
0'50
0.0078
0.0625
0•2266
0•5000
0'45
'0989
'0672
•0221
See page 4 for explanation of the use of this table.
6
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n= 7 p
r=4
5
6
n= 8
r
=o
1
2
3
4
5
= O'OI
p = 0'01
0.9227
0'9973
0 '9999
•02 •03
'02
'8508
'03 •04
'7837
'9897 '9777
'9996 '9987
0'9999
'7214
'9619
.9969
'9998
0.6634 .6096 .5596 •5132 - 4703
0.9428 •9208 .8965 •8702 '8423
0.9942 .9904 '9853 .9789 '9711
0 '9996
.9993 .9987 .9978 '9966
0.9999 .9999 '9997
0.9619 0'9950 '9929 '9513 .9903 .9392 .9871 9257 9109 •9832
0.9996 '9993 .9990 '9985 *9979
0.9999 .9999 '9998
'04
0.05 •66 •o7 •68 '09
cros •o6 '07
6
0.9999 '9999
•38 •09
0.10 'II •I2
0.9998 '9997
'II
0.4305 '3937
'9996
•12
'3596
•X3 •14
'9994 '9991
•13 '14
•3282 •2992
0.8131 '7829 .7520 •7206 •6889
0'15
0.9988 .9983 '9978 -9971 '9963
0.9999 .9999 '9999 .9998 '9997
0'/5
0.2725 .2479 -2252 •2044 .1853
0.6572 •6256 '5943 . 5634 '5330
0.8948 .8774 •8588 '8392 •8185
0'9786
0.9971
0 '9998
.16 '17 .18 '19
'9733 -9672 •9603 .9524
'9962 -9950 '9935 .9917
'9997 .9995 '9993 -9991
0 '9999
0'20
0.9953
'9942
0.9996 '9995
'22 '23
'9928 '9912
'9994
0'20 '21 '22
'24
'9893
.9992 '9989
.23 •24
0'1678 '1517 '1370 '1236 '1113
0.5033 '4743 '4462 '4189 .3925
0'7969
•21
0.9437 '9341 *9235 '9120 .8996
0.9896 .9871 '9842 '9809 '9770
0.9988 '9984 '9979 '9973 .9966
0.9999 '9999 '9998 .9998 .9997
0'25
0.9871 *9847 '981 9 *9787
0•6785 - 6535 .6282 '6027
0.9727 '9678 '9623 .9562 '9495
0'9958 *9948 '9936 '9922 '9906
0.9996 '9995 '9994 .9992 '9990
.26
'27 '28 •29
'9752
•10
•i6 •17 •19
'7745 '7514 '7276 -7033
'0722
0.3671 '3427 . 3193 '2969
•29
•0646
'2756
'5772
0•8862 *8719 •8567 '8466 '8237
0'9998 '9997 '9997 '9996 '9995
0'30
0.0576 .0514
0'2553
•0406 -0360
'2360 •2178 •2006 •1844
0.5518 .5264 •5013 *4764 .4519
0.8059 .7874 •7681 *7481 .7276
0.9420 -9339 '9250 *9154 .9051
0.9887 '9866 .9841 '9813 -9782
0.9987 .9984 •9980 '9976 •9970
0'9910 '9895 '9877 •9858 .9836
0 '9994
0.35 •36 '37 •38 .39
0.0319 -0281 '0248 -0218 -0192
0.1691 '1548 '1414 •1289 '1172
0.4278 '4042 •3811 •3585 '3366
0.7064 '6847 -6626 '6401 '6172
0.8939 '8820 '8693 '8557 •8414
0'9747
0'9964
'9992 '9991 .9989 '9986
'9707 '9664 '9615 '9561
-9957 '9949 '9939 '9928
0.8263 '8105 '7938 '7765 '7584
0.9502 '9437 '9366 •9289 •9206
0.9915 .9900 •9883 '9864 .9843
0'9115 •9018 •8914 -8802 •868z
0'9819 .9792 •9761 .9728 •9690
0.8555
0.9648
0 '9987
0 '9999
0'25
0' IOOI
'9983 '9979 '9974 .9969
'9999 '9999 '9999 .9998
•26
•0899 •0806
'27 •28
•31 •32
0'9712 - 9668 •9620
0'9962 '9954
'33
'9566
'34
'9508
'9935 '9923
0.35 '36 '37 -38 -39
0 '9444
0'40 '41 '42 - 43 '44
0 '9037
0.9812 '9784 '9754 '9721 '9684
0'9984
0'40
'8937 .8831 '8718 '8598
.9981
0.0168 '0147 -0128 '011 1 '0097
0.1064 *0963 •0870 '0784 '0705
0 '3154 .2948
0 '5941 . 5708
'9977 '9973 •9968
'41 '42 '43 •44
' 2750 '2560 '2376
'5473 '5238 •5004
0'45 '46 '47 .48 '49
0'8471 '8337 '8197 '8049 '7895
0'9643 '9598 '9549 '9496 '9438
0'9963 .9956 '9949 '994' '9932
0'45 •46 '47 •48 '49
0.0084 •0072 -0062 -0053 '0046
0.0632 •0565 •0504 .0448 '0398
0.2201 .2034 '1875 .1724 -1581
0.4770 -4537 '4306 '3854
0.7396 '7202 •7001 '6795 •6584
0•50
0.7734
0'9375
0.9922
0•50
0.0039
0.0352
0.1445
0.3633
0.6367
0'30
'9375 '9299 •9218 .9131
'9945
'31 .32 '33 -34
'0457
'4078
See page 4 for explanation of the use of this table.
7
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
n =8
r= 7
n= 9
r
=o
I
2
0.9966 •9869 •9718
0.9999 '9994 •9980
'9522
'9955
0.9916 •9862 '9791
3
4
5
6
7
P = o•ox
p = O'OI
0.9135
•02 •04
'02 •03 '04
•8337 '7602 *6925
0'05
0'05
•o6
•o6
0.6302 '573 0
.07
'07
'5204
0.9288 •9022 •8729
•o8
•o8
•4722
•8417
'9702
•09
'09
•4279
•8088
'9595
o•xo
o•xo
0.3874
0 '7748
0 '9470
'II •I2
'3504 '3165
'7401
•x3 '14
-x3
'14
•2855 '2573
•6696 •6343
.9328 .9167 .8991 •8798
0.9917 '9883 •9842 '9791 '9731
0.9991 .9986 '9979 '9970 '9959
0 '9999
'II •I2
0'15
0'15
0.2316
0.5995
0.8591
0.9661
•x6 •17 •x8
•2082 •1869 •1676
'5652
•8371
•9580
.19
.19
'1501
•4988 '4670
.8139 .7895 •7643
'9488 '9385 •9270
'9991 .9987 .9983 '9977
0 '9999
'531 5
0.9944 •9925 .9902 .9875 '9842
0 '9994
•x6 •17 •x8
0'20 '21 '22
0'1342
0'4362
0'7382
0'9144
0'9804
0 '9969
0 '9997
'1199 •1069 '0952 'o846
•4066 •3782
'24
0'20 •2I '22 '23 '24
•7115 •6842 •6566 •6287
•9006 •8856 •8696 '8525
-9760 '9709 •9650 .9584
.9960 '9949 '9935 '9919
'9996 '9994 '9992 '9990
0'25 •26 '27
0'25 '26 •27
0.075x
0.3003 •2770 •2548
0.8343 .8151 '7950 '7740 .7522
0.9511 '9429 '9338 •9238 '9130
0.9900 •9878 '9851 •9821 .9787
0.9987 .9983 '9978 '9972 .9965
0 '9999
'0665 '0589
•03
.23
•7049
'3509
•3250
8
0.9999 '9997 0.9994 '9987 '9977 '9963 '9943
0 '9999
'9998 '9997 '9995
'9999 '9998 '9997 '9996
'9999 '9998 '9998
0 '9999
'9999
-28
•0520
•2340
•29
0'9999
'29
'0458
'2144
0.6007 '5727 . 5448 •5171 '4898
0'30
0 '9999
0'30
0'0404
0'1960
0'4628
0'7297
'31
.0355
•4364
'9999
'32
'0311
'1788 •1628
'33 '34
'9999 '9998
.33
'0272
'1478
'4106 •3854
'34
.0238
'1339
•3610
•7065 •6827 .6585 •6338
0.9747 '9702 .9652 '9596 '9533
0 '9996
'9999
0.9012 •8885 '8748 •86oz '8447
0 '9957
'31 .32
'9947 '9936 '9922 .9906
'9994 '9993 '9991 '9989
0 '9999
0'35
0 '9998
0'35
0.0207
.36
'9997
•36
'37 '38
'9996 .9996
•0135
0. 1 zi 1 •1092 •0983 •0882
0.3373 '3144 •2924 '2 713
'39
'9995
•37 -38 .39
•0i8o •0156 '0117
'0790
'2511
0.6089 •5837 •5584 '5331 '5078
0.8283 .8110 '7928 '7738 '7540
0.9464 •9388 .9304 •9213 '9114
0.9888 .9867 .9843 •9816 •9785
0.9986 •9983 '9979 '9974 '9969
0.9999 '9999 '9999 '9998 '9998
0'40
0'9993 '9992 '9990 '9988
0'40
0.0101
0'0705
0'2318
0'4826
'41
•0087
•0628
•2134
'4576
0.7334 -7122 •6903 •6678 '6449
0.9006 •8891 •8767 •8634 '8492
0.9750 •9710 •9666 '9617 '9563
0.9962 '9954 '9945 '9935 '9923
0.9997 '9997 '9996 '9995 '9994
0.6214 '5976 '5735 '5491
0.8342 •8183 '80,5 '7839 •7654
0.9909 '9893 '9875 '9855 '9831
0 '9992
'5246
0.9502 '9436 '9363 •9283 '9196
0.5000
0.7461
0.9102
0'9805
0.9980
•28
'41 '42 '43 •44
'42
'0074
•0558
'1961
.4330
•oo64
'0495
•9986
'43 •44
•0054
'0437
•1796 .1641
•4087 '3848
0'45
0.9983
0.45
0.0046
0.0385
0.1495
'46 '47
•9980
•0039
'0338
'1358
•0033
•0296
•1231
0.3614 '3386 '3164
•0028
'49
'9976 '9972 •9967
•46 '47 '48 '49
'0023
'0259 '0225
'III, •I00I
'2948 '2740
0'50
0.9961
0•50
0'0020
0'0195
0.0898
0.2539
'48
See page 4 for explanation of the use of this table.
8
'9999 '9998 '9997 '9997
'999! •9989 '9986 '9984
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n
p
I0
r =0
1
2
= 0•0i '02 '03
0.9044
0 '9957
0 '9999
'8171
•9838 9655 '9418
'9991 '9972 '9938 0.9885 '9812 '9717 '9599 '9460
0 '9990
0 '9999
'9980 '9964 '9942 •9912
'9998 '9997 '9994 '9990
0 '9999
0.9298 •9116 '8913 •8692 '8455
0'9872 •9822 '9761 •9687 '9600
0 '9984
0 '9999
'9975 •9963 '9947 •9927
'9997 '9996 '9994 '9990
0.8202 '7936
0.9500 '9386
0.9901 .9870
0.9986 .9980
7659
9259
983 2
9973
9997
. 7372
•7078
.9117 •8961
.9787 '9734
.9963 '9951
'9996 '9994
0 '9999
'7374 •6648
-04
3
4
5
6
7
8
9
0 '9999
'9996
•o6 .07 •o8
0.5987 .5386 '4840 '4344
'09
- 3894
0.9139 •8824 .8483 .81z1 '7746
0.10
0.3487 •3118 ' 2785 •2484
0.7361 •6972 '6583 •6196
'2213
'5816
0.15 •16 '17 •18 •19
0.1969 •1749
0 '5443
:1135752 '1374 •12.16
.5080 '4730 '4392 -4068
0'20 •21 •22
0'1074
0'3758
.23 •24
'0733 •0643
0.8791 •8609 '8413 •8206 .7988
0'9672 '9601 .9521 '9431 '9330
0'9936 •9918 .9896 '9870 '9839
0 '9999
*3464 -3185 •2921 .2673
0.6778 '6474 . 6169 •5863 •5558
0 '9991
'0947 •o834
.9988 '9984 '9979 '9973
'9999 *9998 '9998 '9997
0'25
0'0563
0'2440
0.5256
'2222
'4958
'28 '29
'0374 •0326
•2019 .1830
'4665 '4378 '4099
'7274 '7021 •6761
0.9219 .9096 .8963 •8819 •8663
0.9803 .9761 '9713 '9658 '9596
0 '9996
'0492 '0430
0 '7759 . 7521
0 '9965
•26 •27
'9955 '9944 '9930 '9913
'9994 '9993 '9990 '9988
0'6496 •6228
o'8497 •8321
4 0'9894
0 '9984
0 '9999
'9871
'595 6 5684 4
'8133
'7936 '7730
0'9527 '9449 '9363 '9268 •9164
.9815 '9780
•9980 '9975 .9968 '9961
.9998 '9997 '9997 '9996
0.5138 '4868 '4600 '4336 '4077
0.7515 '7292 •7061 •6823 .658o
0.9051 •8928 '8795 •8652 •8500
0.9740 '9695 '9644 '9587 '9523
0'9952 '9941 '9929 '9914 '9897
0 '9995
0.6331 •6078 '5822 '5564 '5304
0.8338 •8166 '7984 '7793 '7593
0'9452 '9374 '9288 '9194 '9092
0'9877 '9854 '9828 '9798 '9764
0'9983 '9979 '9975 '9969 '9963
0 '9999
0.5044 '4784 .4526
0'7384
0.8980 •8859 '8729
'9726 '9683 '9634
0 '9955
0'9997
'9996 '9995 '9994 '9992 0 '9990
0'05
•II •I2
•13 '14
0'30
'1655
0.1493 '1344
0'9999
'9999 0 '9999
'9998
0 '9999
'9999 .9999
'0211
•Iz(36
•0182.
•1o8o
•0157
'0965
0.3828 '3566 '3313 •3070 .2838
0.35 •36 '37 -38 '39
0.0135 •0115 •0098 -0084
0.0860 '0764 '0677 •0598
0.2616 •2405 •2206 '2017
•0071
'0527
'1840
0.40 '41
0.0060 '005! - 0043 •0036 •0030
0.0464 •0406 '0355 •0309
0.1673 '1517 '1372 •1236
'0269
'III!
0.3823 '3575 '3335 •3102 •2877
0'45 •46 '47 -48 '49
0.0025
0.0233
'0021 •0017 •0014 '0012
'0201 '0173 •0148 '0126
0.0996 •0889
0.2660 '2453
'0791 •0702 '0621
'2255 •2067
'4270
'6712
'8590
'9580
•1888
•4018
'6474
'8440
'9520
'9946 '9935 '9923 '9909
0'50
0.0ozo
0.0107
0'0547
O'1719
0'3770
0.6230
0.8281
0 '9453
0 '9893
'31 •32 '33 '34
•42
'43 '44
0
4 85 2
•4
'7168 '6943
See page 4 for explanation of the use of this table.
9
'9993 '9991 '9989 '9986
0 '9999
'9999
'9999 '9998 '9998 '9997
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = xx p = 0•01
6
8
I
2
.03 •04
•8007 -7153
0'9948 •9805 .9587
0.9998 •9988 .9963
'6382
'9308
'9917
0.9998 .9993
0.05 •o6
0.5688 •5063 '4501
•o8 '09
.3996 '3544
0.9848 .9752 •963o •9481 '9305
0.9984 '9970 '9947 '9915 .9871
0'9999
'07
0.8981 •8618 •8228 •7819 '7399
0'10
0.3138 *2775
0.6974 '6548
0'9104
'2451 '2161
•1903
.5311
'8985
0.9815 '9744 .9659 '9558 '9440
0.9972 '9958 '9939 •9913 •9881
0.9997 '9995 '9992 .9988 •9982
0 '9999
•5714
•888o •8634 •8368
o•xs •16 .17 -18 •19
0.1673 - 1469 -1288 •1127 .0985
0'4922 '4547 -4189 •3849 -3526
0'7788 '7479 •7161 •6836 •6506
0.9306 '9154 .8987 •8803 •8603
0.9841 '9793 '9734 .9666 -9587
0'9973
0'9997
'9963 '9949 .9932 -9910
'9995 '9993 '9990 .9986
0'20
0.0859 0748 .0650 •0489
0.3221 '2935 •2667 •2418 -2186
0.6174 '5842 '5512 .5186 •4866
0.8389 •8160 '7919 •7667 .7404
0.9496 '9393 '9277 . 9149 •9008
0.9883 '9852 '9814 '9769 '9717
0.9980 '9973 '9965 '9954 '9941
0.9998 '9997 '9995 '9993 '9991
0'25
0'0422
0'1971
0'4552
'1773
-4247
'27
'0314
'1590
'395 1
•28 •29
•0270
- 1423
•3665
0'9657 '9588 - 9510 . 9423
0'9924 '9905 -9881 .9854
'9984 '9979 '9973
'0231
•1270
'3390
'6570 -6281 -5989
0'8854 *8687 '8507 -8315 •8112
0 '9999
'0364
0'7133 .6854
0 '9988
•26
'9326
'9821
'9966
'9998 .9998 '9997 .9996
0.1130 •1003 .0888
0.3127 •2877 . 2639
'0784 '0690
'2413 '2201
0.5696 '5402 .5110 '4821 '4536
0.7897 '7672 '7437 '7193 •6941
0.9218 '9099 .8969 '8829 -8676
0.9784 '9740 .9691 '9634 .9570
0.9957 '9946
'33 '34
0.0198 •0169 -0144 •0122 •0104
0'35
0'0088
0'0606
0'2001
•0074 '0062 -0052 '0044
.0530 •0463 .0403 •0350
•1814 "1640 *1478 •1328
0.4256 *3981 . 3714 '3455 •3204
0.6683 '6419 '6150 '5878 '5603
0.8513 '8339 '8153 '7957 '7751
0 '9499
•36 '37 -38 '39 0.40 41 •42 '43 '44
0.0036 .0030 -0025 •0021 •0017
0.0302 •0261 -0224
0.1189 •./062
0.2963 -2731
0.5328 -5052
0 '7535
2510
'4777
0. 45
46 '47 '48 '49 0'50
'02
•II •I2
•13 •14.
.21 -22 •23 -24
0'30
-31 -32
.
-
r
o
0'8953
-
'0564
'6127
3
5
4
'9997 '9995 '9990 .9983
7
9
0 '9999
.9998
.9999 .9998
0 '9999
'9999 .9998
0 '9999
'9999
0 '9994 0 '9999
'9918 '9899
'9992 '9990 '9987 '9984
'9419 '9330 '9232 '9124
0'9878 '9852 '9823 . 9790 '9751
0.9980 '9974 - 9968 '9961 '9952
0.9998 '9997 - 9996 '9995 '9994
0.9006 -8879 .8740 -8592 - 8432
0.9707 .9657 •9601 '9539 - 9468
0.9941 -9928 *9913 '9896 '9875
0 '9993
.7310 '7076 .6834 .6586
.9991 - 9988 '9986 '9982
0.9999 '9999 '9999 '9999 0.9998 '9998 '9998 .9997 .9996 0'9995
'9933
'9999 '9999 . 9998
'0945
.
'0192
'0838
'2300
'4505
•0164
. 0740
•2100
.4236
0'0014
0'0139
0'0652
0'1911
0'3971
•0011 •0009 •0008 •0006
•0118 .0100 -0084 •007o
-0572 •0501 .0436 •0378
'1734 •1567 .1412 •1267
'3712 '3459 . 3213 '2974
0.6331 .6071 •5807 . 5540 '5271
0•8262 -8081 -7890 •7688 '7477
0.9390 '9304 '9209 .9105 -8991
0.9852 '9825 '9794 .9759 '9718
0.9978 '9973 '9967 .9960 .9951
0.0005
0.0059
0.0327
0'1133
0 '2744
0.5000
0.7256
0.8867
0.9673
0.9941
See page 4 for explanation of the use of this table. I0
xo
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
n = 12
r
p=
(•oi
0•8864
•02 '03 •04
'7847
0.05 •o6
=o
I
•6938 '6127
'9191
0.9998 '9985 '9952 •9893
0'5404
0'8816
0'9804
0 '9978
'4759
'9684 -9532 .9348 '9134
'9957 '9925 -988o .9820
0.8891 •8623 .8333 •8923 -7697
0 '9744 - 9649
0.4435 '4055 •3696 '3359 -3043
0'7358
'47 '49
0'9957
0'9995
0 '9999
0'50
0.9998
.9536 '9403 -9250
'9935 .9905 '9867 •9819
'9991 .9986 '9978 '9967
'9999 '9998 '9997 .9996
0.9078 •8886 •8676 .8448 '8205
0.9761 -9690 •9607 •9511 '9400
0.9954 .9935 .9912 -9884 '9849
0 '9993
0'9999
.7010 •6656 *6298 '5940
'9990
'9999 '9998 '9997
0.2749 -2476 •2224 '1991
0 '5583
0 '7946
•1778
'4222
*6795
0.9806 '9755 '9696 •9626 '9547
0.9961 '9948 '9932 •9911 '9887
0 '9999
-7674 - 7390 •7096
0'9274 '9134 '8979 •8808 '8623
0 '9994
.5232 •4886 -4550
'9992 '9989 '9984 '9979
'9999 '9999 '9998 '9997
0'9456
0 ' 9857
0'9972
0'9996
'9995
0 '9999
:9 9324 504
'9953 '9940 '9924
'9993 '9990 '9987
'9999 '9999 '9998
0'9983 - 9978
0'9998 '9997 .9996 '9995 '9993
0'9999
0.9999 '9999 '9999 -9998 '9998
0.2824
0.6590
•II •I2
'2470
*6133 •5686
-0924
.0798
0'20 '2I '22 '23
0.0687 •0591 '0507
•5252 .4834
'46 '48
'9985
.9979 '9971
.9996
.24
'0434 '0371
0'25
0.0317
0.1584
0'3907
0.6488
0.8424
•26 -27 •28
'0270 •0229
'1406 .1245
'3603
•6176
•8210
•0194
. 1 Ioo
'29
'0164
'0968
'3313 •3037 ' 2 775
.5863 '5548 •5235
'7984 '7746 '7496
'9113 '8974
.• '9733 .9678
0'30
0'0138 'oi 16 '0098
0'0850
0'2528 .2296
0'4925
0.7237 -6968 .6692 •6410 •6124
0.8822 •8657 '8479 •8289 •8087
0.9614 '9542 '9460 '9368 •9266
0 '9905
0.5833 '5541 '5249 '4957 •4668
0.7873 .7648 '7412 -7167 •6913
0'9154
0.9745
.9030 •8894 -8747 '8589
-9696
0'4382
0.6652 •6384
•2078 •1876 •1687
-4619 .4319 '4027 .3742
0.1513 •1352 •1205
0.3467 •3201 .2947
'1069 '0946
*2704
•9682 •0068
'0744 •0650 •0565 •0491
0.0057
0.0424
•0047 •0039 -0032 •0027
'0366 •0315 '0270 '0230
0'0022 •ooi8 •0014 •oolz •0010
0'0196 •0166 '0140 •or 18 •0099
0'0834
'41 •42 '43 '44
'0642 •0560 '0487
•1853
•3825
•1671
•3557
'1502
'3296
'5552
0.45 '46
00008 •0006
0.0083 •oo69
0.0421 •0363
0.1345 •1199
0.3044 •2802
0.5269 •4986
'47 '48 '49
•0005 •0004 •0003
•0057 '0047 •0039
•0312 '0267 '0227
•1066 *0943 '0832
•2570
'4703
-2348
.4423
•2138
0'50
0'0002
0'0032
0'0193
0.0730
0.1938
'31 '32
'33 '34
0.35 •36 '37
•38 '39 0'40
r=x
'9998 '9997
0•10
•18
n = 12
zo
0 '9999
'7052
'19
9
0'9999 '9999 '9999 '9999 '9998
•3225
0.1422 •1234 •1069
8
0'45
•09
•z6 •z7
7
0.9998 .9996 '9991 .9984 '9973
'4186
•1637
6
0'9999
•3677
•1880
'9997 '9990
5
p = 0.44
•o8
•2157
0 '9999
4
0 '9999
•07
0'15
3
0.9938 '9769 '9514
'8405 '7967 .7513
•z3 '14
2
'0733
•2472 0.2253 '2047
'4101
.9882 *9856 '9824 .9787
.9578 '9507
'9915 .9896 .9873
0'9992 '9989 •9986 .9982 '9978
0.8418 .8235
0.9427 .9338
0.9847 -9817
0'9972 •9965
'6111
•8041
'9240
'9782
'9957
'5833
'7836 •7620
'9131 •9012
'9742 '9696
'9947 '9935
0.9997 '9996 .9995 '9993 '9991
0.8883 '8742 •8589 .8425 •8249
0'9644
0.9921
0'9989
'4145
0.7393 .7157 •6911 .6657 '6396
.9585 -9519 '9445 '9362
-9905 •9886 .9863 .9837
.9986 .9983 '9979 '9974
0.3872
0.6128
0.8062
0.9270
0.9807
0.9968
.9641
See page 4 for explanation of the use of this table. II
'9972 '9964 .9955 0 '9944 .9930
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = x3
r=o
i
2
3
4
p = 0.01
0.8775
0'9928
'02
•7690 •6730 •5882
'9730
'9436 •9068
0.9997 •9980 '9938 •9865
0.9999 '9995 •9986
0.9999
•06
0'5133 '4474
.07
'3893
.08
.09
•3383 '2935
0.8646 .8186 .7702 •7206 •6707
0.9755 •9608 '9422 •9201 .8946
0.9969 '9940 .9897 '9837 '9758
0.9997 '9993 .9987 '9976 '9959
0•10
0.2542
0.6213 '5730
0.8661 .8349 •8015 •7663 /296
0.9658 '9536 '9391 •9224 '9033
0.9935 .9903 '9861 •9807 '9740
0'9991
.11
o•8820 .8586 •8333 •8061 '7774
0.9658 '9562 '9449 .9319 .9173
0.9925 .9896 .9861 .9817 .9763
0'9987
0 '9998
•9981 '9973 '9962 '9948
'9997 '9996 '9994 '9991
0.7473 .7161 •6839 '6511 •6178
0.9009 •8827 •8629 ' 8415 •8184
0.9700 •9625 '9538 '9438 '9325
0.9930 '9907 •9880 .9846 .9805
0.9988 .9983 '9976 .9968 '9957
0.9998 '9998 '9996 '9995 '9993
0.5843 •5507 .5174 '4845 .4522
0 '7940
0'9198 •9056 .8901 •8730 .8545
0'9757
0.9944 .9927 .9907 •9882 '9853
0'9990
0'9999
•7681 '7411 '7130 •6840
'9987 '9982 '9976 .9969
'9998 '9997 '9996 '9995
0.4206 •3899 •3602 '3317 .3043
0.6543 .624o '5933 •5624 '5314
0.8346 •8133 -7907 •7669 '7419
0.9376 .9267 •9146
0.9960 '9948 '9935 .9918 •9898
0.9993 '9991 '9988 .9985 •9980
0 '9999
•8865
0.9818 '9777 .9729 '9674 •9610
0'5005 '4699
0'7159
0.8705
0 '9538
0 '9874
'2536 '2302 '2083
'4397 '4101
'6889 •6612
•8532 •8346
'9456 •9365
0.9975 '9968 .9960 '9949 '9937
0.9997 '9995 '9994 '9992 '9990
.03 '04 0'05
•12
•2198 '1898
•13 '14
•1636 '1408
0'15
0.1209
•16 •17 •x8
•1037
•0887 .0758
.2920
•19
•0646
•2616
0.6920 .6537 •6152 '5769 .5389
0'20 '21 '22 '23
0'0550 '0467
0'2336
0'5017
•2080 •1846 •1633
'4653 •43ox .3961 •3636
.0396
•5262 •4814 .4386 0'3983 •3604 •3249
5
6
7
8
9
10
0 '9999
'9999 '9997 '9995
.9985 '9976 '9964 '9947
0'9999
0.9999 '9998 '9997 '9995 '9992
0 '9999
'9999
0 '9999
'9999
•24
'0334 •0282
'1 441
0'25
0.0238
0.1267
•26
•0200
•27 •28 •29
'0167 '0140
•0117
•1 1 11 '0971 '0846 *0735
0•30
'31 •32
0.0097 •oo80 •oo66
o'o637 •0550 .0473
0.2025 •1815 •1621
'33 '34
•0055 •0045
•0406 *0347
.1280
0.35 •36
0'0037
•6327
•8147
'9262
'39
•0025 '0020 •0016
O'1132 *0997 '0875 '0765 •0667
0'2783
'37 •38
0'0296 '0251 '0213 '0179 •0151
•1877
•3812
•6038
'7935
•9149
.9846 •9813 '9775 '9730
0'40
0.0013
o•o126
0.0579
0.1686
0.3530
0.5744
0'9023
0'9679
0'9922
0'9987
'41 '42 '43 '44
•0010 •0008 •0007 •0005
•0105
'0501
•I508
'3258
'5448
•0088
.0431
.2997
'5151
•8886 •8736 .8574 •8400
•9621 '9554 '9480 '9395
.9904 .9883 .9859 .9830
.9983 '9979 '9973 .9967
0.45
•0030
0.3326 •3032 '2755 '2495
.2251
'1443
'9701 .9635 •9560 '9473
'9012
0'9999
'9999
0 '9999
'9999 '9999 '9998 '9997
'0072
'0370
'1344 '1193
'2746
'4854
•oo60
•0316
•1055
' 2507
'4559
0.7712 '7476 •7230 -6975 .6710
0'0049
0'0269
0'0929
0'2279
0'4268
0•6437
0'8212
•0040
•o228
•0815
•2065
•3981
•6158
'0033 •0026 •0021
'0192 •002 •0135
'0712 •0619 '0536
•1863 •1674
'49
0•0004 •0003 •0003 -0002 •0002
0.9302 '9197 •9082 •8955 •8817
0.9797 '9758 '9713 •9662 •9604
0.9959 '9949 '9937 •9923 .9907
0.50
0.0001
0.0017
0.0'12
0.0461
0.8666
0.9539
0.9888
'46 '47
'48
'3701
•5873
'1498
'3427 •3162.
'5585 .5293
•80'2 •7800 '7576 '7341
0.1334
0.2905
0.5000
0.7095
See page 4 for explanation of the use of this table. 12
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 13
r = II
12
p=
n = i4 p = o•ox
•02
'02
•03 •04
•03 .04
0.05 •06 .07 •o8 •09
0'05
0•10
r=
0
0.8687 '7536 '6528
'5647
I
2
0.9916 .9690 '9355 '8941
o•9997 '9975 '9923 •9833
3
4
5
6
7
0 '9999
'9994 '9981
0.9998
0-4877 •4205
0.8470
0'9699
0 '9958
0 '9996
-o6
'7963
'07
'362o
'7436
.9522 •9302
•9920 .9864
'9990 •9980
•o8 •09
'3112
'9042
'9786
'9965
'2670
•6900 '6368
. 8745
•9685
'9941
'9998 '9996 '9992
o•ro
0•2288 •1956 •1670
'13 •14.
'1 423
0.5846 '5342 '4859 '4401
'1211
•3969
0.8416 •8061 .7685 '7292 •6889
0.9559 •9406 •9226 '9021 •8790
0.9908 .9863 '9804 '9731 '9641
0.9985 '9976 '9962 '9943 '9918
0'9998
'II •I2
0.15 •x6 •x7 •x8 .x9
0'15
o•1o28 •0871 .0736 •0621 •0523
0.3567 •3193 .2848 .2531 - 2242
0.6479 •6068 .5659 .5256
0.8535 •8258 .7962 . 7649
0.9533 '9406 '9259 •9093
0.9885 '9843 '9791 '9727
0'9978 .9968 '9954 '9936
'4862
•7321
'8907
'9651
'9913
0.9997 '9995 '9992 •9988 .9983
0'20 '2I '22 '23 '24
0•20 '21 '22
0'0440
0'1979
0.4481
'0369
•1741
0•6982 '66 34
0.8702 - 8477
'0309
'1527
'4113 '3761
'6281
'8235
-23 •24
•oz58 '0214
'1335
.3426
'5924
'7977
'1163
'3109
•5568
•7703
0.9561 '9457 '9338 '9203 '9051
0.9884 .9848 .9804 '9752 . 9690
0.9976 •99 67 '9955 '9940 '9921
0.25 •26 .27 •28 .29
0'25
0'0178
0•1010
0'2811
0'5213
0'7415
0'8883
0'9617
0'9897
'26
'0148 •0122 '0101 '0083
•o874 '0754 •0556
'2533 ' 2273 •2033 •1812
'4864 '45 21 '4187 •3863
•7116 •6807 •6491 •6168
•8699 '8498 •8282 •8051
'9533 '9437 '9327 '9204
•9868 .9833 '9792 '9743
0.30 '31 •32 '33 '34
0'30
0•oo68 •0055 •0045 .0037
o.o475
0.1608
0.3552
'0404
'1423
'3253
'0343 •0290
•1254 •1101
•2968 •2699
•0030
'0244
'0963
'2444
0.5842 '5514 •5187 .4862 '4542
0.7805 '7546 .7276 •6994 .6703
0.9067 '8916 '8750 '8569 .8374
0.9685 .9619 '9542 '9455 '9357
0.35 •36 '37 '38 '39
0.0024 •0019 •0016 •0012 •0010
0.0205
0'9999
0.35 •36 .37 •38 '39
•0172 •0143 •0119
0.0839 •o729 •0630 .0543
0.2205 •1982 •1774 •1582
0.4227 •3920 .3622 '3334
'0098
'0466
'1405
•3057
0.6405 •6101 '5792 '5481 •5169
0.8164 '7941 •7704 '7455 '7195
0.9247 '9124 •8988 .8838 •8675
0.40 '41 '42 '43 '44
0'9999 '9998 '9998 '9997 '9996
0.40
o-0008 •0006
o.0081 •oo66
0.0398 •0339
0.1243 .1095
0'2793 '2541
0'4859 '4550
-42 •43 •44
'0005
•0054 •0044 '0036
'0287 '0242 •0203
•0961 '0839 '0730
'2303 •2078 •1868
'4246 '3948
•3656
0.6925 •6645 -6357 •6063 '5764
0.8499 •8308 •8104 •7887 •7656
0'45
0 '9995
0.0002 •0002
0.0170
0'5461 .5157
•0001 •0001 '0001
'0142 '0117 '0097 '0079
0.3373 •3100
'9999 '9999
'0023 '0019 •0015 '0012
0.0632 '0545
0'1672
'9993 '9991 '9989 '9986
0.45 '46 '47 '48 •49
0.0029
'46 '47 '48 '49 0'50
0'9983
0 '9999
0'50
0•000I
0'0009
0'0065
•I2 •I3 '14
•16 .17 •18 •19
•27 •28 •29
•31 •32
-33 -34
'9999 '9999
'41
0'9999
'0004
•0003
'0648
3
0 '9999
'9997 '9994 '9991 '9985
0'9999
'9999 '9998
•0468
'1322
'2837
'48 52
•0399 '0339
•1167 •io26
•2585 '2346
'4549 '4249
0.7414 •7160 -6895 •6620 .6337
0'0287
0'0898
0'2120
0.3953
0.6047
•1490
See page 4 for explanation of the use of this table. 1
0 '9999
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION t/ = 14
71 = 15
r= 0
I
2
p = o•ox '02 '03
p = 0.01
o•86oi
r= 8
9
xo
II
12
13
3
.02
'7386
'03
'6333
0.9904 '9647 '9270
'04
.04
.5421
'8809
0.9996 .9970 .9906 '9797
0.05 •06 .07 -438 •09
0.05 -o6 .07 •o8 •09
0.4633 '3953 '3367 •2863
0.8290 '7738 .7168 .6597
0.9638 '9429 •9171 •887o
0.9945 '9896 •9825 .9727
'2430
•6035
•8531
•9601
0•I0 'II •I2 •I3
crro •x x
0'2059
0.5490 '4969 '4476 '4013 .3583
0.8159 /762 '7346 •6916 •6480
0.9444 .9258 •9041 •8796 •8524
0.6042 •5608 •5181
0'8227
'14
0.15 •x 6 '17 •x8 '19
.9999 '9999 .9998 '9997
0'20 •2I •22
0.9996
.23 '24
.9989 '9984
0'25
0'9978
.26 '27 .28 .29
'9971
'9994 '9992
'9962 -9950 '9935
0 '9999
.9999 .9998 '9998 0.9997 .9995 '9993 '9991 .9988
0.9999 '9999 .9999 -9998
•12
'1470
•1238 '1041
0'15
0.0874
•x6 •17 •i 8
•0731 •o611
0.3186 -2821 •2489
'0510 - 0424
'2187
'4766
'7218
•19
'1915
'4365
•6854
0'20 '21 '22
0'0352 •0291 •0241
0'1671
0'3980
0'6482
•1453
.3615
•6105
'1259
'3269
'5726
•23 •24
•0198 •0163
•1087 .0935
'2945 .2642
'5350 '4978
0•25 '26 '27
0'0134 •0109 •0089 •0072 •0059
0'0802 '0685 '0583 '0495
0.2361 '2101 •1863
0'4613 •4258
'0419
•1447
•3914 •3584 .3268
0.0047 •0038
0.0353 •0296
o•,268 •ii07
0.2969 •2686
•28 •29
'9963 '9952
0.9999 '9999 '9999
'31 •32 '33 '34
0 '9757
0 '9940
0 '9989
0'9999
o•35
'9706 '9647 .9580 '9503
'9924 '9905 .9883 '9856
'9986 '9981 .9976 '9969
'9998 '9997 .9997 '9995
•36
0.9417 '9320 '9211 .9090 '8957
0.9825 '9788 '9745
0.9961 '9951 '9939
0'9994
0'9999
'41 '42 '43 '44
*9696
'9924
'9639
'9907
'9992 '9990 '9987 '9983
'9999 '9999 '9999 '9998
0.45 '46 '47 '48 '49
o•88ii •8652 '480 '8293 '8094
0'9574
0.9886 •9861 •9832 '9798 '9759
0.9978 '9973 •9966 .9958 '9947
0 '9997
•9500 '9417 '9323 '9218
0'50
0.7880
0.9102
0.9713
0.9935
0'9991
0.9917 '9895
0'9983
'9869
'9971
'9837 '9800
0.35 .36 '37 .38 '39 040
'9978
0'30
•0031
'0248
'0962
'2420
-0206
•0833
•2171
'0171
'0719
•1940
0.0016 -00I2 .00 I 0 •0008 •0006
0'0142 '0117 '0096
0'0617 •0528 •0450
0'1727 •1531 •I351
•0078 •oo64
•o382 •0322
•1187 •I039
0'0005 '0004 •0003 0002 0002
0'0052 •0042 •0034 '0027 0021
0•0271 •0227 •0189 *0157
-0130
0'0905 '0785 '0678 ' 0583 '0498
0'0001
0'0017 •0013 '0010 '0008
0.0107
0.0424
- 0087
'0071 '0057
*0359 •0303 '0254
'49
•0006
•0046
-0212
0'50
0'0005
0'0037
0.0176
-38
'39 0'40 •41 •42
'43 '44 0.45 '46 '47 •48
0.9999
See page 4 for explanation of the use of this table. 1
4
.1645
•7908 '7571
•0025 .0020
'37
'9997 '9996 '9994 '9993
'9992 '9976
•13 '14
0.9998 '9997 .9995 '9994 '9992
0.30 '31 .32 '33 '34
•1741
0 '9998
•0001 •0001 .000 I
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION Y/
= 15
r= 4
5
6
8
7
9
xo
II
12
13
p = 0. oi '02 '03
0 '9999
'04
'9998
0.05 •36
0'9994
0 '9999
'9986
.07
'9972
'9999 '9997 '9993 '9987
-o8
'9950
.09
•9918
0'10 'II 'I2
0.9873
'13
•9639
'14 0.15 •16
•17 •18
•19 0'20 '21 '22
.23 '24 0.25 •26 '27 •28
.29 0.30
'31 '32 '33 '34
.9522
0.9997 '9994 '9990 '9985 '9976
0.9383
0.9832
0'9999
'9773
0.9964 '9948 -9926 •9898 .9863
0 '9994
•9222 .9039
'9990 .9986 '9979 '9970
'9999 '9998 '9997 '9995
0'9999
0.9819 *9766 .9702 •9626 .9537
0.9958 '9942 •9922 '9896 '9865
0.9992 '9989 '9984 '9977 '9969
0.9999 '9998 '9997 '9996 '9994
0.9434 .9316 -9183 '9035 •8870
0'9827 .9781 '9726 '9662 '9587
0.9958 '9944 •9927 .9906 .9879
0'9992 '9989 .9985 '9979 '9972
0 '9999
'9998 '9998 '9997 '9995
0 '9999
0.8689 •8491 •8278 •8049 •7806
0.9500 '9401 .9289 .9163 •9023
0.9848 •9810 '9764 .9711 '9649
0.9963 .9952 '9938 .9921 '9901
0 '9993
0'9999
-9991 .9988 '9984 '9978
'9999 '9998 '9997 '9996
0.7548 •7278 •6997 '6705 •6405
0.8868 •8698 '8513 '8313 -8098
0.9578 '9496 '9403 .9298 •9180
0.9876 .9846 .9810 •9768 '9719
0.9972 '9963 '9953 '9941 .9925
0 '9995
0'9999
'9994 '9991 .9989 '9985
'9999 '9999 '9998 '9998
0'6098
0.7869 -7626 '7370 .7102 •6824
0.9050 8905 .8746 •8573 .8385
0.9662 '9596 '9521 '9435 '9339
0.9907 .9884 -9857 .9826 '9789
0.9981 '9975 '9968 -9960 '9949
0 '9997
0.8182 7966 '7735
0 '9745
0 '9937
0'9989
0 '9999
3 4 29 30
0.9231 •9110 .8976 •88 7 69 62
'9695 -9637 -9570 '9494
'9921 .9903 •9881 '9855
.9986 .9982 '9977 '9971
'9998 '9998 '9997 '9996
0.6964
0.8491
0.9408
0.9824
0'9963
0'9995
'9735
•8833 •8606 0.8358 '8090 '7805 '7505
'7190 0.6865 •6531 •6190 .5846 '5500
0.5155 '4813 '4477 '41 48 •3829
.9700 '9613 .9510 0.9389 .9252 •9095
•8921 •8728 0.8516 •8287 •8042 .7780 '7505
0.7216 •6916 '6607 •6291 •5968
•38 '39
•2413
'4989 •4665 '4346
0'40
0'2173 '1948
0'4032 '3726
•1739
•36 '37
'9998
0.9978 '9963 '9943 '9916 '9879
'9813
0.3519 •3222 '2938 •2668
0'35
0 '9999
0'5643 '5316
0 '9999
'9999 '9998 '9996
'43 '44
'1546
'3430 '3144
•1367
•2869
•5786 '5470 '5153 '4836
o•45
0•1204
'46
0.2608 '2359
0.4522 '4211
•2125
'3905
'48
•1055 '0920 .o799
.1905
•3606
0.6535 •6238 '5935 •5626
49
0690
'1699
3316
5314
0'50
0.0592
0.1509
0.3036
0.5000
'41 .42
'47
.77
0'9999
'9999
See page 4 for explanation of the use of this table.
15
'9996 '9995 '9993 '9991
0 '9999
'9999
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = i6 P=
1' = 0
I
2
3
4
•or
0•8515
0'9891
•02
'7238
•9601
•03 '04
•6143
-9182 '8673
0.9995 .9963 '9887 '9758
0.9998 *9989 '9968
0 '9999
.5204
5
6
0.9999 '9999 *9997
7
8
9
10
'9997
•07
'3131
•o8
•2634
0.81(38 .7511 .6902 '6299
•09
'221 I
'5711
0.9571 .9327 '9031 •8689 •8306
0.10
43.1853
0.7892 '7455 -7001 '6539 •6074
0.9316 '9093 •8838 .8552 '8237
0.9830 '9752 •9652 .9529 '9382
0.9967 '9947 •9918 •9880 -9829
0'9999
'1 550
0.5147 '4614 •4115 .3653 -3227
0 '9995
•xx •x2 •13 •14
'9991 .9985 .9976 '9962
'9999 .9998 .9996 '9993
0'5614 *5162 .4723 '4302 .3899
0.9209
0 '9765
0 '9944
•9012 '8789 '8542 •8273
'9920 •9888 '9847 '9796
0'9989 '9984 '9976 '9964 '9949
0 '9998
'7540 '7164 '6777 '6381
'9685
'19
0'2839 *2487 .2170 •1885 -1632
0'7899
•0614 .0507 •0418 .0343
0'20 •21 '22
0'0281 '0230 '0188
0'1407 '1209 '1035
0'3518 '3161
0'5981
0'7982 .7673
o'9183 •9008
'7348
•8812
•23
.0153
.0883
.2517
'24
'0124
'0750
'2232
*4797 •4417
'7009 •6659
'8595 *8359
'9979 '9970 '9959 '9944
.9996 *9994 '9992 '9988
0 '9999
•5186
0'9930 '9905 '9873 '9834 '9786
0 '9998
'2827
0. 9733 -9658 •9568 '9464 '9343
0 '9985
•5582
0'25
0'0100
0'0635
0'1971
0'4050
.0535 -0450
'0052 '0042
'0377 '0314
'1733 '1518 .1323
'3697 •3360 •3041
'1149
'2740
0.8103 '7831 '7542 '7239 .6923
0'9204 '9049 '8875 •8683 '8474
0.9729 •9660 '9580 *9486 '9379
0.9925 '9902 '9873 '9837 '9794
0 '9997
•0081 •0065
o•63o2 '5940 '5575 •5212 '4853
0'9984
•26
'9977 '9969 '9959 '9945
•9996 '9994 *9992 .9989
0.0033 •oo26
o.o261 •0216
0.0994 •0856
0 '2459
'0021
•0178
'0734
'33 '34
•0016
•0146
•0626
'3819 '3496
0.8247 •8003 '7743 . 7469
'001 3
'0120
'0533
'1525
'3 187
'5241
'7181
0'9256 •9119 '8965 '8795 '8609
0 '9984
'32
0.6598 *6264 •5926 '5584
0 '9929
•2196 '1953 •1730
0 '4499 .4154
0 '9743
•31
•9683 •9612 '9530 '9436
'9908 .9883 .9852 '9815
'9979 .9972 .9963 '9952
0.35 •36
0.00 10 •0008
0'0451
'37
-0006
0-1339 •1170 . 10 1 8 •0881
0.4900 •4562 .4230
0.6881 •6572 '62 54
'3906
•5930
'3592
•5602
0.8406 •8187 '7952 .7702 '7438
0.9329 •9209 '9074 -8924 '8758
0.9771 .9720 '9659 '9589 '9509
0'9938
-0380 •0319 •0266
0.05 •o6
0.4401
0.15 •16 .17 •18
•27 -28 •29 0.30
.3716
•1293 .1077 •0895
0.0743
0'9930
•9868 .9779 '9658 .9504
0'9991 .9981 -9962 . 9932 '9889
0'9999 .9998 '9995 '9990 *9981
'9588 '9473 '9338
0'9999
'9999
'9997 '9996 '9993 '9990
0 '9999
'9999 '9998
'9999 '9999 .9998
•38
.0005
0.0098 •0079 •0064 -0052
'39
'0004
'0041
'0222
'0759
o'2892 •2613 '2351 •2105 '1877
0.40
0.0003
0.0033
'41 •42
'0002
'0026 '0021
o'o183 •0151 •0101 •oo82
0.0651 .0556 '0473 •0400 •0336
0.1666 . 1471 '1293 •1131 •o985
o'3288 '2997 •2720 . 2457 •2208
0.5272 '4942 •4613 .4289 '3971
0'7161 •6872 .6572 '6264 '5949
0.8577 •8381 •8168 '7940 .7698
0.9417 -9313 '9195 '9064 '8919
0.9809 .9766 .9716 .9658 .9591
o'o281 '0234 •0194 - 0160 •0131
0.0853 '0735 •0630 '0537 •0456
0.1976 '1759 '1559 '1374 •1205
0.3660 '3359 •3068 '2790 '2524
0.5629 '5306 •4981 '4657 '4335
0.7441 •7171 •6889 '6595 '6293
0'8759 •8584 *8393 •8,86 *7964
0 '9514
0'0106
0'0384
0'1051
0'2272
0'4018
0.5982
0.7728
0 '8949
'43 '44
•0002 •000i
•0016
'0001
'0013
0.0001 •0001
0.00,0 -oo08 •0006
'0124
•48
•0005
'49
•0003
0•0066 •0053 •0042 •0034 •0027
0•50
0'0003
0'0021
0'45
'46 '47
See page 4 for explanation of the use of this table. 16
'9921 '9900 '9875 '9845
.9426 '9326 '9214 .9089
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 16
7= 11
12
13
14
n = 17 p=
P = o•ox '02 •03 '04
7= 0
0.0I '02
0.8429 '7093
.03 '04
'5958
I
2
0 '9877
0.9994 '9956 •9866 '9714
'4996
'9554 •9091 .8535
0.4181 '3493
0.7922 .7283
'07
'2912
•o8 •09
•2423
•6638 '6005
'2012
'5396
0.4818 - 4277
3
4
5
0 '9997
•9986 •9960
0.9999 '9996
•8073
0.9912 .9836 '9727 '9581 '9397
0.9988 '9974 '9949 •9911 '9855
0.9999 '9997 '9993 '9985 '9973
0.9174 .8913 •8617 •8290
0.9779 '9679 '9554 .9402
0.9953 .9925 •9886
0.9497 .9218 •8882
0.05 'o6 '07 •o8 •og
0'05
0•I0 •II - 12 •I3
0•10 'II •12
0.1668
.0937 .0770
.3318
'14
'13 '14
0.7618 '7142 •6655 •6164
'2901
'5676
'7935
'9222
0.15 •x6 •x.7 •x8 •19
0.15 •16 •17 •18 •19
0.0631 •0516 •0421 .0343 •0278
0'2525
0'5198
0'7556
0'9013
•2187 •1887 •1621 -1387
'4734 •4289 •3867 '3468
•7159 '6749 '6331 •5909
'8776 .8513 •8225 '7913
0.9681 '9577 '9452 '9305 '9136
0'20 •2I '22
0•20 '21 '22
0'0225 •0182
0'1182 •1004
0'3096
0'5489 •5073
0'7582
0.8943
'2751
'0146
•0849
'2433
'4667
'7234 •6872
'8727 •8490
'23 '24
•23
•0118 '0094
•0715 •0600
•2141
'4272
•6500
'8230
'24
•1877
•3893
'6121
'7951
0.0075 .0060
0.0501 •0417
0.1637 '1422
0.3530
0'5739
'3186
•0047
'0346 •oz86 '0235
'1229
•Io58
•2863 •2560
'5357 '4977 -4604
0.7653 '7339 .7011 •6671
*0907
'2279
'4240
-6323
0'0193 '0157 '0128 '0104 •0083
0'0774 '0657 •0556 '0468 '0392
0'2019 -1781 •1563 '1366 •1188
0'3887
0'5968
'3547
.5610
•2622
'4895 '4542
0'25 •26
.27 '28
-29
•o6
0'25
0.9999 '9999 '9999 '9998
•26
0'30
0'0023
•0018
0'0007 •0005
0'0067
0'0327
0'1028
0'2348
0'4197
•0054
•0272
•0885
•0004
•0043 •0034
'0225 •0185
-3861 '3535
-1640
•0027
•0151
•0759 -0648 '0550
•2094 .1858 ' 1441
•3222 '2923
0'0021
0'0123
0'0464
0•12,60
•0016 •0013
•0100 •oo8o
•0390 •0326
•1096 •0949
'0010
'0065
•0271
- 0817
'2121 '1887
•0008
•0052
•0224
•0699
•1670
0.0041 •0032 •0025 •0020
0.0184 •0151 '0123 •0099
0.0596 •0505 '0425 •0356
0'1471 •iz88 'I 122 •0972
•0015
•oo8o
-0296
-0838
0'0012
0.0064
0'0245
0.0717
0'9999
'9999 '9999
0.35 .36 '37 -38 '39
0'9987
0 '9998
0'35
'9983 '9977 '9970 '9962
'9997 '9996 '9995 '9993
'36
0•40
0.9951 '9938
'9999
'37 •38 '39
0 '9991
0 '9999
0'40
.9988
'41 '42 '43 '44
0'9999
- 0038
•0014 •0011 •0009
'0003 '0002 0'0002 '0001
'9922
'9984
'9902 '9879
'9979 '9973
.9998 .9998 '9997 '9996
0.45 '46 '47 '48 '49
0.9851 '981 7 '9778 '9732 .9678
0.9965 '9956 '9945 '9931 .9914
0.9994 '9993 '9990 '9987 '9984
0.9999 '9999 '9999 '9999 '9998
0.45
0'0006
'46 '47 '48 '49
•0004 •0003
0•50
0'9616
0.9894
0.9979
0 '9997
0•50
O'COOI
'41 '42 '43 '44
*9834 '9766
'0030
'31 •32 '33 '34
'31 .32 '33 '34
'3777
'27 '28 •29
0.9997 '9996 '9995 '9993 '9990
0'30
'1379 '11 3 8
*8497
•0001 •000x •000x
•0002 •0002
See page 4 for explanation of the use of this table.
17
'3222 •2913
'5251
0.2639 '2372
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION 7Z=17
r=6
7
8
0.9999 '9998 '9996 '9993 .9989
0'9999
0.9997 '9995 '9992 .9988 -9982
9
xo
II
12
13
14
15
p = o•ox '02 '03 '04
0.05 •o6 .07 •o8
0 '9999
'9998
.09
'9996
0'10
0.9992
•II •12 •13
'9986
.9963
'14
'9944
0'15
0.9917
•16
-9882
•17 •x8 •19
.9837 .9709
0.9983 '9973 '9961 '9943 .9920
0'20 '21 •22
0.9623
0.9891
0 '9974
0 '9995
0 '9999
'9853
.23 •24
'9521 •9402 '9264 •9106
•9680
.9963 '9949 '9930 .9906
'9993 •9989 '9984 '9978
'9999 '9998 '9997 '9996
0 '9999
0•25
0.8929
0.9598
0.9876
0 '9999
•8732
•9501
.9839
•8515
'9389
•28
•8279
•9261
'9794 '9739
•29
•8024
•9116
•9674
0.9969 '9958 '9943 .9925 .9902
0 '9994
•26 .27
'9991 '9987 •9982 '9976
'9998 '9998 '9997 '9995
0 '9999
0'30
0.7752
0 '9993
0'9999
•32
'7162
'8 574
'33 '34
•6847 •6521
•8358
.9508 '9405 •9288
•8123
'9155
0'9873 .9838 '9796 '9746 •9686
0 '9968
'7464
0.8954 .8773
0 '9597
'31
'9957 '9943 .9926 •9905
'9991 .9987 .9983 '9977
'9998 '9998 '9997 '9996
0 '9999
0.35 .36
0.6188 .5848
0.9617 '9536 '9443 '9336 •9216
0.9880 . 9849 •9811 •9766 '9714
0.9970 •9960 '9949 '9934 .9916
0 '9999
•5505
0.9006 '8841 .8659 .8459 •8243
0 '9994
'37
0•7872 •76o5 '7324 •7029 •6722
'9992 .9989 .9985 .9981
'9999 '9998 '9998 '9997
0.6405 •6080 '5750 '5415 •5079
0.801 x .7762 '7498 .7220 •6928
o•9o81 •8930 . 8764 .8581 •8382
o.9652 •9580 '9497 '9403 '9295
0.9894 .9867 .9835 '9797 '9752
0 '9975
0 '9995
0'9999
.9967 '9958 '9946 '9931
'9994 '9992 .9989 .9986
'9999 '9999 '9998 '9998
0 '4743
'49
•1878
.3448
0.6626 •6313 '5992 .5665 '5333
0.8166 '7934 •7686 '7423 '7145
0.9174 .9038 •8888 •8721 .8538
0.9699 .9637 •9566 '9483 .9389
0.9914 .9892 •9866 .9835 '9798
0.9981 '9976 .9969 .9960 '9950
0 '9997
'48
0.2902 •2623 .2359 •2110
0.50
o•1662
0.3145
0.5000
0.6855
0.8338
0.9283
0.9755
0.9936
0.9988
'9977
-978o
•38
•5161
'39
'4818
0'40
0.4478
'41 '42
'4144 .3818 '3501 •3195
'43 '44 0'45
'46
'47
•9806 '9749
'4410 '4082
•3761
'9999 '9998
0 '9999
'9999 '9998 '9997
See page 4 for explanation of the use of this table. 18
'9996 '9995 '9993 '9991
0 '9999
'9999 '9999
0'9999
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 18
r=0
x
2
3
4
5
p = c•in •02 .03 .04
0•8345
0.9862
'6951
•9505
-578o '4796
•8997 •8393
0.9993 •9948 '9843 .9667
0.9996 .9982 '9950
0.9998 '9994
0 '9999
0.05
0.3972
0.7735
•o6
•3283
.7055
0.9419 •9102 .8725 .8298 .7832
0.9891 '9799 '9667 '9494 .9277
0-9985 .9966 '9933 '9884 .9814
0.9998 '9995 '9990 '9979 .9962
0 '9999
'9997 '9994
0 '9999
0.9018 .8718 •8382 •8014 .7618
0.9718 '9595 '9442 '9257 .9041
0.9936 .9898 .9846 '9778 •9690
0.9988 '9979 .9966 '9946 .9919
0.9998 '9997 '9994 '9989 •9983
6
7
8
9
xo
•07
•2708
•6378
•o8
'2229
•5719
•09
•1831
.5091
0•10 'II
0.1501
0.4503
•12
•1227 •I002
•395 8 •3460
•13
•0815
•14
•o66z
•3008 •26oz
0.7338 .6827 •6310 '5794 •5287
0.15
0.0536
'17 •i8 •19
.0349 -0225
0.4797 '4327 •3881 •3462 •3073
0.7202 '6771 -6331 •5888 '5446
0.8794 -8518 •8213 •7884 '7533
0.9581 '9449 '9292 •9111 •8903
0.9882 '9833 '9771 .9694 •9600
0.9973 '9959 '9940 '9914 •988o
0 '9999
'0434
0.2241 '1920 '1638 •1391 •1176
0 '9995
•x6
'9992 •9987 •9980 '9971
'9999 '9998 '9996 '9994
0'20 '21 •22
0'0180 •0144 '0114 '0091 '0072
0'0991 '0831 '0694 '0577 '0478
0'2713 •2384
0'5010 '45 86
0'7164 '6780
0'8671 •8414
0'9487
0.9991
0 '9998
-2084 .1813
'4175 •3782
•1570
.3409
•6387 '5988 '5586
•8134 •7832 •7512
0.9837 '9783 '9717 '9637 '9542
0'9957
'9355 •9201 -9026 •8829
'9940 '9917 '9888 .9852
'9986 '9980 '9972 •9961
'9997 '9996 '9994 '9991
0.25
0'0056
•26 •27 •28 •29
0.0044
0.0395 •0324
0.1353 •1161
0.3057 •2728
0.5187 '4792
0.7175 •6824
0.8610 -837o
0.9431 '9301
•0035
'0265
'0991
'2422
'4406
•6462
•8109
'9153
•oo27 •0021
•0216
•0842
•2140
•4032
•6093
'0712
•1881
•3671
•5719
.8986 •8800
0-9946 .9927 •9903 .9873
'0176
'7829 '7531
0.9807 '9751 -9684 '9605 •9512
0.9988 '9982 '9975 '9966 '9954
0.30 '31 •32
0.0016 •0013 •0010
0.0142 •0114 •0092
o.o600 •0502 •0419
0.1646 '1432
0.3327 '2999
0.5344 '4971
0'7217 •6889
0.8593 •8367
0.9404 •9280
0 '9939
'0073
'0348
'4602 •4241
•6550 •6203
.91 39
•0007 -0006
•2691 '2402
•8122
•33 '34
'1241 '1069
•0058
•0287
.0917
•2134
'3889
•5849
•7859 '7579
•8981 •8804
0.9790 '9736 .9671 '9595 -9506
0.35
0'0004
0.3550
0.5491
'0665
•1659
'3224
. 5 1 33
•0561
•1451
•2914
'4776
•0002
0'0236 •0193 '0157 '0127
0.1886
-0003 •0002
0'0046 '0036 '0028 •0022
0.0783
•36
•0472
•1263
'2621
.4424
'39
•0001
•0017
•0103
'0394
•1093
- 2345
'4079
0.7283 .6973 •6651 •6319 '5979
0.8609 .8396 •8165 '7916 •7650
0.9403 •9286 .9153 •9003 .8837
40.9788 '9736 .9675 •9603 '95 20
0.40
0.0001
0.0013
0.0082
•0001 •0001
•0010 '0008
'0066
•0052 •0041
0.0328 •0271 -0223 •0182
0.0942 •0807 •0687 •0582
0.2088 '1849 •1628 •1427
0.3743 •3418 '3105 •2807
0.5634 '5287 '4938 '4592
0.7368 .7072 •6764 '6444
'0032
'0148
'0490
•1243
•2524
•423 0
'6115
0.8653 •8451 •8232 '7996 '7742
0 '9424
'41
0'2258 '2009
0-3915
•1778 -1564
.3272 '2968
0.5778 '5438 '5094 '4751
•1368
'2678
.4409
0.7473 .7188 •6890 -6579 •6258
0.8720 •8530 •8323 •8098 •7856
0.1189
0.2403
0.4073
0.5927
0.7597
•23 -24
'37 •38
'42
•oz81
'43 '44
•0006 •0004
0'45
0'0003
'49
0•0120 •0096 '0077 •0061 '0048
0.1077
•0002 •0002 •0001 •0001
0.0025 '0019 '0015 •0011 '0009
0.0411
'46
'0342 •0283 '0233 •0190
'0928 •0795 '0676 '0572
0.50
0.0001
0.0007
0.0038
0.0154
0.0481
'47
'48
•3588
See page 4 for explanation of the use of this table.
19
0'9999
'9998 '9997
'9836
0 '9999
'9999
•9920 •9896 .9867 •9831
-9314 •9189 .9049 '8893
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
n= ig
r
P = o•ox
P= o•oz
'02 '03
'02
•03 •04
•5606
•8900
•4604
0'05 •o6 •07 •08
' 20 5 1
'5440
'8092
•09
'1666
'4798
.7585
•1() •II •12
0.1351
0'4203
0'7054
•1092
'3658
'6512
•0881
'0709
•3165 '2723
-5968 .5432
'0569
*2331
•4911
0'0456 -0364 -0290 •0230 •0182
0•1985 -1682 •1419 •1191 -0996
0'4413
0'20 '21 '22 '23 •24
0.0144
o'o829 -0687
0.2369 •2058
0'25
n = 18
r = II
12
13
14
xs
x6
'04 0'05
'o6 .07 •o8 •09 0'10 •I I •I2 •I3 'I4
•13 '14
0.15
0'15
•16 •x7 •x8
•x6 •x7 •x8 •19
•19 0'20 '21 '22
0 '9999
'23 '24
'9999 '9998
0'25
0 '9998 '9997
•26 '27 •28 .29
'9995 -9993 *9990
0-9999 '9999 '9999 '9998
=
I
2
0.8262
0•9847
'6812
'9454 '8249
0'9991 '9939 -9817 *96 I 6
0 '3774
0 '7547
0 '9335
•3086
-6829 •6i2x
.8979 •8561
0
'2519
'0113
.3941 '3500 -3090 -2713
'0089
•0566
•I 778
'0070
*0465
*1529
'0054
'0381
•I 308
0.0042 •0033
0.0310 •0251 '0203 '0163
•0667
'29
'0025 *00 I 9 •0015
o•iii3 '0943 .0795
•0131
'0557
•26 '27
-28
0.9986 .998o '9973 '9964 '9953
0 '9997
0'30
0'0011
0'0104
0'0462
.31 '32 '33 '34
'9996 '9995 '9992 '9989
0'9999
•3 I
'0009
'0083
'9999 '9999 '9998
•32 •33 '34
-0007
•0065
•0382 •0314
'0005
•0051
'0257
'0004
•0040
'0209
0'35
0 '9938
•36 •37 .38 '39
.9920 .9898 -9870 '9837
0'9986 •9981 '9974 .9966 '9956
o•9997 '9996 '9995 '9993 '9990
0.40 '41 '42 '43 '44
0 '9797
'9750 '9693 •9628 '9551
0'9942 '9926 '9906 •9882 -9853
0.45 '46 '47 '48 '49
0.9463 .9362 '9247 •9117 '8972
0'50
o•8811
0'30
0.35
0'0003
0'0031
0'0170
0'9999
•36
•0002
'9999 '9999 '9998
•37 •38 -39
•0002
'0024 '0019
' 0137 '0110
'0001
•0014
'0087
•000x
'0011
'0069
0 '9987
0'9998
0'40
o•000i
'9983 -9978 '9971 .9962
'9997 '9996 '9994 '9993
0.0008 •0006 •0005 •0004 •0003
0•0055 '0043 •0033
'9999 '9999
'41 '42 '43 '44
0.9817 '9775 .9725 •9666 '9598
0 '9951
0'9990 '9987 .9983 '9977 '9971
0 '9999
0'45
0'0002
'9937 '9921 '9900 '9875
'9998 '9997 '9996 '9995
•000x •0001
0.0015 •0012
0 '9999
'46 '47 48 '49
0.9519
0.9846
0'9962
0 '9993
0 '9999
0•50
0 '9999
See page 4 for explanation of the use of this table. 20
'0026 '0020
'0009
'000!
'0007
'0001
•0005 0'0004
TABLE I. THE BINOMIAL DISTRIBUTION FUNCTION =1
9
r=
3
4
5
6
8
7
10
9
II
12
13
p = 0'01 '02 •03 •04
0 '9995
-9978 *9939
0.9998 '9993
0'05
•o6
0.9868 '9757
0.9980 '9956
•07
'9602
'9915
•98
.09
.9398 '9147
-9853 *9765
o•io
0•885o
•II •I2
'8510 '8133
0.9648 '9498
.13
-7725
.14
-7292
o•15 •16 •17
0.6841 •638o .5915
'18 -19
'5451 '4995
0'20 '21 '22
0.4551
.23 -24
.3329
0 '9999
0.9998 '9994 .9986 .9971 '9949
0 '9999
.9998 .9996 *9991
0.9999 '9999
-9096 .8842
0'9914 •9865 -9798 •9710 '9599
0.9983 '9970 '9952 '9924 .9887
0.9997 '9995 '9991 '9984 '9974
0.8556 •8238 -7893 '7524 *7136
0.9463 .9300 .9109 '8890 -8643
0'9837 .9772 -9690 '9589 '9468
0 '9959
0.8369 .8071
0.9324 .9157
0.9767 '9693
'7749 - 7408 .7050
•8966
-9604
'2968
0.6733 .6319 '5900 -5480 .5064
'8752 '8513
'9497 '9371
0.25
0.2631
0.4654
0.6678
0•8251
0.9225
-26 •27 -28 •29
'2320 '2035
'4256
'6295
'7968
'9059
-5907
.7664
.1776
-3871 . 3502
'5516
•1542
'3152
•5125
0.30
0.1332
•32
.1144 •0978
'33 '34
'0831 '0703
0'2822 . 2514 '2227 ' 1963
0'4739
•31
0.35
'4123 '3715
.9315
'4359 '3990
.9939 .9911 '9874 .9827
0 '9999
'9998 '9997 '9995
0 '9999
0.9992 .9986 '9979 '9968 '9953
0.9999 -9998 '9996 '9993 '9990
0 '9933
0-9984 '9977 *9966
'9907 '9873 '9831 '9778
'9953
'9934
0 '9999
'9999 '9998 0 '9997
'9995 '9993 '9989 '9984
0'9999
'9997
0 '9999
0'9977
0.9995
0 '9999
'9968 .9956 '9940 '9920
'9993 .9990 '9985 '9980
'9999 .9998 '9997 '9996
0 '9999
'9999 . 9998
'7343
.8871 .8662
0.9713 -9634 .9541 .9432
0.9911 .9881 -9844 '9798
•7005
'8432
'9306
'9742
0.6655 '6295 '5927 '5555 -5182
0.8180 '7909 •7619 '7312 •6990
0.9161 '8997 -8814 '8611 •8388
0 '9674
0-9895 •9863 .9824 '9777 '9720
0.9972 .9962 '9949 '9932 '9911
0 '9994
0 '9999
'9595 •9501 '9392 •9267
.9991 '9988 '9983 '9977
-9998 -9998 '9997 '9995
0.6656 •6310 '5957 '5599 *5238
0.8145 .7884 '7605 '7309 '6998
0.9125 .8965 .8787 '8590 '8374
0.9653 '9574 .9482 '9375 '9253
0.9886 '9854 '9815 '9769 '9713
0.9969 '9959 '9946 '9930 '9909
0 '9993
0.9884 '9854 -9817 '9773 •9720
0.9969 •9960 9948 '993 3 '9914
.1720
'3634 .3293
0.0591 •0495
0- I 500 •1301
0.2968 -2661
'39
•0412 '0341 •0281
•1122 '0962 •0821
'2373 '2105 •1857
0.4812 '4446 '4087 •3739 •3403
0'40
0'0230
0'0696
0'1629
0'3081
-0587 -0492 •0410 •0340
•1421 - 1233 •1063 - 0912
'2774 •2485 •2213 •1961
0.6675 *6340 '5997 .5647 - 5294
0.8139 •7886 •7615 .7328 •7026
0.9648
'0187 - 0151
0.4878 .4520 -4168 •3824 .3491
0'9115
'V
•896o -8787 .8596 -8387
'9571 '9482 '9379 •9262
0.0777 •0658 •0554 •0463
0.1727 .15 r 2 -1316 •1138
0.3169 •2862 -2570 •2294
•0978
'2036
0.6710 '6383 - 6046 '5701 - 5352
0.8159 '7913 - 7649 -7369 .7072
0'9129
'0385
0.4940 '4587 •4238 •3895 '3561
'8979 - 8813 -8628 .8425
0.9658 '9585 •9500 .9403 . 9291
0.9891 -9863 •9829 .9788 '9739
0'0318
0.0835
0.1796
0.3238
0.5000
0.6762
0.8204
0.9165
0.9682
.36 '37
•38
- 42
'43 '44
'0122
0.45
0.0280 •0229 •0186
•49
0'0077 •006r '0048 '0037 •0029
0'50
0'0022
0'0096
•46 '47
'48
'0097
-0150 '0121
See page 4 for explanation of the use of this table. 21
'9991 .9987 '9983 '9977
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 19 P
r = 14
15
16
n = 20
r
= 0
I
2
0.9990 '9929 '9790 .9561
O• 0 I •02 '03 '04
p = 0•0i
0.8179
•02
'6676
.03
'5438
0.9831 •9401 •8802
•04
'4420
'8103
0'05
0'05
•o6 -07 •o8 •09
•o6 •07
0.3585 •290I
0.7358 •6605
'2342
•5869
•o8
•1887
•09
•1516
•5169 •4516
&If) •I I •12 •X3
0•10 •I I '12
0'1216 '0972 '0776
0.3917
•13
•0617
•2461
•14
'14
•0490
&IS
0'15
•x6 •x7 •/8 •19
•16 •17 •x8 •19
0'20 '21 '22 '23 •24
0'20 '21 '22
•23 -24
0•25 '26 '27 '28 '29
0'25 •26
•0014
•0123
•0526
'29
•0011
'0097
0'30
0'30
.31
'31 '32
o•0008 .0006 •0004
'33 '34
•0003
'32 '33 '34
'9999
.36 '37 '38 '39
0.9999 .9998 '9998 '9997 '9995
0.40 'V
0-35
4
5
6
0 '9994
'9973 .9926
0 '9997
'9990
0 '9999
0.9245 •885o •8390 .7879 '7334
0.9841 '9710 '9529 •9294 -9007
0.9974 '9944 '9893 .9817 .9710
0.9997 '9991 •9981 .9962 '9932
0.6769 •6198
'2084
•5080 '4550
0.8670 •8290 .7873 '7427 .6959
0.9568 '9390 .9173 •8917 •8625
0.9887 .9825 '9740 -9630 '9493
0.9976 '9959 '9933 .9897 .9847
0.0388
0.1756
0-4049
0.6477
-0306
•1471
•3580
'5990
•0241
•1227
'3146
•5504
•o189 -0148
•1018
•2748
•5026
'0841
'2386
•4561
0.8298 '7941 '7557 •7151 .6729
0.9327 .9130 .8902 -8644 .8357
0.9781 -9696 '9591 '9463 '9311
0'0115 •0090 •0069
0'0692 '0566 •0461
0'2061 •1770 •1512
04114
•0054
.0374
•1284
-2915
0.6296 •5858 '5420 .4986
0.8042 •7703 '7343 •6965
'0041
'0302
'1085
'2569
'4561
'6573
0.9133 -8929 .8699 '8443 •8162
0'0032 '0024 •0018
0'0243 •0195 •0155
0'0913 '0763 •o635
0'2252
0'4148
0'6172
0•7858
'0433
•1962 •1700 •1466 •1256
•3752 '3375 •3019 •2,685
.5765 '5357 '4952 '4553
'7533 •7190 •6831 •6460
0.0076 •oo6o •0047
0.0355 •0289 •0235
0.1071 •0908 •0765
0.2375 •2089 •1827
0.4164 •3787 .3426
0.6080 -5695 •5307
'0036 '0028
'0189
•3083
'4921
•0152
'0642 '0535
'1589
'0002
-1374
.2758
'4540
0.35
0'0002
0'0021
0'0121
0.0444
•0001
•0016
-0096
-0366
0.1182 •101 z
0'2454
•36
0.4166 •3803
•27 •28
0 '9999
3
'3376 •2891
•5631
-3690 '3289
•2171
0'9999
'9997 '9994 .9987
'37
•000 I
•0012
•0076
'0300
'0859
•1 9 10
. 3453
•38
•0001
•0009
•oo6o
•0245
•0726
•1671
0 '9999
'39
•0001
'0007
•0047
•0198
'0610
'1453
•3118 •2800
0 '9994
0'9999
0'40
0'0005
0'0036
0.1256
'41
•0004 •0003
-0028 -0021
•0423 '0349
1079
'43 '44
'9999 '9998 '9997 '9996
o•o16o -0128
0.0510
'9991 '9988 '9984 '9979
0 '9999
0.45
0.9972
0'9995
'46 '47 '48 '49
'9964
'9954 '9940 '9924
'9993 '9990 '9987 '9983
0.50
0.9904
0'9978
0 '9996
. 42
42
'0783
•oo63
.0286 •0233
•0660
0.2500 2220 21925 1959 -1719 •1499
0.0009
0.0049
0.0189
0.0553
0.1299
'0007 '0005
'0152 •0121 •0096 '0076
'0461 •0381 •0313 '0255
•I I I 9 '0958 'o688
0.0059
0.0207
0.0577
•0102
.0080
'44
'0002 0002
0012
0 '9999
0'45
0.000!
'9999 '9999 '9998 '9997
'46
•0001
'47
•000I
43
'49
•0004 •0003
'0038 •0029 •0023 . 0017
0'50
0.0002
0.0013
•48
See page 4 for explanation of the use of this table. 22
.0922
•0814
TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n - 20 p=
r = 7
8
9
I0
I1
0.9999 '9999 .9998 '9996
0 '9999
12
13
14
15
16
0.01 '02 •03 '04
0.05 •o6 .07 •o8 '09
0.9999 '9998
0. 10 •II •I2
0.9996
•13 •14
'9976 .9962
0' 15
0.9941
.16 '17 •18 '19
.9912
'9992 '9986
0.9999 .9999 .9998 *9995 '9992
0 '9999
'9999
'9759
0'9987 .9979 '9967 .9951 '9929
0'9998 .9996 '9993 -9989 '9983
0'20 •2I
0.9679
0.9900
0 '9974
•9862
'22
'23 •24
*9464 '9325 •9165
'9814 '9754 -9680
•9962 *9946 *9925 '9897
0.9994 '9991 '9987 •9981 '9972
0 '9999
'9581
'9998 '9997 .9996 '9994
0.9999 '9999
0'25 '26
0.8982 '8775
.27 •28 -29
'8 545 •8293 '8018
0.9591 '9485 '9360
0.9861 '9817 .9762 '9695 •9615
0.9961 '9945 .9926 .9900 •9868
0.9991 '9986 .9981 .9973 •9962
0.9998 '9997 *9996 '9994 '9991
0'9999
0'30
0.7723 -7409
0.8867 •866o
0'9987
0 '9997
•6732 •6376
-8182 •7913
'9909 -9881 '9846
-9982 '9975 •9966 '9955
'9996 '9994 '9992 '9989
0 '9999
'8432
0.9829 .9780 *9721 '9650 .9566
0 '9949 .9931
'7078
0.9520 .9409 '9281 .9134 •8968
0.35 '36 -37 •38 '39
0•6oio '5639 .5265 -4892 '4522
0.7624 '7317 '6995 •6659 '6312
o•8782 '8576 '8350 •8103 '7837
0.9468 '9355 '9225 •9077 '8910
0.9804 '9753 '9692 •9619 '9534
0.9940 '9921 '9898 •9868 *9833
0.9985 '9979 '9972 .9963 '9951
0 '9997
'9996 '9994 '9991 '9988
0'9999
0.40 '41 '42 '43 '44
0.4159 '3804 '3461 '31 32 '2817
0.5956 '5594 '5229 '4864 •4501
0 '7553
0'8725 .852o '8295 •8o5i •7788
0 '9435
0'9984
0'9997
'9321 '9190 •9042 •8877
0'9790 .9738 .9676 •9603 '9518
0 '9935
'7252 '6936 '6606 •6264
•9916 '9893 •9864 •9828
'9978 '9971 .9962 '9950
'9996 '9994 .9992 '9989
0 '9999
0.45 '46 '47 48 '49
0.2520 '2241 '1 980 '1739 '1518
0.4143 *3793 •3454 '3127 •2814
0.5914 '5557 '5196 '4834 '4475
0.7507 *7209 •6896 •6568 *6229
0.8692 . 8489 -8266 •8o23 •7762
0'9420 - 9306 '9177 •9031 •8867
0'9786 '9735 .9674 '9603 '9520
0 '9936
0 '9985
0 '9997
'9917 '9895 •9867 '9834
'9980 '9973 '9965 '9954
'9996 '9995 '9993 *9990
0 '9999
0'50
0'1316
0.2517
0.4119
o'5881
0.7483
0.8684
0.9423
0 '9793
0 '9941
0'9987
0 '9998
.31 .32 '33 '34
'9873 -9823
'9216
•9052
'9999 '9998
'9999 '9999 '9998
See page 4 for explanation of the use of this table. 23
'9999 '9998 '9998
'9999 .9999 '9998
'9999 '9999 '9999
TABLE 2. THE POISSON DISTRIBUTION FUNCTION r=
0
I
3
4
5
6 The function tabulated is
0'00 '02 •04
1'0000 0'9802
•06 •o8
0.9418 0•9231
.9992 -9983 •9970
0.10
0.9048
0 '9953
•12
'8869
•14 •x6 •x8
'8694 •8521 .8353
'9934 '9911 •9885 .9856
0'20 '22
0.8187
0.9825
'8025
'9791
•24
•7866
0.9608
2
0'9998
F(r
for r = o, I, 2, ... and ft < 2o. If R is a random variable with a Poisson distribution with mean it, F(r1/1) is the r; that is, probability that R
0 '9999
0.9998 '9997 '9996 '9994 '9992
r} = F(rl,u).
Pr {R Note that Pr {R r} =
=I
'26
'7711
'28
.7558
'9754 .9715 '9674
0'30
0.7408
0.9631
•32 '34 .36 -38
'7261
*9585
'7118 .6977 .6839
'9538 '9488 '9437
0.9989 .9985 .9981 -9976 '9970
0'9999
0.9964 .9957 '9949 '9940 '9931
0 '9997
'9999 '9999 '9998 '9998
-
F(r
F(r1/1)- Ffr -
-
r - I} ilp).
=
r!
Linear interpolation in is is satisfactory over much of the table, but there are places where quadratic inter-
.9997 '9996 '9995 '9994
polation is necessary for high accuracy. Even quadratic interpolation may be unsatisfactory when r = o or I and
a direct calculation is to be preferred: F(olp) = e1 and
F(il#) =
0.6703 .6570 '6440 '6313 •6188
0'9384 .9330 '9274 •9217 •9158
0.9921 •9910 •9898 .9885 '9871
0.9992 '9991 '9989 '9987 '9985
0.9999 '9999 '9999 '9999 '9999
0'50
'52
o•6o65 '5945
'54
'5827
-56
.5712
-58
'5599
0.9098 '9037 '8974 •8911 '8846
0.9856 '9841 '9824 *9807 '9788
0.9982 '9980 '9977 '9974 '9970
0.9998 '9998 .9998 '9997 '9997
o•6o •62 .64 -66 -68
0.5488
0.8781 '8715 '8648
0.9769 '9749 '9727
-8580 .851r
•9705
0-9966 .9962 '9958 '9953 '9948
0.9996 .9995 '9995 '9994 '9993
0•70 •72
0.4966
•9682
Pr {R
equal to
0.40 .42 '44 '46 '48
'5273 •5169 •5o66
-
The probability of exactly r occurrences, Pr {R = r}, is
+p). R is approximately normally distributed with mean it and variance p; hence, including 4 for For # >
.5379
li:
=t
20,
continuity, we have F(rlis)
Co(s)
where s = (r+4 p)Alp and 0(s) is the normal distribution function (see Table 4). The approximation can usually be improved by using the formula -
F(rip)
0:10(s) -
I 2rt
e-"I
(s2 - I) (s5 -7s2 +6s)1
6,/,7
72#
For certain values of r and > 20 use may be made of the following relation between the Poisson and X2distributions : F(rlit) = I -F2(r+i) (210
0'9999
where Fv(x) is the x2-distribution function (see Table 7). Omitted entries to the left and right of tabulated values
'9999 '9999
are o and I respectively, to four decimal places.
'74
'4771
.76 •78
.4677
.4584
0•8442 •8372 •83o2 '8231 .8160
o•8o - 82 .84
0.4493 '4404 .4317
o•8o88 •8o16 '7943
0.9526 '9497 '9467
-86 -88
.4232 -4148
.7871
.9436
'7798
'9404
0•90
0.4066
'92
'3985
0.7725 '7652
0-9371 '9338
'94
'3906
'7578
'9304
'96
'3829
'98
'3753
'7505 '7431
roo
0.3679
0-7358
'4868
j•
0'9659 0'9942 0'9992 0 '9999 '9634 '9991 '9999 '9937 -9608 .9930 '9990 '9999 '9582 '9924 '9989 '9999 '9998 '9917 '9554 '9987 0.9909 '9901 '9893 '9884 '9875
0.9986 '9984 '9983 '9981 '9979
0.9998 .9998 '9998 '9997 '9997
0'9977 '9974 '9972 '9969 .9966
0'9997
'9269 . 9233
0-9865 '9855 '9845 '9834 .9822
0.9197
0.9810
0.9963
0'9994
'9996 '9996 '9995 '9995
0'9999
'9999 '9999 0 '9999
24
TABLE 2. THE POISSON DISTRIBUTION FUNCTION ii
r
=
0
I
2
3
4
5
6
0.9197 '9103 '9004 •8901 '8795
0.9810 '9778 '9743 •9704 .9662
0.9963 '9955 '9946 .9935 '9923
0 '9994
0'9999
'9992 '9990 .9988 '9985
'9999 '9999 .9998 *9997
0.9617 .9569 '9518 '9463 '9405
0'9909 .9893 .9876 '9857 '9837
0'9982 '9978 '9973 '9968 '9962
0 '9997
•6092 '59 x 8 '5747
0.8685 •8571 •8454 '8335 '8213
'9996 '9995 '9994 '9992
0.9999 '9999 '9999 '9999
0 '9955
0'9991 .9989 '9987 *9984 '9981
0 '9998
'9948 '9940 '9930 '9920
8
7
9
10
II
I t.
r = 12
3'40
0'9999
'45
'9999
3.50
0-9999
1.00 '05 •xo •15
0.3679 '3499 -3329 •3166
0.7358 *7174 •6990 •6808
'20
'3012
'6626
1.25 -30 '35 '40 '45
o'2865
0.6446
'2725 .2592
'6268
1.50 '55 •60 •65 •70
0.2231 •2422 •2019 •1920 •1827
0.5578
0.8088
'5412
'7962
0 '9344 '9279
•5249
*7834 .7704 . 7572
'9212 *9141 •9068
0.9814 '9790 '9763 '9735 '9704
1.75 -8o .85 '90 '95
0.1738 •1653 -1572 '1496 '1423
0 '4779
0'7440 •7306 .7172 '7037 •6902
0.8992 -8913 .883 x '8747 •866o
0.9671 *9636 '9599 '9559 •9517
0.9909 *9896 '9883 '9868 '9852
0.9978 '9974 '9970 '9966 .9960
0 '9995
0 '9999
•4628 .4481 '4337 •4197
'9994 '9993 '9992 .9991
'9999 '9999 '9998 .9998
2'00
0.1353 •1287 •1225 •1165 •x 108
0.4060 •3926 '3796 .3669 .3546
0.6767 •6631 •6496 •6361 •6227
0.8571 •848o •8386 *8291 •8194
0 '9473
0'9989 '9987 '9985 '9983 '9980
0'9998
•9427 '9379 *9328 '9275
0'9834 - 9816 '9796 '9774 '9751
0'9955
•05 •10 •15 •20
'9997 '9997 '9996 '9995
0 '9999
2'25
0'1054
0.61293 '5960 •5828 '5697 .5567
0.8094 '7993 •7891 '7787 •7682
0.9220 '9162 •9103 '9041 •8978
0.9726 •9700 '9673 '9643 •9612
0.9916 •9906 *9896 '9884
0 '9994
0 '9999
•1003 '0954 '0907 •0863
0.3425 *3309 '3195 '3084 -2977
0'9977
•30 '35 '40 •45
'9974 '9971 '9967
'9872
'9962
'9994 '9993 '9991 '9990
'9999 .9998 .9998 .9998
2'50
o.o821 '0781 •0743 .0707 •0672
o•z873 '2772 .2674 '2579 '2487
0'5438 '5311 .5184 '5060 '4936
0.7576 '7468 . 7360 •7251 .7141
o'8912 '8844 '8774 '8703 •8629
0.9580 '9546 '9510 '9472 '9433
0.9858 '9844 '9828 •9812 '9794
0.9958 '9952 '9947 .9940 '9934
0.9989 '9987 *9985 .9983 '9981
0'9997
2.75 •8o •85 .90 '95
0.0639 •0608 •o578
0.2397 -2311 •2227
0.4815 •4695 '4576
0.7030
'2146
'4460
•6696
'0523
'2067
'4345
'6584
0'9392 '9349 '9304 '9258 '9210
0'9776 '9756 '9735 '9713 '9689
0.9927 '9919 '9910 .9901 '9891
0.9978 '9976 '9973 .9969 '9966
0 '9994
'0550
0.8554 '8477 •8398 •8318 '8236
'9993 '9992 '9991 '9990
0'9999 '9998 '9998 '9998 '9997
3'00
0.1991 •1918 •1847 . 1778 '1712
0.4232 •4121 •4012 -3904 '3799
0.6472 •6360 •6248 '6137 '6025
o'8153 •8o68 '7982 . 7895 •7806
0.9161 •9110 '9057 '9002 .8946
0.9665 •9639 '9612 '9584 '9554
0.9881 '9870 '9858 '9845 '9832
0.9962 '9958 '9953 '9948 '9943
0.9989 '9988 '9986 '9984 '9982
0'9997 '9997 '9996 '9996 '9995
0'9999
.15 •20
0.0498 .0474 •0450 '0429 •0408
3.25 '30 '35 '40 '45
0.0388 -0369 '035 1 '0334 '0317
0.1648 •1586 •1526 '1468 '1413
0.3696 '3594 '3495 '3397 '3302
0.5914 '5803 '5693 '5584 '5475
0.7717 •7626 '7534 '7442 '7349
0.8888 '8829 '8768 '8705 '8642
0.9523 '9490 '9457 '9421 '9385
0.9817 •9802
0 '9937
'9786 '9769 '9751
0.9980 '9978 '9976 '9973 '9970
0 '9994 '9994 '9993 '9992 '9991
0 '9999
.9931 '9924 '9917 '9909
3'50
0.0302
0.1359
0.3208
0.5366
0.7254
0.8576
0 '9347
0 '9733
0'9901
0'9967
0.9990
0 '9997
'55 •6o .65 .70
'05 •10
'2466 '2346
•5089
.4932
.6919
•68o8
'9948 '9941 '9934 '9925
.9998 '9997 '9997 '9996
0 '9999
'9999
See page 24 for explanation of the use of this table.
25
'9999 '9999 '9999
'9997 '9996 '9996 '9995
0.9999 0'9999 '9999 '9999 '9999 '9999
0 '9999
'9999
'9999 '9999 '9999 '9999
'9998 '9998 '9998 '9997
TABLE 2. THE POISSON DISTRIBUTION FUNCTION IL
r
= 0
/
2
3
4
5
6
7
8
9
10
0.3208 •3117
0.5366 •5259
0.7254 •7160
0'8576 •8509
0 '9347
0 '9733
•9308
.9713
0'9901 .9893
0.9967 •9963
0.9990 -9989
3.50 .55 •6o .65 •7o
0'0302
0'1359
•0287 •0273 •0260 •0247
•1307 •1257
•3027
•5152
'7064
'8441
'9267
'9692
'9883
'9960
'9987
•1209 •ii62
'2940 •2854
•5046 '4942
.6969 .6872
.8372 •8301
.9225 •9182
.9670 •9648
.9873 •9863
'9956 '9952
•9986 '9984
3'75 •8o
0 ' 0235
0'2771 '2689 '2609 '2531
0'4838
0.6775 •6678 •6581 •6484 .6386
0•8229 •8156 •8o81 •8006 .7929
0.9I37 .9091 '9044 .8995 .8945
0.9624 '9599 '9573 '9546 .9518
0.9852 '9840 •9828 -9815 -9801
0'9947
'9942 '9937 '9931 .9925
0.9983 •9981 '9979 '9977 '9974
0•7851 '7773 •7693 •7613 '7531
0.8893 .8841 .8786 •8731 .8675
0'9489 '9458 '9427 '9394 .9361
0'9786 '9771 '9755 '9738 '9721
0.9919 .9912 .9905 .9897 .9889
0.9972 .9969 .9966 .9963 '9959
0.8617 .8558
0.9702 .9683 •9663 .9642 .9620
0.9880 .9871 •9861 .9851 .9840
0.9956 '9952 '9948 '9943 '9938
•85
•0213
•90 .95
'0202
0•I I17 •1074 •1032 •0992
.0193
.0953
- 2455
4'00
o.o183 - 0174 •o166 •0158
0.0916 •42880 - o845 •0812
0.2381 •2309 •2238 •2169
0'4335
•05 •zo •15 '20
'0150
'0780
•2102
.3954
o•6288 •6191 •6093 '5996 .5898
4'25 •30 •35 '40 '45
0 '0143 '0136
0 '0749
0.2037 •1974
0.3862 '3772
0.5801 '5704
0'7449
•1912 •1851
'3682
•5608
•7283
'8498
.3594
•0117
'0663 '0636
•1793
'3508
'5512 '5416
•7199 .7114
•8436 '8374
0.9326 •9290 '9253 -9214 '9175
4'50 •55 •6o •65 .70
0.01 11 •0'06 .0 1 0 1 •0096 •0091
o.o6 i 1 •0586 -0563 '0540 -o51/3
0.1736 -1680 •i626 '1574 .1523
0.3423 '3339 •3257 •3176 •3097
0.5321 •5226 .5132 .5039 '4946
0.7029 .6944 •6858 •6771 •6684
0.831! •8246 •8180 •8114 •8o46
0.9134 .9092 '9049 -9005 •896o
0'9597
0'9829 .9817 .9805 '9792 '9778
0 '9933
'9574 '9549 '9524 '9497
4'75 •8o -85 -90 -95
0•0087 •008z •0078 •0074
0.0497 '0477 '0458 '0439
0.1473 '1425 •1379 '1333
0.3019 '2942 •2867 .2793
0.4854 '4763 •4672 '4582
'0071
'0421
•1289
•2721
'4493
0'6597 •6510 •6423 '6335 .6247
0.7978 •7908 -7838 .7767 .7695
0-8914 •8867 •8818 -8769 .8718
0.9470 '9442 '9413 .9382 '9351
0.9764 '9749 '9733 .9717 •9699
0.9903 .9896 •9888 •9880 .9872
5.00 •05 •zo •z5
0•oo67
0.0404
•0064
'0388
•oo61 •0058
•0372 -0357
0.1247 •1205 •1165 -1126
0.2650 •2581 .2513 '2446
0.4405 '4318 '4231 .4146
0.616o •6072 '5984 '5897
0.7622 '7548 '7474 •7399
'20
'0055
'0342
•I088
'2381
'4061
'5809
•7324
0.8666 •8614 •856o -8505 '8449
0.9319 •9286 .9252 •9217 •9181
0.9682 •9663 . 9644 •9624 •9603
0.9863 . 9854 '9844 '9834 •9823
5'25
0'0052
0'0328
0'1051
0'2317
0.3978
0'5722
0'7248
•30 '35 •40 '45
'0050
•0314 •0302 •0289 -0277
-ior6 •0981 . 0948 •0915
-2254 •2193 -2133 - 2074
'3895 . 3814 •3733 '3654
•5635 '5548 '5461 '5375
'7171 '7094 •7017 •6939
0.8392 -8335 •8276 •8217 -8156
0'9144 •9106 .9067 •9027 •8986
0.9582 .9559 .9536 .9512 .9488
0.9812 •9800 •9788 '9775 .9761
5'50 .55 •6o •65
0'0041
0'0266 '0255
0'0884 '0853
0'2017 '1961
•70
'0033
•1906 -1853 •z 800
0.6860 •6782 '6703 '6623 '6544
0.8095 •8033 '7970 •7906 '7841
-89o1 '8857 •8812 •8766
0.9462 '9436 '9409 •9381 .9352
0.9747
•0824 '0795 •0768
0.5289 '5204 .5119 '5034 .4950
0 '8944
•0244 •0234 -0224
0. 3575 '3498 '3422 '3346 .3272
5'75 •8o •85 •90 •95
0.0°32
0.0215
0'0741
0'1749
0.3199
0.4866
•0030 •0029
'0206
'0715
•1700
•3127
•4783
•0197
'0027
'0189
•0026
•0181
•0690 •o666 -0642
•1651 •1604 •1557
•3056 •2987 .2918
'4701 '4619 '4537
0.6464 •6384 •6304 •6224 . 6143
0.7776 •7710 •7644 '7576 -7508
0.8719 •8672 •8623 .8574 •8524
0.9322 •9292 •9260 •9228 '9195
0.9669 •9651 •9633 •9614 '9594
6•oo
0.0025
0.0174
o.o620
0.1512
0.2851
0'4457
0.6063
0.7440
0.8472
0.9161
0 '9574
•0224
•0129 '0123
'0047 •0045 '0043
•0039 •0037 •0035
.0719 -0691
'41735 '4633
'4532 '4433
'4238 .4142 '4047
'7367
See page 24 for explanation of the use of this table.
26
-9928 .9922 •9916 •9910
'9733 .9718 •9702 •9686
TABLE 2. THE POISSON DISTRIBUTION FUNCTION = II
12
3.50 '55 '6o •65 .70
0.9997 '9997 '9996 '9996 '9995
0 '9999
3'75 •8o •85 •90 '95
0 '9995
'9994 '9993 '9993 '9992
4'00
0.9991 '9990 '9989 -9988 '9986
4'25 .30 '35 '40 '45 4•50 '55 -6o .65 .70
0.9976 '9974 '9971 '9969
4.75 '8o '85
0 '9963
x3
x4
x5
x6
17
= 0
I
2
6'0 'I '2
0'0025
0'0174
0'0620
'0022
'0159
'0577
'0020
'0146
'0536
•3 •4
•0018
'0134
•0017
'0123
•0498 '0463
0 '9999
6'5
0'0015
0'0113
0'0430
'9998 '9998 '9998 '9998
'0014
'0103
'0400
•0012
'0095
'0371
'9999 '9999
•6 •7 •8 '9
0 '9997
0'9999
'9997 '9997 '9996 '9996
'9999 '9999 '9999 '9999
0 '9985
0 '9995
0 '9999
'9983
'9995 '9994 '9993 '9993
'9998 '9998 '9998 '9998
0.9992 '9991 '9990 .9989 '9988
'9999 '9999 '9999 '9999
0'9999
'0011
'0087
'0344
•oolo
•oo8o
•0320
7.0
0'0009
0'0073
0'0296
'I
•0008
•0067
•0275
'2
'0007
'0061
'0255
•3 •4
'0007
'0056
'0236
•0006
•0051
•0219
0.0006
0.0047
0.0203
'0005
•0043
'0188
'0005
'0039
•0174
'9999 '9999
7.5 •6 .7 •8 •9
'0004
'0036
•0004
•0033
•0161 •0149
0'9997
0 '9999
8•o
0'0003
0'0030
0'0138
'9997 '9997 '9997 '9996
'9999 '9999 '9999 '9999
•I '2
'0003
•0028
•0127
'0003
•0025
'0118
•3 .4
'0002
'0023
'0109
'0002
'0021
'0100
0.9987 '9986 .9984 .9983 '9981
0.9996 '9995 '9995 '9994 '9994
0-9999 '9999 '9998 '9998 '9998
8'5
0'0002
0'0019
'0002
•0018
0.0093 •0086
'0002
'0016
'0079
'0002
'0015
'0073
'9999
•6 .7 •8 •9
'000I
'0014
•0068
0.9993 '9992 '9992 '9991 '9990
0.9998 '9997 '9997 '9997 '9997
0 '9999
9.0
o-000i
0'0012
o.0062
'9999 '9999 '9999 '9999
'I
'0001
'0011
'0058
'2
'0001
'0010
'9932 '9927
0.9980 '9978 '9976 '9974 .9972
'3 '4
'000!
'0009
' 00 53 '0049
'000!
'0009
'0045
5.25 •30 '35 '40 '45
0'9922
0'9970
0•9989
0'9996
0'0042
'9988 '9987 '9986 '9984
'9996 '9995 '9995 '9995
'000I
'0007
'0038
'0001
'0007
'0035
•000r •0001
-0006
•0033
'9999
9'5 •6 '7 •8 •9
0'0008
'9967 '9964 .9962 '9959
0'9999 '9999 '9999 '9998 '9998
o'000z
'9916 '9910 '9904 '9897
'0005
'0030
5•50 '55 •6o -65
0.9955 '9952 '9949 '9945 '9941
0 '9983
0 '9994
0 '9998
0 '9999
I0•0
0'0005
0'0028
-9982 '9980 '9979 '9977
'9993 '9993 '9992 '9991
'9998 '9998 '9997 '9997
'9999 '9999 '9999 '9999
'0005
'0026
'2
'0004
'0023
'3 '4
•0004
'0022
'70
0.9890 '9883 '9875 .9867 '9859
'0003
'0020
5.75 •8o .85
0.9850 '9841 '9831
0 '9937
0.9975 '9973 '9971 '9969 '9966
0.9991 '9990 '9989 '9988 '9987
0 '9997
0 '9999
'9996 '9996 '9996 '9995
'9999 '9999 '9999 '9998
0.0003 -0003 •0003
0 '9999
10.5 •6 .7 .8 .9
•0002
0.0018 •0017 •0016 •0014 •0013
0'9964
0 '9986
0 '9995
0'9998
0'9999
I I•0
0'0002
0'0012
.05 •IO
'15 •20
'90
'95 5'00
'05 •10 '15 '20
'9982 .9980 '9978
'9966
'9960 '9957 '9953 '9949 0.9945 '9941 '9937
'90
'9821
'95
'9810
'9932 '9927 '9922 '9917
6•oo
0.9799
0.9912
0 '9999
0 '9999
0'9999
See page 24 for explanation of the use of this table.
27
'0002
TABLE 2. THE POISSON DISTRIBUTION FUNCTION IL
r= 3
4
5
6
8
7
9
10
II
12
13
0.9964 '9958 '9952 '9945 '9937
0 '4457
0.6063
0 '7440
0•8472
0.9161
0 '9574
0 '9799
'4298
•5902
'7301
'8367
'9090
'9531
'4141 .3988
. 5742
.3 •4
'1342 .1264 .1189
0'2851 '2719 '2592 -2469 '235 1
•3837
'5423
•7160 .7017 •6873
•82.59 .8148 •8033
•9016 •8939 •8858
•9486 •9437 .9386
'9776 '9750 .9723 .9693
0.9912 .9900 •9887 .9873 '9857
6.5
0•1118
0.2237
0.3690
•6 .7 •8 •9
•1052 •0988 •9928
•2127 •2022
'3547 •3406
-0871
•1920 •1823
•3270 •3137
0.5265 •5108 '4953 '4799 '4647
0.6728 •6581 •6433 •6285 .6136
0.7916 '7796 .7673 '7548 .7420
0.8774 •8686 .8596 •8502 •8405
0.9332 '9274 '9214 •9151 •9084
0.9661 .9627 '9591 '9552 •9510
0.9840 •9821 •9801 '9779 '9755
0.9929 -9920 .9909 .9898 -9885
7.0
0•0818 •o767
0'1730 •1641
0 '5987
'0719
.3 .4
.9674 •0632
'1555 .1473
' 1395
'4349 •4204 •4060 '3920
•5838 •5689 '5541 '5393
0.7291 -716o •7027 .6892 '6757
0.8305 •82o2 •8096 '7988 .7877
0.9015 .8942 •8867 •8788 '8707
0 '9467
•2
0.3007 •2881 .2759 •2640 .2526
0 '4497
•1
0.9730 .9703 .9673 •9642 •9609
0.9872 .9857 '9841 •9824 •9805
7'5 •6 .7 •8
0'1321
0. 2414
•2307
•1181
o.66zo •6482 .6343 •62o4 •6o65
0.7764 .7649 '7531 '7411 •7290
0•8622 .8535 .8445 •8352 •8257
0.9208 '9148 .9085 •9020 •8952
0'9573
•1249
'9
0'0591 .0554 •0518 •9485 '0453
'9536 '9496 '9454 '9409
0.9784 •9762 '9739 '9714 •9687
8.43
0'5925
0.7166
0'8159
'I
.5786 .5647 •5507 '5369
-7041 '6915 •6788 -6659
•8058 '7955 •7850 '7743
0.8881 •8807 .8731 •8652 .8571
0.9362 •9313 •9261 •9207 .9150
0.9658 •9628 '9595 -9561 '9524
0.5231 •5094 '4958 •4823 .4689
0.6530 •6400 •6269 .6137 •6006
0.7634 •7522 '7409 -7294 •7178
0.8487 -8400 -8311 •82.20 •8126
0.9091 •9029 .8965 •8898 •8829
0.9486 '9445 '9403 '9358 •93"
6•o
0'1512
•I
*1425
'2
•5582
-2203
0.3782 •3646 '3514
•1117
•2103
•3384
•1055
•2006
'3257
0.5246 •5100 '4956 •4812 '4670
0.0424
0'0996
•0396
*0940
O'1912 '1822
01134 •3013
0'4530 '4391
'4254 •4119 '3987
.9420 '9371 '9319 •9265
-2
•0370
•o887
•1736
-2896
-3 '4
.0346 '0323
•9837
•1653
•2781
'0789
•1573
•2670
8.5 •6 -7 •8 •9
0'0301 •9281 •oz62 •9244 •9228
0'0744 •0701
0'1496 •1422
0'2562 '2457
•0660
-1352
.2355
•9621 •9584
•1284
'2256
0.3856 •3728 •3602 •3478
•1210
•2160
'3357
TO
0'0212
0.0550
0'1157
.0517
'2
•0108 •0184
'0486
•1098 •1041
•3 •4
•0172 •0160
'0456 .0429
'0986 •0935
o.2o68 •1978 •1892 •1808 •1727
0.3239 •3123 •3010 •2900 '2792
0 '4557
•I
'4426 '4296 •4168 '4042
0.5874 '5742 •5611 '5479 '5349
0.7060 .6941 -682o .6699 -6576
0.8030 '7932 -7832 '7730 •7626
0.8758 •8684 •8607 •8529 '8448
0.9261 •9210 •9156 '9100 •9042
9.5 •6 •7
0 . 0149 -0138 '0129
0.0403
0'0885
0'1649
0:22 : 26 2844 5 898 5 7
0'3918
0'5218
0'6453
0'7520
•0378
•0120
.0333
'1574 •1502 •1433
•2388
•3796 •3676 '3558
•5089
8
•0338 .0793 .0750
•9
-0111
- 0312
•07 10
•1
.6329 •6205 .6080 '5955
.7412 -7303 •7193 •7081
0.8364 •8279 •8191 •81o, •8009
0.8981 •8919 •8853 •8786 -8716
10•0
0.0103
•I
0'0293 •0274
0'0671 •0634
'2
•0096 '0089
•3 •4
•0083 •0077
'0257 •0241
0.5830 .5705 '5580 '5456 '5331
0.6968 '6853 .6738 •6622 -6505
0.7916 -7820 •7722 •7623 .7522
0.8645 •8571 '8494 •8416 •8336
10'5
•6 •7 •8 •9
0.6387 •6269 •6150
0.7420 •7316 -7210
0.8253 •8169 •8083
11*0
'0355
366
0.1301
'3442
'4960
•4832 '4705
0'2202 '2113
0'3328 '3217
0 '4579
'1240
'0599
-xi8o
•2027
•0566
•1123
•1944
•0225
'0534
•1069
•1863
•3108 •3001 .2896
'4332 •4210 '4090
0.0071 -9966 •0062 -0057 •0053
0'0211
0'0504
0.1016
0'1785
0 . 2794
0'3971
•0197
.0475
•0966
•1710
•0185 •0173 '0162
'0448 '0423 •0398
'0918 '0872 •o82.8
•1636 '1566
•2694 '2597
'3854 •3739
0.5207 •5084 '4961
'2502
'3626
•4840
•6031
'7104
'7995
'1498
.2410
•3515
'4719
'5912
.6996
'7905
0.0049
0'0151
0'0375
0.0786
0'1432
0'2320
0.3405
0 '4599
0 '5793
0.6887
0.7813
'4455
See page 24 for explanation of the use of this table. 28
TABLE 2. THE POISSON DISTRIBUTION FUNCTION
6•o 'I
r = 14
15
i6
17
0.9986 '9984
0.9995 '9994 '9993 '9992 '9990
0.9998 '9998 '9997 '9997 '9996
0.9999 '9999 '9999 '9999 '9999
0.9996 -9995 '9994 '9993 '9992
0.9998 -9998 '9998 '9997 '9997
0.9999 .9999 '9999 '9999 '9999
i8
19
20
21
22
23
24
'2
'9981
'3 '4
'9978 '9974
6'5 .6 '7 '8 '9
0.9970 '9966 '9961 '9956 '9950
0 '9988
7.0 'I
0'9943 '9935 '9927 '9918 '9908
0'9976 '9972 '9969 '9964 '9959
0 '9990
0-9996 '9996 '9995 '9994 '9993
0 '9999
'9989 '9987 '9985 '9983
'9998 '9998 '9998 '9997
0 '9999
7'5 •6 '7 .8 '9
0 '9897
0 '9954
'9948 '9941 '9934 '9926
0'9980 '9978 '9974 '9971 '9967
0'9992 '9991 '9989 '9988 '9986
0'9997 '9996 '9996 '9995 '9994
0 '9999
'9886 '9873 '9859 '9844
8•o 'I
0'9918 '9908 '9898 '9887 '9875
0'9963 '9958 '9953 '9947 '9941
0'9984 .9982 '9979 '9977 '9973
0'9993 '9992 '9991 '9990 '9989
0 '9997
0 '9999
'3 '4
0.9827 '9810 '9791 '9771 '9749
'9997 '9997 '9996 '9995
'9999 '9999 '9998 '9998
8'5
0 '9726
0 '9934 .9926
0'9987 '9985 '9983 '9981 '9978
0'9995 '9994 '9993 '9992 '9991
0'9998 '9998 '9997 '9997 '9996
0 '9999
-9701 '9675 '9647 '9617
0.9862 '9848 '9832 '9816 '9798
0 '9970
'6 '7 .8 '9
'9999 '9999 '9999 '9998
0'9999
9.0 -1 -2 '3 '4
0.9585 '9552 '9517 '9480 '9441
0*9780 '9760 '9738 '9715 '9691
0.9889 '9878 '9865 '9852 '9838
0 '9947 - 9941
0'9976 '9973 '9969 '9966 '9962
0'9989
0'9996 '9995 '9994 '9993 '9992
0'9998
0 '9999
'9988 '9986 '9985 '9983
'9998 '9998 '9997 '9997
'9999 '9999 '9999 '9999
9'5 .6 '7 .8 '9
0'9400 .9357 '9312 '9265 '9216
0.9665 '9638 '9609 '9579 '9546
0'9823 '9806 '9789 '9770 '9751
0'9911 '9902 '9892 .9881 '9870
0 '9957
0'9980 '9978 '9975 '9972 '9969
0.9991 '9990 '9989 '9987 '9986
0 '9996
0'9999
'9952 '9947 .9941 '9935
'9996 '9995 '9995 '9994
'9998 '9998 '9998 '9997
0'9999 .9999 '9999 '9999 '9999
IWO
0 '9513
0'9857 '9844 '9830 -9815 '9799
0 '9965
'9921 '9913 '9904 '9895
'9962 '9957 '9953 '9948
0.9984 .9982 '9980 '9978 '9975
0 '9993
'9477 '9440 '9400 '9359
0'9730 '9707 •9684 •9658 '9632
0 '9928
'3 '4
0.9165 '9112 '9057 '9000 '8940
'9992 '9991 '9990 '9989
0'9997 '9997 '9996 '9996 '9995
0'9999 '9999 '9998 '9998 '9998
10.5 •6 '7 •8 '9
0.8879 •8815 .8750 •8682 '8612
0'9317 '9272 '9225 '91 77 '9126
0'9604 '9574 '9543 '9511 '9477
0'9781 '9763 '9744 '9723 '9701
0.9885 '9874 '9863 '9850 '9837
0.9942 '9936 '9930 '9923 '9915
0'9972 '9969 '9966 .9962 '9958
0 '9987
0 '9994
'9994 '9993 '9992 '9991
0'9998 '9997 '9997 '9996 '9996
0 '9999
'9986 '9984 '9982 '9980
i•o
0.8540
0'9074
0 '9441
0'9678
0'9823
0 '9907
0 '9953
0 '9977
0'9990
0'9995
0'9998
'2
'3 '4
'2
I
'2
-9986 '9984 '9982 '9979
'9918 '9909 -9899
'9966 '9962 '9957 '9952
'9934 '9927 - 9919
r = 25 101
'8 '9
0.9999 '9999 '9999 0 '9999
'9999 '9999 '9999
'9999 '9998 '9998 '9998
0'9999
'9999 '9999
0 '9999
'9999
See page 24 for explanation of the use of this table. 29
0 '9999
'9999 '9999 '9999
'9999 '9999 '9998 '9998
TABLE 2. THE POISSON DISTRIBUTION FUNCTION P,
r =
2
3
4
5
6
7
8
9
xo
II
12
11•0
0'0012
0'0049
0.0151
0'0375
0'0786
0'1432
0'2320
0.3405
0 '4599
0'5793
'2
'0010
'0042
•0132
'0333
-0708
'4
•0009
•0036
•0115
•0295
•0636
•6
•0007
•0261 '0230
-0571 •0512
'3192 •2987 .2791 '2603
'5554 •5316 •5080
•0006
•oioo •oo87
-2147 •1984 •1830 •1686
'4362 -4131 .3905
•8
-0031 •0027
-1307 •1192 •1085 '0986
'3685
'4847
0.6887 •6666 •6442 •6216 '5988
12'0
0'0005
0'0023
0'0458
0'0895
0'1550
0 '2424
•0004 '0004
'0020
0'0076 •oo66
0'0203
'2 •4
-0017
•0057
•0179 •0158
•0014
•0050
•0139
•8
•0003 '0003
•081x '0734 •0664
'1424 .1305
•6
'04ro •0366 •0326
•0012
•0043
'0122
•0291
*0599
•2254 •2092 •1939 •1794
0'3472 '3266 •3067 .2876 '2693
0.4616 '4389 •4167 '3950 '3738
0.5760 '5531 '5303 .5077 '4853
13•0
0.0002
0•00I I
0'0259
0'0540
0.2517
0'3532
0'4631
'0009
•0094
'0230
•0487
0'0998 •0910
0. 1658
•0002 •000z
0'0037 •0032
0'0107
'2 •4
' 1530
. 2349
•0008
•0028
-0083
•0204
•6
•0001
•0007
-0024
'0072
•0,8i
•000i
•0006
•oo2i
•0063
•ox6i
•0828 .0753 •o684
•1410 •1297 '1192
-2189 .2037 •1893
'4413 '4199 .3989
.8
•0438 '0393 .0353
'3332 •3139
14.0
0.0001
0'0005
0'0018
0'0055
0'0142
0'0316
0•062I
0.1094
0'1757
0'2600
0•3585
'2
•0001 •0001
'0004
•0048
.0126
•0283
'0003
'0016 •0013
•0111
•0253
•0003
-0012
•0098
•0226
•1003 -0918 •0839
•1628 •1507
•0001
'1392
•2435 •2277 •2127
'3391 •3203 •3021
•0002
•0010
'0042 •0037 •0032
-0562 •0509 •0460
•0087
•0202
•0415
'0766
•1285
' 1984
•2845
15'0
0'0002
0'0009
0'0028
0'0076
0'0180
0'0374
'2
•0002 •0002
•0007
•0024
•0067
•0160
'0337
0.0699 •40636
•0006
•0021
•0059
'0143
.0005
.0018
-0052
•0127
'0304 •0273
'0579
•0001
•8
•0001
•0005
•0016
•0046
•0113
- 0245
•0478
0.1185 •1091 •1003 •0921 -0845
0.1848 -1718 •1596 •1481 •1372
0.2676 - 2514 '2358 '2209 •2067
16•o
0.000i
0.0004
0'0014
0'0220
.0089
.0197
'4 •6
•0001
•0003
'0012 •0010
.0079
0176
0355
0'0774 .0708 .0647
0.1931
'0003
0'0433 .0392
o.1270
*0001
0'0040 *0035
0•0I 00
*2
'1174 .1084
568: :116
•000I
'4 •6 •8
'4 -6
•0003
•0009
.8
0002
-0008
170
0'0002
0'0007
'2
'0002
.0006
'4 •6
•0001
'1195 •1093
.0526
'2952 '2773
'3784
•I8o2
'0070
•0158
•0321
•oo6I
•0141
•0290
•0591 .0539
•0920
'1454
0•0021
0'0054
0'0126
0.0261
0•0491
0'0847
0'1350
•0018
'0048
'0112
•0235
•0447
•0778
•1252
'0005
•00'6
-0042
-0I00
-0212
•0406
•0714
•I 160
•0004
•0014
•0037
•0004
•0012
•0033
•0089 -0079
•0191 •0171
•0369 .0335
•0655 •0600
•1074
-8
•000! •0007
18•o
0'0001
0'0003
0'0010
0'0029
0'0071
0'0154
•2
•0001 •0001
•0033 '0002
'0009 -0008
•0025
'0063
'0138
0'0304 '0275
0.0549 •0502
0.0917 '0846
'0022
•0056
'0124
'0002
'0007
*0020
'01 1 1
'0458 '0418
'0002
-0006
•0017
'0049 - 0044
' 0249 '0225
'0779
•0001
•0099
-0203
•0381
•0659
0.0039 •0034
o'oo89 •0079
0.0183 -0165
0.0347 •0315
0.0606 •0556
'4 •6
r =
.:0000002:4 71
.0999
'0993
'0717
X X•0
0'0002
'2
•0002
'4 •6
•000I
0'0002
0'0005
0'0015
•00ox
•8
•0001
-0005 •0004
•0013
'4 .6
•0001 •0007
•0012
'0030
•0071
•0149
•0287
•0509
•0001
'0003
•0010
•0027
'0063
-0260
•0467
-8
12'0
0.0001
•0001
•0003
•0009
•0024
•0056
•0134 •0120
'0236
'0427
'2
'0001
'4
•0001
0• 0 00 I
0•000 3
0.0008
0•0021
0 ' 00 50
0.0108
0 ' 02 I 4
0•0 3 9 0
.8 19•0 '2
20'0
See page 24 for explanation of the use of this table.
30
TABLE 2. THE POISSON DISTRIBUTION FUNCTION ti,
Y = 13
14
15
i6
17
i8
19
zo
21
22
23
XII)
0.7813
•7025
0.9074 .8963 •8845 *8719 .8585
0.9441 .9364 •9280 '9190 .9092
0.9678 •9628 '9572 '9511 '9444
0.9823 '9792 '9757 .9718 '9674
0'9907 '9889 '9868 '9845 '9818
0'9977 '9972 '9966 '0958 '9950
0'9990 '9987 '9984 .9980 '9975
0'9995
-7624 '7430 •7230
0.8540 . 8391 •8234 '8069 .7898
0'9953
•2
12•0 '2
0'6815
0.7720
'4 •6 '8
'6387
*7347 '7153 '6954
•8875 '8755 •8629 '8495
0'9370 .9290 '9204 •9111 '9011
0'9626 .9572 '9513 - 9448 '9378
0'9787 *9753 '9715 .9672 '9625
0.9884 '9863 '9840 .9813 '9783
0.9939
'7536
0'8444 •8296 '8140 *7978 *7810
0'8987
•6603
.9927 '9914 .9898 '9880
0•9970 .9963 '9955 '9946 '9936
0.9985 .9982 '9978 '9973 '9967
13'0
0.5730 *5511
0.6751 '6546 '6338 •6128 .5916
0.7636 *7456 .7272 •7083 •6890
0.8355 •8208 .8054 *7895 .7730
0.8905 '8791 .8671 '8545 . 8411
0.9302 '9219 .9130 '9035 '8934
0 '9573
'9516 '9454 *9387 '9314
0'9750 '9713 '9671 '9626 '9576
0.9859 '9836 •9810 '9780 *9748
0.9924 '9910 •9894 '9876 .9856
0.9960 '9952 '9943 '9933 .9921
0.5704 '5492 '5281 '5071
0'6694 '6494 •6293 '6090
0 '7559
•4863
•5886
'7384 '7204 •7020 •6832
0.8272 •8126 '7975 •7818 . 7656
0.8826 •8712 . 8592 •8466 '8333
0.9235 .9150 •9060 •8963 •8861
0.9521 •9461 .9396 '9326 •9251
0.9712 •9671 '9627 '9579 '9526
0.9833 •9807 '9779 '9747 .9711
0.9907 •9891 '9873 '9853 .9831
0.4657 '4453 '4253
0.5681 '5476 .5272
0.6641 '6448 .6253
0.7489 '7317 '7141
0.8195 •8051 .7901
0.9170 .9084 .8992 '8894 •8791
0.9469 .9407 .9340 •9268 *9190
0.9673 '9630 *9583 .9532 '9477
0.9805 '9777 '9746 .9712 '9674
'4 •6 •8
.2 '4 •6 -8
•6169
*5950
'5292
.5074 .4858
14.0
0.4644
'2
'4434
'4 •6 •8
'4227 •4024 •3826
15.0 .2
0.3632
'9943 .9932 '9918 '9902
'9994 *9992 .9991 '9988
•4056
•5069
•6056
•6962
'7747
•3864
'4867
'5858
'6779
'7587
0.8752 •8638 .8517 •8391 •8260
0.2745
0'3675 '3492
0.5660 .5461 •5263 •5067 '4871
0.6593 •6406 •6216 •6025 '5833
0'7423 '7255 •7084 •6908 •6730
0.8122 '7980 . 7833 •7681 •7524
0.8682 •8567 .8447 •8321 •8191
0.9108 •9020 '8927 •8828 .8724
0.9418 '9353 '9284 •9210 .9131
0'9633
'25 85
0 '5640
*5448 •5256 •5065 '4875
0.6550 '6367 •6182 '5996 •5810
0.7363 '7199 •7031 '6859 •6685
0.8055 '7914 •7769 .7619 •7465
0.8615 •85oo •838o -8255 -8126
0.9047 •8958 •8864 '8765 •866o
0.9367 •9301 •9230 '9154 '9074
'4 •6 -8
'3444 '3260 -3083 •2911
16 0
'2
•6 •8
•2285 •2144
'2971
0.4667 '4470 .4276 •4085 •3898
17•0
0.2009
0.2808
0.3715
'2
'1880
'2651
'3535
'4 .6 •8
'1758 .1641 •1531
2500 ' 2354 . 2215
•3361 '3191 '3026
0.4677 '4486 .4297 '4112 '3929
18.0
0.2081 .1953 •183o '1714 '1603
0.2867 •2712 .2563 '2419 *2281
0.3751 .3576 '3405 .3239 *3077
0.4686 .4500 '4317 .4136 '3958
0.5622 '5435 *5249 '5063 .4878
0.6509 '6331 •6151 '5970 .5788
0.7307 '7146 •6981 '6814 .6644
0'7991 .7852 •7709 •7561 •7410
0.8551 .8436 •8317 •8193 •8065
0.8989 *8899 '8804 '8704 •8600
0.1497 '1397
0'3784 '3613 •3446 '3283 '3124
0'4695 *4514 '4335 •4158 '3985
0'5606 *5424 '5242 •5061 '4881
0'6472 '6298 •6122 *5946 •5769
0.7255 '7097 '6935 '6772 '660 5
0.7931 '7794 '7653 '7507 '7358
0.8490 '8376 '8257 '8134 •8007
0.2970
0.3814
0.4703
0'5591
0'6437
0.7206
0 '7875
'4
13 2432 '33 •3139
4
0.1426 .1327 '1233
.6 •8
•1145 •xo62
10'0
0.0984
'2
'0911
'4 .6 •8
•0842 .0778 •0717
-1213
0'2148 '2021 •1899 .1782
•1128
-1671
0'2920 '2768 •2621 ' 2479 •2342
20.0
0.0661
0.1049
0.1565
0.2211
'2
-1303
See page 24 for explanation of the use of this table.
31
'9588 '9539 •9486 .9429
TABLE 2. THE POISSON DISTRIBUTION FUNCTION
ii.
r = 24
25
mo
0.9998
0 '9999
'2
'9997
'4 '6 '8
'9997 '9996 '9995
'9999 '9999 '9998 '9998
36
37
38
39
fl•
1= 35
IT2
'4 '6 '8
0.9999 '9999 '9999 '9999
x8.0
0.9999
'2
'9999
0 '9999
'4 '6 .8
'9998 '9998 '9997
0.9999 '9999 '9999 '9999 '9999
'9999 '9999
19•0
.2 '4 .6 .8
0.9997 '9996 '9995 '9994 '9993
0.9998 '9998 '9998 '9997 '9996
0.9999 '9999 '9999 '9999 '9998
0 '9999
20'0
0'9992
0'9996
0.9998
0'9999
0'9999
30
31
32
33
34
26
27
0 '9999
'9999
12'0 *2
0.9993
0 '9997
0'9999
'9991
'4 .6 '8
'9989 .9987 '9984
'9996 '9995 '9994 '9992
'9998 '9998 '9997 '9996
13'0
0.9980 '9976 '9971 .9965 '9958
0.9990 '9988 .9985 .9982 '9978
0'9995
'9994 '9993 '9991 '9989
0.9998 '9997 '9997 '9996 '9995
0 '9999
.2 '4 .6 .8 14.0 .2 '4 '6 .8
0.9950 '9941 '9930 .9918 '9904
0 '9974
0 '9987
0 '9994
0 '9997
0 '9999
0 '9999
•9969 '9963 '9956 '9947
'9984 •9981 '9977 '9972
'9992 '9990 '9988 •9986
'9996 '9995 '9994 .9993
'9998 '9998 '9997 '9997
'9999 '9999 '9999 '9998
15.0
0.9888
0.9996 '9995 '9994 '9992 '9991
'9998 '9997 '9996 '9995
'9999 '9999 '9998 '9998
0 '9999
'9851 •9829 •9804
0.9991 '9990 .9987 .9985 '9982
0'9999
'4 .6 -8
0.9983 '9979 '9975 '9971 '9965
0 '9998
'9871
0.9938 .9928 .9915 •9902 '9886
0'9967
'2
16•o
0 '9777 '9747
0'9989 '9986 '9984 '9981 '9977
'9993 '9992 '9990 '9988
0'9997 '9997 '9996 '9995 '9994
0 '9999
'9952 '9944 '9934 '9924
0'9978 '9974 '9969 '9964 '9957
0 '9999
'9713 .9677 '9637
0.9925 •9913 .9900 -9884 '9867
0 '9994
'4 '6 '8
0'9869 .9849 •9828 '9804 '9777
0 '9959
'2
'9998 '9998 '9998 '9997
'9999 '9999 '9999 '9999
17.0
0'9594 '9546
0'9748
'9968 •9962 '9956 '9949
'9983 .9980 '9976 •9972
'9991 '9989 '9987 -9985
0'9996 '9995 '9994 '9993 '9992
0'9998 '9998 '9997 '9997 '9996
0'9999
'9495 .9440 '9381
0.9950 '9942 '9933 -9922 •9910
0 '9993
'4 •6 .8
0.9912 '9898 .9883 •9866 .9848
0 '9986
.9715 '9680 .9641 '9599
0.9848 •9827 '9804 '9778 '9749
0 '9973
'2
x8•o
0.9317
0'9554
'9249
'4 •6 •8
'9177 .9100 •9019
.9505 '9452 .9395 '9334
0.9718 .9683 - 9646 •9606 '9562
0.9827 -9804 '9779 •9751 '9720
0.9897 '9882 •9866 .9847 •9827
0.9941 '9931 '9921 '9909 '9896
0.9967 •9961 '9955 '9948 '9939
0.9982 '9979 '9975 '9971 '9966
0.9990 '9989 '9986 '9984 .9981
0'9995
'2
0.9998 '9997 '9996 '9996 '9995
19.0
0.8933 '8842
'4 •6 •8
'8746 •8646 8541
0.9269 '9199 '9126 '9048 •8965
0.9514 '9463 '9409 '9350 •9288
0.9687 .9651 '9612 '9570 '9524
0.9805 .9780 '9753 .9724 '9692
0.9882 •9865 '9847 .9828 •9806
0.9930 '9920 '9908 '9895 •9881
0'9960 '9954 '9946 '9938 .9929
0.9978 '9974 '9970 '9965 '9959
0'9988 '9986 '9983 •9980 '9977
0 '9994
'2
20'0
0.8432
0.8878
0.9221
0 '9475
0.9657
0'9782
0.9865
0.9919
0'9953
0 '9973
0'9985
.
.996; '9954 '9945 '9936
0.9999 '9999 '9999 '9999 '9998
z8
'9999 '9999
0 '9999
'9999
'9999 '9999 '9998 '9998
r
=
29
0'9999
'9999 '9999
0 '9999
'9999
See page 24 for explanation of the use of this table.
32
'9999 '9999 '9999
'9994 '9993 '9991 '9990
0 '9999
'9999
'9999 '9999 '9998 '9998
'9992 '9991 .9989 '9987
TABLE 3. BINOMIAL COEFFICIENTS This table gives values of
n! n(n — 1). .(n — r + 1) (n — r)! r! — r!
(r ) =nC,
when r> in use (1 = n )• (n) is the number of r n r r ways of selecting r objects from n, the order of choice being immaterial. (See also Table 6, which gives values of log10 n! for n < 300.) —
2
n
=x
I
3
4
2
I
I 2
3
I I
3 4
3 6
I 4
5
I 1
10 15
7 8
I x
21
9
I
5 6 7 8 9
10
6
35 56 84
xo II 12
I I I
12
13
I
13
14
I
15 16 17 18
I 1 I 1
19
I
20 21 22 23 24
4
Jo II
I
28 36 45 55 66
6
5
I
5 15 35 70 126
20
6
1
21
7 28 84
56 126
120
210
252
210
120
330 495
462 792
462 924
33o 792
1716
1716
3003
3432
14
715 1001
1287 2002
15
105
455
1365
16 17
120
560
1820
18 19
136 153 171
68o 816 969
2380 3060 3876
3003 4368 6188 8568 11628
5005 8008 12376 18564 27132
I I I I I
20 21 22
190 210 231
I I 4o 1330 1540
23
253
1771
4845 5985 7315 8855
15504 20349 26334 33649
38760 54264 74613 100947
24
276
2024
10626
42504
134596
25 26 27
I I I
300
28 29
x I
25 26 27 28 29
325 351 378 406
2300 2600 2925 3276 3654
12650 14950 17550 20475 23751
53130 65780 80730 98280 118755
230230 296010 376740 475020
30
I
30
435
4060
27405
142506
593775
?I
II
12
= 20
184756
167960
125970
21 22 23
352716
352716
293930
646646 1144066 1961256
705432 1352078 2496144
646646 1352078 2704156
3268760 5311735
4457400 7726160
24
26 27 28 29
8436285
13037895
13123110
21474180
2.0030010
34597290
5200300 9657700 17383860 30421755 51895935
30
30045015
54627300
86493225
25
I
8 36
165 220 286 364
10
9
I
78 91
r
8
7
33
177100
13
77520 203490 497420
6435
1
9
1
45 165 495
xo 55 220
1287 3003
715 2002
31824 50388
6435 12870 24310 43758 75582
24310 48620 92378
77520 x 1628o 170544 245157 346104
125970 203490 319770 490314 735471
167960 293930 497420 817190 13.07504
480700 657800 888030 1184040 1560780
1081575 1562275 2220075 3108105 4292145
2042975 3124550 4686825 6906900 10015005
2035800
5852925
14307150
11440
19448
14
5005 11440
15
2496144
3876o 116280 319770 817190 1961256
15504 54264 170544 490314 1307504
5200300 10400600 20058300 37442160 67863915
4457400 9657700 20058300 40116600 77558760
3268760 7726160 17383860 37442160 77558760
119759850
145422675
155117520
1144066
TABLE 4. THE NORMAL DISTRIBUTION FUNCTION The function tabulated is 0(x) =
fx .V2it
dt. 0(x) is
-00
the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < o use 40(x) = i -0( - x), as the normal distribution with zero mean and unit variance is symmetric about zero.
x
0(x)
x
(I)(x)
x
(11(x)
x
I(x)
x
(13( x)
x
0'00
0'5000 '5040 '5080
0'40 '41 '42
0*6554 '6591
0'80 •81
1'20
0'8849 •8869
2'00
0.97725
.9463 *9474
•5120 •5160
•82 •83
x.6o •61 •62
0'9452
•8907 '8925
'63
'9484
- 44
•6628 •6664 •67oo
0'7881 •7910 '7939
.64
'9495
•0, •02 •03 •04
'97778 *97831 '97882 *97932
0.8944 •8962 •898o .8997
1.65 •66 •67 -68 '69
0.9505 •9515 •9525 '9535 '9545
2'05
0'97982
•o6 •07 •o8 •09
•98030
1•70
0.9554 .9564 '9573 .9582 '9591
2•10
•01 •02
•03 •04
'43
'84
.7967 '7995
•21 •22 •23 .24
0'85
0'8023
1'25
•86 •87 •88 •89
•8051 •8078 •8106 •8133
•26 •27 •28 -29
0'05 •06
0.5199 '5239
0.45 .46
.07
.5279
*47
•08
'5319
'09
'5359
•48 .49
0.6736 .6772 •6808 •6844 .6879
0•10
0'5398
0'50
0'6915
0'90
0'8159
1•30
'II •12
'5438 '5478
•13 '14
.5517 '5557
•51 •52 .53 '54
•6950 •6985 .7019 '7054
'91 •92 •93 .94
•8186 •8212 .8238 .82,64
•3I -32 .33 '34
0.15 •16 •17 •18 •19
0-5596 •5636 .5675 .5714 '5753
0.55 •56 '57 •58 '59
0.7088 •7123 '7157 •7190 '7224
o.95 •96 .97 •98 .99
0.8289 •8315 .8340 •8365 .8389
0'20 '21 '22
0.5793
0.60
0.7257
100
'5832 '5871
'61
'7291
'01
•62
•02 '03 '04
'5910
'63
'5948
'64
'7324 '7357 '7389
0.25 •26
0 '5987
0'65
0'7422
1.05
•6026 •6064 '6103 •6141
'7454 '7486 .7517 '7549
•06
•27 '28
•66 •67 •68
•o8 •09
.23 '24
•29
'69
'07
•8888
'9015 0'9032 *9049
'98077
•98124 '98169 0'98214 '98257 '98300
•9066 .9082 '9099
.71 '72 .73 '74
1.35 •36 '37 •38 '39
0-9115 •9131 '9147 •9162 '9177
r75 •76 .77 •78 '79
0 '9599
2'15
0'98422
•9608 .9616 •9625 '9633
•16 .17 •18 '19
•98461 •98500 .98537 '98574
0'8413
1'40
0'9192
1.80
0.9641
'41
.9207
'8,
'9649
2'20 '21
0.98610
.8438 '8461 '8485 '8508
'42
'9222
'9236 '925 1
-9656 '9664 .9671
•22 .23 .24
•98679
'43 .44
•82 .83 .84
'98745
0.8531 .8554 '8577 •8599 •8621
1'45 '46 '47 •48 '49
0 '9265
1.85 •86
0'98778
•26
'9292
'87
'27
'98809 '98840
•9306 '9319
•88 '89
0.9678 •9686 .9693 •9699 '9706
2'25
'9279
•28 •29
•98899
1•50
0.9332 '9345 '9357 '9370 -9382
1'90
0.9713 '9719
2'30
0'98928
.31
.98956
'9726
'32
'98983
'9732 '9738
'33 '34
'99010 '99036 0.99061 '99086
•II •12 .13 •14
0'30 •31 •32
0.6179
0•70 '71 '72
0.7580
1•10
'6217 •6255
'7611 •7642
•I 1
'33 '34
.6293 '6331
'73 '74
'7673 '7704
•13 '14
0.8643 •8665 •8686 '8708 '8729
0.35 •36 '37 •38 '39
0.6368 •6406 '6443 •6480 '65 1 7
0.75 •76 '77 •78 '79
0'7734
r15 •16 •17 •i8 •19
0.8749 •8770 .8790 •8810 •883o
r55 '56 .57 •58 '59
0 '9394
1'95
0 '9744
2'35
•7764 '7794 •7823 '7852
.9406 '9418 •9429 '9441
'96 '97 •98 '99
'9750 '9756 •9761 '9767
-36 .37 •38 '39
0'40
0.6554
0.80
0.7881
1•20
0'8849
1•60
0'9452
2'00
0'9772
2.40
•12
(I)(x)
'51 '52 '53 .54
34
'91 .92 '93 '94
.98341 .98382
•98645 '98713
•98870
'99111
'99134 '991 58 0'99180
TABLE 4. THE NORMAL DISTRIBUTION FUNCTION x
x
(1.(x)
x
(1)(x)
x
(1)(x)
x
(1)(x)
2'40
0.99180
2'55
0'99461
2'70
'99202 '99224 '99245 '99266
•56
'99477
II
2.85 •86
'57 •58
.72 '73 '74
'99683
•88
•59
'99492 .99506 .99520
0.99653 '99664 '99674 '99693
•89
0.99781 .99788 '99795 .99801 -99807
3.00 0.99865
',II
2'60
0 '99534
2.75
0.99813
3•05
0.99886
-76
0.99702 .9971i
2'90
•61 •62 '63 '64
'99547
•9x
.99819
•o6
.99889
'99560
.77
.99720
'92
'99825
•07
'99893
'49
0'99286 '99305 '99324 '99343 '99361
'93 '94
'9983 1 '99836
•o8 .09
'99900
2'50
0.99379
.52
'99396 '99413
0'99841 - 99846
3.10
. 51
•I2
'53 '54
•13
'99913
'14
'99916
2'55
3'15
0'99918
'42 '43 '44 2'45
'46 '47 '48
'87
'99573
•78
.99728
'99585
'79
'99736
2.65
0'99598
•99609 .99621
2.8o •8x
2'95
'99430 '99446
•66 .67 •68 .69
-99
.99851 .99856 .99861
0'99461
2.70
3'00
0'99865
.99632
•83
'99643
*84
(3'99744 '99752 .9976o '99767 '99774
0.99653
2'85
0'99781
•82
.96
.97
.98
•ox •02 '03 •04
•I
x
(D(x) .99869 '99874 '99878
'99882
.99896
0.99903 .99906 '99910
0(x)
3'15 •x6
0.99918
•x7 •i8 •19
'99924 .99926 '99929
3'20 '2I '22 6 23 •24
0 '99931
3'25
0 '99942
'26 '27
•28 -29
'99944 '99946 '99948 '99950
3.30
0.99952
.99921
'99934 '99936 '99938 '99940
The critical table below gives on the left the range of values of x for which 0(x) takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of (1)(x) indicated. 3.075 0.9990 3o5 0.9991 '130 0'9992 3.215 3'174 0.9993 0 '9994
3'263 09994
3-320 09995 3.389 0.9996 3'480 0.9997 3.615 0.9998 0 '9999
When x > 3.3 the formula -0(x) *
xV2IT
0
99990
3 .916 0 '99995 3.976 099996
0 3.826 0.99993 3.867 0.99994
4'055 0.99997 4'173 0.99998 4'417 099999 1•00000
3'73ro .99991 3159 3 .791 99992
0 '99995
I 3 15 1051 is very accurate, with relative error 7+ 78+71x
less than 945/x1°.
TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION This table gives percentage points x(P) defined by the equation
P
ioo
=
lc° e-It2 dt. x(P)
If X is a variable, normally distributed with zero mean and unit variance, P/Ioo is the probability that X x(P). The lower P per cent points are given by symmetry as - x(P), x(P) is 2PI loo. and the probability that IXI
P
x(P)
P
50
0'0000
45 40 35
0'1257
30 25
0'2533 0 '3853 0'5244 0 '6 745 0.8416
x(P)
P
x(P)
P
x(P)
5'0
P6449
2'0
2'0537
I'0
2'3263
0•10
3'0902
1.6646 1'6849
3'0 2'9
1'8808
4.8 4'6 4'4
P8957
2'8
1 .91 10
2.0749 2•0969
2.7
0'07
P7279
2'6
P9268 1.9431
2.3656 2•089 2.4573
4*2
I'6
2'1444
0.9 o•8 0.7 o•6
0.09 0T8
1.7060
1.9 1.8 r7
2.5121
0'06
3'1214 3.1559 3'1947 3.2389
P7507
2.5
P9600
I.5
2•1701
o•5
1'7744
P9774 1 '9954
1.4
2.1 973
0.4
2.5758 2.6521
1 . 7991
2'4 2'3
1'8250 P8522
2*2 2'1
2'0141
r3 1•2
2'0335
I •I
2•2262 2'2571 2'2904
0'3 0•2 0•1
I0
P2816
4'0 3.8 3•6 3.4
5
P6449
3'2
20 15
1.0364
35
2•i20i
P
x(P)
2/478 2•8782
3.0902
P
x(P)
0•0x 0.005
3.2905 3.7190 3.8906
0.001 0.0005
4.4172
0.05
4.2649
TABLE 6. LOGARITHMS OF FACTORIALS n
log10 n!
n
0
0'0000
i
o•0000
logio n!
n
log10 n!
n
log10 n!
n
loglo n!
100
157'9700
377'2001
250 251
161'9829
267'1177
200 201 202
374.8969
159'9743
15 151 152
26 62 4 '9 7 35. 6 59 9
Ica
379'5054
163.9958
153
269.3024
203
381.8129
252 253
154
271'4899
204
384.1226
254
492.5096 494'9093 497'3107 499'7138 502'1186
227753.'86783043
205 206
255 256
278'0693 280'2679
207 208
282'4693
209
386 '4343 388.7482 39 P 0642 393.3822 395'7024
210 211 212
398'0246 400'3489 402'6752
log10 n!
n
50
64.483 1
5x
102
103
2
0'3010
52
3 4
0.7782
53
66.1906 67.9066 69.6309
I • 3802
54
71'3633
104
166•0128
5 6 7 8 9
2'0792 2'8573
73.1037 74.8519 76.6077 78.3712 80. 1420
105 xo6 107 xo8 109
168.0340 170.0593
3'7024 4'6055 5'5598
55 56 57 58 59
172'0887
156 157
174•1221 176.1595
158 1 59
IO II
6.5598
6o
81•9202 83'7055
178'2009 180•2462
284'6735
61
II0 III
160
7'6012
161
12 13 14
8.6803 9'7943 10'9404
62 63 64
85'4979 87.2972 89'1034
112 1 xx 13 4
182.2955 118846...43045845
262 163
286.8803 289•o898
15
12'1165
65
90'9163
115
188'4661
16
13.3206
92'7359 94'5619 96'3945 98.2333
xx6
440075..734 360
291'3020
258 259
504'5252 506'9334 509'3433 511'7549 514.1682
260 261 262 263
518.9999 52 r 4182 523.8381
264
526•2597 528.6830 531.1078 533'5344 535.9625 538.3922
257
164 293.5168
214 215
409.6664
297.9544
216 217
265 266
4112:3 4 03 07 03 9
ix 8
165 ,66 167 ,68
295'7343
190.5306 192.5988 194.6707
2,8 416.6758
267 268
119
196'7462
169
219
419.0162
269
220 221 222
421'3587 423'7031 426'0494
270 271 272
17
14'5511
66 67
x8
15.8063
68
19
17.0851
69
20
18.3861
70
100'0784
120
198.8254
170
306.8608
21 22 23
19'7083 21'0508 22'4125
71 72
101 .9297
200'9082
171
309'0938
202 '9945
24
23'7927
107. 5196
121 122 123 124
172 173 174
311.3293 313'5674 315'8079
223 224
428'3977 430'7480
273 274
25
25.1906 26.6056 28.0370 29%4841 30'9465
75
109'3946 111. 2754
125
209-2748
175
318.0509
225
433'1002
126
211'3751
176
320'2965
226
322'5444 324"7948 327'0477
227 228 229
435'4543 437.8103 4.40.1682 442.5281
275 276 277
8o 81 83
124.5961
34
38- 4702
84
126.5204
329.3030 331.5607 333.8207 336.0832 338'3480
230 231
82
120'7632 122'6770
33
32.4237 33.9150 35'4202 36.9387
85 86
128.4498 130'3843
X85
340'6152
235
186
342•8847
26 27
28 29 30 31 32
35
40'0142
36 37
41'5705 43.1387
38
44 • 7185
39 46.3096
73 74
76 77
78 79
103'7870 105'6503
117
205'0844 207'1 779
113.1619
127
213.4790
115-0540
128
215.5862
177 178
116.9516
129
217.6967
179
118.8547
130 131 132
219'8107 221'9280 224'0485
181
133 134
226 .1 724 228'2995
135 136 137 138
230.4298 232- 5634 234.7001 236 . 8400
87
132-3238
88 89
134.2683 136-2177
180 182 183 184
300'1771 302'4024 304'6303
189
283 284
572.5753 575' 0287
285
:5569:7 02 99 6:
286
577'4835 579.9399
461'4742 463 .8508
288
349'70 71
239
466.2292
289
468'6094 470'9914 473'375 2 475'7608 478.1482
47'91 16
90
138'1719
140
241'1291
190
351'9859
240
49'5244 51' 1477 52'7811 54'4246
91
140.1310
141
243.2783
354.2669
241
45
56.0778
46 47 48 49
57'7406 59'4127 61'0939 62. 7841
50
64.4831
92
142'0948
142
245'4306
93 94
144. 0632 146'0364
143
144
247'5860 249'7443
191 192 193 194
95 96 97 98
148.0141 1 49'9964 151•9831 1 53'9744
145 146
251'9057 254.0700
147
256'2374
368'0003
99
155.9700
148 149
258.4076 260.5808
197 198 1 99
100
57'9700
150
262'7569
200
For large n, logio n!
565.2246 567-6733
237
40
570'1235
584 2;8 39 577 587.3180
290
589/804
291
592'2443
292 293 294
594'7097 597.1766 599'6449
295 296 297
6o2'1147
356'5502
242
358.8358 361.1236
243 244
195
363'4136
245
196
365.7059
246
480'5374 482.9283
370.2970 372'5959
248 2 47 8 249
487 71 5 5'32140
298
609'5330
490' 1116
299
612.0087
374.8969
250
492.5096
300
614.4858
0.39909 + (n+ logio n - 0.4342945 n.
36
553'0044 555'4453 557.8878 560.3318 562 '7774
280 281 282
238
41 42 43 44
540'8236
543.2566 545.6912 548'1273 550'5651
444.8898 447'2 534 449-6189 451.9862 454'3555
3 3 :=
187
139 238.9830
232
233 234
278
279
516'5832
604.586o 607.0588
TABLE 7. THE x'-DISTRIBUTION FUNCTION F,(x)
The function tabulated is FAx)
-
jo
tiv-le-igdt 0 (The above shape applies for v > 3 only. When v < 3 the mode is at the origin.)
for integer v < 25. Fp(x) is the probability that a random variable X, distributed as X2 with v degrees of freedom, will be less than or equal to x. Note that F,(x) = 20(xi) - (cf. Table 4). For certain values of x and v > 25 use may be made of the following relation between the X2 and Poisson distributions :
with mean v and variance 2v. A better approximation is usually obtained by using the formula
Fv(x) * (1)(V-z; - zy -
Fv(x) = 1 - F(iv - x I ix)
where 4(s) is the normal distribution function (see Table 4)• Omitted entries to the left and right of tabulated values are r and o respectively (to four decimal places).
where F(rlit) is the Poisson distribution function (see Table z). If v > 25, X is approximately normally distributed
= x = 0.0 'I '2
'3 '4
I
V =
2
V =
x = 4.0
0 '9545
x = 0•0
0.0000
x = 4.0
'I '2
'9571
•1
I
V =
o•0000
'2482 '3453 .4161 '4729
2
V =
0•8647 •8713
v=
x = 0.0
o•0000
x = 4-o
:2 1
:0 00 22 84 2
'2
-.4 6
0.7385 '7593 :7 79 78 66 5
. 0598
•8
8130
0.5 -6
o.o811
5.0
0.8282
•1036
-2
.99°04963
•7
'9137
'9
'4 •6 •8
'8423 '8553
'9
•1268 •1505 •1746
0'3935 '4231 '4512
5.o
0.9179 •9219
1•0 •I
0'1987 '2229
6•o
•I '2
'2
'8 977
'3
.2 .3
'2470 '2709
'5034
'4
'4
'2945
'4 '6 '8
•9063
.4780
'9257 '9293 '9328
5'5 '6
0 '9361
1.5
0'3177
6 .7
.3406 .3631
7'0 '2
0'9281
'9392
'8 27 0
'3851 '4066
:4 6
:93 49 508
.8
*9497
0.4276 '4481
8-o
•4681
':4 86
0'9540 '9579 6 199 .. 966647
9-o
0'9707
'2
'4
'9733 '9756
•i
'9596
'2
:0 04 98 58 2
'2
' 8775
.9619
'3 '4
'1393
'8835
'3
-o400
.1813
'3 -4.
.8892
'4
0.9661 •9680 '9698 .9715 '9731
0'5
0'2212
4:5
0 • 8946
•6 '7
•2592
•6
'8997
'2953
'8
'3297
'9
'3624
0'9747 -9761 '9774 '9787
1'0 'I
'9799
'4
•3 '4
'9641
0•5
0'5205
•6 '7 •8 .9
- 5614
'5972 •6289 -6572
4.5 •6 .7 -8 '9
1•0
0.6827
5•0
'I
'7057
'I
'2
'7267
'2
'3 '4
'7458 '7633
'3 '4
I'5 '6 '7 •8 .9
0 '7793
0.9810 •9820
1.5
0.5276
•6
'9830 '9840
.7
•8203 -8319
5'5 '6 '7 '8 '9
'8
-5507 .5726 '5934
'9849
.9
.6133
'9
'9477
2'0
0'8427
6.o
0.9857
2.: 0 3 1
1 O.:68 33 24
6:.!
2 o:.99945520:
•z
' 8527
'I
'65or
'2
•2
-8620
'2
'9865 '9872
'6671
'3
'4875
'4
'6988
'4 •6 .8
'I '2
'9879 '9886
'9550 '9592 •9631 -9666
2'5
0:55422 457
'794 1 '8o77
.2 '3
'2
3
3
:78
•8
'2
•8672
•8782 o•8884
'9142
'9214
'9342
'3
' 8706
*4
'8787
'3 '4
2•5
0.8862
6.5
o'9892
2•5
0'7135
7.o
0'9698
'6
'8931
'6
'9898
'6
'7275
'2
'9727
'7
'8997
'7
'9904
'9057
'8
'9909
'9
'9114
'9
'9914
'9
'7654
'4 .6 '8
'9753 .9776 '9798
'7 .8 '9
'5598
'8
:78
503: :774
'5927
:6 8
:97 977 97
3'0
0.9167 -9217
7•0
3-o •I
0'7769
8:2 o
7 0:9 98314
3• o .1
o • 6o84 •6235
10.0
•1
'2
'7981 •8o8o '8173
'4
'9850
'2
•6
'3
'8
•9864 '9877
'4
'6382 '6524 - 666o
'4 '6 •8
0.9814 •9831 '9845 '9859 •9871
o•8262 '8347 '8428
9'0 '2
o•9889 '9899
'4
'9909
'8577
'6 '8
'9918 '9926
o.679z •6920 '7043 •7161 '7275
I•o
'8504
3.5 -6 '7 -8 '9
o'8647
I0•0
0.9933
4'0
0'7385
'2
'9264
'2
'3 '4
'9307 '9348
'3 '4
0.9918 '9923 '9927 '9931 '9935
3'5 '6 '7 '8 '9
0'9386 '9422 '9456 '9487
7.5 '6
0'9938 '9942
'7
'9945
'8
'9517
'9
'9948 '9951
3.5 '6 '7 '8 '9
4'0
0 '9545
8'o
0.9953
4'0
'I
•3 '4
•7878
37
. 5765
•2
•2
0.9883 •9893
'4
'9903
•6 '8
.9911 .9919
12'0
0'9926
TABLE 7. THE x2-DISTRIBUTION FUNCTION 9
xo
II
.00x 8 •0073 •0190
o'0006 •0029 •oo85
0'0002
0•0001
•0011 •0037
0.0729
0.0383
•1150
'0656
0.0191 .0357
0.0091 •0186
v=
4
5
6
7
8
X = 0'5 1•0
0'0265 •0902
0'0079
0'0022
0'0006
0'000 I
'0374
1.5
.1734
•o869
•0144 •0405
2'0
•2642
•1509
•0803
•0052 •0177 •0402
2'5 3•0
0.3554
0.2235
0.1315
'4422
•3000
•1912
12
13
14
•0004 •0015
0.0001 •0006
0•0002
0.0001
0'0042
0'0018
•0093
•0045
00008 •0021
0.0003 -0009
3'5 4'0 4'5
•5221
'3766
'2560
•1648
•'008
'0589
'0329
'0177
'0091
'0046
'0022
'5940
'4506 '5201
'3233 . 3907
•2202 .2793
•1429 '1906
-o886 •1245
•o527 •0780
•0301 -4471
.ol 66 •0274
•oo88 •0154
'0045 ' 0084
5.0
0.7127
0.4562 •5185 . 5768 '6304 .6792
0.3400 •4008 '4603 •5173 '5711
o'2424 •2970 •3528 •4086 *4634
0.1657 •2113 •26o x •3110 *3629
0.1088 .1446 •1847 •2283 .2746
0.0688 .o954 •1266 •16zo •2009
0'0248
0'0142
•7603 •8009
0.5841 •6421 .6938 '7394 . 7794
0'0420
5.5 6•o 6.5 7.0
•0608 •o839 •1112 .1424
'0375 .0538 - 0978
'0224 '0335 '0477 '0653
0.8140 .8438 .8693 .8909 *9093
0.7229 .7619 '7963 '8264 '8527
0.6213 '6674 *7094 '7473 •7813
0.5162 '5665 .6138 '6577 •6981
0.4148 '4659 •5154 '5627 •6075
0.3225 '3712 '4199 '4679 .5146
0.2427 •2867 '3321 *3781 '4242
0.1771 •2149 *2551 •2971 •3403
0.1254 •1564 '1904 •2271 •2658
0.0863 •1107 -1383 •1689 -zozz
0'9248 *9378 '9486 .9577 •9652
0'8753 .8949 •9116 .9259 •9380
0.8114 -838o •8614 •8818 -8994
0'7350 •7683 '7983 •8251 .8488
0.6495 •6885 '7243 •7570 .7867
0'5595
•6022 '6425 •6801 . 7149
0'4696 •5140 '5567 •5976 '6364
0.3840 *4278 . 4711 .5134 '5543
0•3061 '3474 •3892 .4310 '4724
0.2378 .2752 •3140 .3536 '3937
0.9715 *9766 '9809 '9844 '9873
0'9483
0'9147
'9279 '9392 .9488 '9570
o'8697 •8882 .9042 •9182 '9304
0.8134 * 8374 .8587 •8777 .8944
0.7470 '7763 .8030 .8270 *8486
0.6727 .7067 .7381 7 6 7o '7935
0.5936 .6310 •6662 .6993 '7301
0.5129 . 5522 . 5900 •6262 •6604
0'4338
'9570 '9643 '9704 '9755
0'9896 '9916 '9932 '9944 '9955
0'9797 .9833
•9862 '9887 '9907
0.9640 *9699 '9749 '9791 •9826
0.9409 '9499 '9576 '9642 '9699
0.9091 '9219 '9331 .9429 '9513
0.8679 .8851 •9004 •9138 .9256
0.8175 '8393 •8589 •8764 •8921
0.7586 '7848 •8088 •8306 •8504
o•6926 .7228 •7509 •7768 '8007
o.6218 '6551 •6866 •7162 '7438
0.9924 .9938 '9949 .9958 *9966
0.9856 •9880 '9901 .9918 '9932
0'9747 .9788
'9822 '9851 '9876
0'9586 '9648 '9702 .9748 .9787
0.9360 •9450 '9529 '9597 .9656
0.9061 '9184 *9293 '9389 '9473
0.8683 '8843 *8987 '9115 .9228
0.822.6 '8425 -8606 .8769 •8916
0.7695 .7932
'9992 '9994
0. 9964 '9971 '9976 '9981 .9984
20 21 22 23
0'9995
0'9988
0'8699
'9999
0.9707 '9789 '9849 '9893 '9924
0 '9048
24
0.9821 *9873 '9911 '9938 '9957
0 '9329
'9962 '9975 '9983 '9989
0.9897 *9929 '9951 '9966 '9977
0 '9547
'9992 '9995 '9997 '9998
0.9972 •9982 '9988 '9992 '9995
0 '9944
'9997
'9666 '9756 *9823 '9873
*9496 '9625 '9723 '9797
.9271 '9446 *9583 '9689
*8984 '9214 '9397 '9542
25 26 27
0 '9999
0 '9999
0 '9997
0.9984 '9989 '9993 '9995 '9997
0'9970 '9980 '9986 '9990 '9994
0.9769 .9830
0'9654
'9963 '9974 '9982 '9988
0'9909 '9935 '9954 '9968 '9977
0'9852
'9998 '9999 '9999 '9999
0'9992 '9995 '9997 '9998 '9999
0 '9947
'9999
0 '9999
0'9998
0'9996
0.9991
0'9984
0 '9972
'6575
*8352
-8641
7'5 8•o 8.5 9.0 9'5
o-8883 '9084
10.0 xo.5 x•o
-9251 .9389 '9503
11•5
0.9596 .9672 '9734 .9785
12.0
•9826
12•5
13.0 13.5
0.9860 •9887 '9909
14•0
*9927
14.5
'9941
15.0 15.5 16•o
0 '9953
16.5 17'0
.9976 .9981
17.5
0 '9985
18•o 18'5 19.0 19.5
'9988
28 29 30
'9962 .9970
'9990
'9998 '9999
'9999
38
6
'9893 '9923 '9945 '9961
' 0739
'4735 •5124 •5503 •5868
•8151 .8351 '8533
'9876 '9910 '9935
-9741 -9807 '9858 '9895
0 '9953
0 '9924
TABLE 7. THE f-DISTRIBUTION FUNCTION v= X
15
x6
17
18
19
=3 4
0.0004 •0023
0'0002
0'0001
•001I
'0005
0'0002
0'000 I
5 6 7 8 9
0.0079 •0203 •0424 -0762 •I225
0'0042
0'0022
0'001 I
•0 I 19
•oo68
•o267
•0165
'051 I
•0335
•o866
•0597
•0038 •0099 '0214 •0403
10 II 12
0'1803
0.1334 •1905
0.0964 •1434
•2560
•1999
•3977 '4745
•3272 .4013
'2638 •3329
o•o681 •1056 •1528 •2084 '2709
13
'5 16 17 x8 19
0 '5486
0.4754 '5470 .6144 .6761 .7313
0 '4045
0•3380
•4762 .5456 -6112 .6715
20 21 22 23 24
0'8281
0.7708 '821 5 •8568 •8863 '9105
25 26 27
0'9501
14
'2474 '3210
•6179 •6811 '7373 •7863
•8632 •8922 •9159
'9349
20
21
22
23
24
25
0•0006
0'0003
0.0001
•0021 •0058 •0133 •0265
•00II
'0006
•0033 •oo8 1 .0 r 7 1
•0019 •0049 •0'08
0.0001 •0003 •00I0 •oo28 •oo67
0.0001 •0005 -00'6 •0040
0.0001 •0003 •0009 •0024
0.0001 •0005 •0014
0.0471 •0762 •1144 •1614 •2163
0'0318
0'0211
0'0137
0'0087
0'0055
0'0033
-0538 •0839 •1226 •1695
.0372 •0604 •0914 '1304
•0253 •0426 •0668 •0985
•0168 •0295 •0480 .0731
.oi To •0201 •0339 .0533
'0235 •0383
'4075 '4769 •5443 •6082
0.2774 '3427 •4101 '4776 '5432
0.2236 •2834 •3470 '4126 .4782
0.1770 .2303 •2889 '3510 '4149
0.1378 .1841 •2366 '2940 '3547
0'1054 •1447 •1907 •2425 *2988
0.0792 •x '19 •1513 .1970 .2480
0.0586 '0852 . i '82 '1576 .2029
0.7258 '7737 •8153 •8507 •8806
0.6672 •7206 •7680 •8094 •8450
0.6054 •6632 •7157 •7627 .8038
0.5421 •6029 .6595 -7112 . 7576
0.4787 '5411 '6005
0.4170 '4793 '5401
'6560
* 5983
•7069
.6528
0.3581 '4189 '4797 '5392 . 5962
0.3032 '3613 '4207 .4802 '5384
0.2532 '3074 '3643 •4224 -4806
0.9053 *9255 '9419 '9551 '9655
0.8751 •9002 •9210 '9379 '9516
0.8395 •8698 -8953 .9166 '9340
0'7986 .8342 •8647 •8906 '9122
0.7528 *7936 •8291 •8598 •886o
0.7029
0.6497 '6991 .7440 '7842 '8197
0'5942
'7483 •7888 •8243 •8551
0.5376 '5924 '6441 -6921 '7361
•0071 '0134
28
'9713 '9784
29
'9839
0.9302 '9460 '9585 •9684 '9761
30 31 32 33
0.9881 '9912 .9936 '9953 '9966
0.9820 •9865 .9900 .9926 '9946
0 '9737
0'9626 '9712 .9780 '9833 '9874
0.9482 '9596 '9687 -9760 '98,6
0'9301 '9448 '9567 .9663 '9739
0.9080 '9263 '9414 .9538 '9638
0.8815 •9039 '9226 -9381 '9509
0.8506 •8772 .8999 '9189 '9348
o.8x 52 •8462 •8730 .8959 .9153
0 '7757
•9800 '9850 .9887 '9916
35 36 37 38 39
0'9975
0.9960 '9971 '9979 '9985 '9989
0.9938 '9954 '9966 '9975 .9982
0.9905 '9929 '9948 '9961 '9972
0.9860 .9894 '9921 '9941 -9956
0 '9799
'9846 '9883 .9911 '9933
0'9718 .9781 '9832 .9871 .9902
0.9613 '9696 .9763 '9817 '9859
0'9480 '9587 '9675 '9745 '9802
0.9316 '9451 '9562 '9653 .9727
0'9118 '9284 '9423 '9537 .9632
40 41 42 43 44
0 '9995
0'9992 '9994 '9996 '9997 '9998
0'9987
'9997 '9998 '9998 '9999
'9991 '9993 '9995 '9997
0.9979 •9985 '9989 .9992 '9994
0'9967 '9976 .9982 .9987 '9991
0.9950 '9963 '9972 .9980 '9985
0.9926 .9944 .9958 .9969 '9977
0.9892 '9918 '9937 '9953 '9965
0.9846 '9882 .9909 .9931 '9947
0.9786 .9833 '9871 .9901 '9924
0.9708 .9770 '9820 •986o '9892
45 46 47 48 49
0 '9999
0 '9999
0'9996 '9997 '9998 '9998 '9999
0 '9973
0 '9960
0.9942
0 '9916
'9995 '9996 '9997 '9998
0'9989 '9992 '9994 '9996 '9997
0'9983
'9999 '9999
0'9998 '9998 '9999 '9999 '9999
0 '9993
'9999
'9987 '9991 '9993 '9995
-9980 '9985 '9989 '9992
'9970 '9978 '9983 .9988
'9956 '9967 '9975 '9981
'9936 '9951 '9963 .9972
0 '9999
0 '9999
0 '9998
0 '9996
0 '9994
0.9991
0'9986
0.9979
34
50
•9620
'9982 .9987 '9991 '9994
39
'6468 '6955 .7400 '7799
-8i io •842o •8689 '8921
TABLE 8. PERCENTAGE POINTS OF THE x2-DISTRIBUTION This table gives percentage points equation
g(p)
P/100
defined by the
co -
12 1-1/PN f,p)X1P-1
100 2'
e-i' dx.
If X is a variable distributed as X2 with v degrees of freedom, Phoo is the probability that X 26(P). For v > loo, ✓2X is approximately normally distributed with mean ✓2v-1 and unit variance.
V
=
0 x(P) (The above shape applies for v 3 3 only. When v < 3 the mode is at the origin.)
8o
P
99'95
99'9
99'5
99
97'5
95
90
I
0.06 3927 0.00I000 0 . 01528
0'051571 0'002001 0'02430
0'043927 0.01003 0'07172
0'031571 0'02010 0'1148
0'039821 0.05064 0'2158
0'003932 0'1026 0'3518
0'01579
0;6 04 69 418
0;0 26 10 47 0- 5844
0.4463 roo5
0.06392
0 09080
0.2070
0.2971
0.4844
0.7107
2
3 4 5 6 7 8 9
.
0.1581
0.2102
0.4117
0 '5543
0.8312
P145
1.610
2 '343
0.2994
0'3811
0'6757
0.8721
V237
P635
2'204
3'070
0 '4849
0 '5985 0.8571 1.152
0'9893 1.344 P735
1'239 1.646
1.690 2.180
2.088
2/00
2.167 2133 3'325
2.833 3'490 4'168
3.822 4'594 5.380 6.179 6.989 7.807 8.634 9'467
0/104
0.9717
xo
1'265
1 '479
2.156
2'558
II
1 .587
1 . 834
2.214
3-053 3'571 4'107 4'660
3'247 3.816 4'404 5.009 5.629
3'940 4'575 5.226 5.892 6.571
4'865 5'578 6.304 7.042 7'790
7.261 7.962 8.672 9'390 10•12
8.547 9.312 10.09 10•86 11. 65
12.86 13.72
10-85 11.59 12- 34 13.09 13.85
12.44 13.24 14'04 14'85 15.66
12
1 '934
13 14
2 . 305
2. 617
2.697
3.041
2.603 3'074 3.565 4'075
15 16
3-108 3'536 3.980 4'439 4'912
3'483 3'942 4'416 4.905 5'407
4'601 5. 142 5.697 6.265 6.844
5.229 5.812 6.408 7.015 7633
6.262 6.908 7'564 8'231 8.907
5'398 5.896
5.921 6.447
7'434 8.034 8- 643 9-260 9.886
8.260 8.897
9'591 10•28 :0;9689
17
18 19 20 21 22 23 24
6'404
6.983
6- 924 7'453
7-529 8.085
1902 10.86
12.40
70
6o
0 . 1485 0/133 12 94 5 1 2:4
0'2750 P022 3 76 59 2 1.- 8
3-000 3.828 4'671 5'527 6 '393
3.655 4.570 5'493 6.423 7'357
7.267 8.148 99 9:02 3:
8.295 9'237 io.: Ir3 8
1o•82
12-08
11.72 12.62 13'53 14'44 15.35
13.03 13.98 14'94 15 .89 16.85
14'58 15'44 16. 31 17.19 18.06
16.27 17.18 18.10
17.81 18.77 19.73
19.02
20.69
19'94
21.65
20.87 2P79 22.72
22.62 23'58
10.31 11.15 12'00
25
7'991
8.649
10.52
11.52
13.12
14'61
16'47
18.94
26
8.538
9.222
11'16
12'20
13'84
15'38
17.29
19.82
27 28 29
9.093
18•1i
20.70 21.59 22.48
ir81
1z.88
14'57
12'46 13.12
13'56
15'31 16.05
0.15 16.93
18.94
10.23
10'39 10.99
17.71
19.77
10.80 11.98 13.18
11.59 12.81 14.06
18'49
205,-60
25'51
20'07
22- 27 22 26 53-"93 14 56
-64
38
15'64
16 61
.
.
2:98r:382491 22-88
21.66 23 27 24.88
23.95
15'32
14'95 16.36 17'79 10.23 20 69
16.79
14.40
13.79 15.13 16.50 17 89 19 29
28.73 30'54
27-37 29.24 31 12 32 99 .
27-44 29-38 31.31 33.25 35-19
40 50
16.9z 23-46 30'34 37'47 44'79
17 92
20'71
22 . 16
24'43
26.51
24-67 31'74 39'04 46'52
27-99 35'53 178 4 51 3:2
29-71
32.36 4570-.4185 48.76
3520. 3 64 41'45
34'87 1 81 44 5;3
37'13 66 4 56.-82
63.35 72.92
66.40 76 19
52•28 59.90
54' 16 61.92
59.20 67.33
30
32
34 36
6o 70 8o 90 I00
9'656
9.803
.
.
.
14'26
8 3 47 5:444 53'54 61.75 70.06
65.65 74' 22
40
.
434 37196 51'74 6o 39
27-34 29.05 37-69 5456:3463
23.65 24.58
.
24'54 25.51 26.48
.
64.28
59'90 69.2!
69.13 77'93
73'29 82.36
78.56
82'51
85 . 99
87.95
92-13
95.81
.
TABLE 8. PERCENTAGE POINTS OF THE f-DISTRIBUTION This table gives percentage points x;,(P) defined by the equation
rco 100
2142
rq)
A( p)
xiv-1 e- P dx. 0
If Xis a variable distributed as x2 with v degrees of freedom, Phoo is the probability that X x,2,(P). For v > ioo, VzX is approximately normally distributed with meanzi .s/ and unit variance.
P
50
v=I
40
(The above shape applies for v at the origin.)
30
20
To
5 3.841 5'991 7'815 9.488
2 3 4
1.386 2.366 3'357
0'7083 1.833 2.946 4'045
1.074 2.408 3'665 4'878
1.642 3'219 4.642 5'989
2.706 4'605 6.251 7'779
5 6 7 8 9
4'351 5.348 6.346 7'344 8.343
5.132 6.2i 1 7.283 8'351 9'414
6.064 7.231 8.383 9'524
7.289 8.558
9.236 10.64
II
9'342 10.34
0 '4549
X,2,'(P)
2'5
I
3 only. When v < 3 the mode is
0'5
0•I
0'05
5.024 7'378 9'348 11.14
6.635 9.210 11'34 13.28
7.879 10•6o 12.84 14.86
10'83
12'12
13.82 16'27 18'47
15.2o 17'73 20.00
11.07 12'59
12.83 14'45
15 '09
20'52 22'46 24'32 26'12 27'88
22'II 24'10 26'02 27'87 29'67
12'02
14'07
16'01
18.48
11.03
13.36
15'51
17'53
10•66
12'24
14'68
16'92
19'02
20'09 21'67
16.75 18.55 20.28 21.95 23.59
10'47 1P53
11.78 12'90
13.44 14.63
15'99 17.28
18.31
20'48 21'92
23.21 24'72
25.19
29'59
31'42
19'68
2616
31'26
14'01 15'12
15•81 16'98
18'55 19'81
21.03
23.34
26.22
22'36
24'74
27'69
16.22
18.15
21.06
23.68
26.12
29.14
28.30 29.82 31.32
32.91 34'53 36.12
33'14 34'82 36.48 38.11
19.31 20'47 z1•61 22.76 23.90
22.31 23'54 24'77 25'99 27.20
25.00 26.3o 2759 28.87 30.14
27'49 28'85
32.80 34'27 35'72 3716 38.58
37'70 39'25 40'79 42.31 43'82
39'72 41.31
30.19 31•53 32.85
30.58 32.00 33'41 34' 81 36.19
28'41
27'10
25.04 26.17 27.30 28'43 29.55
29'62 30'81 32'01 33'20
31.41 32.67 33'92 35'17 36.42
34'17 35'48 36.78 38.08 39'36
37'57 38.93 40'29 41'64 42 .98
40.00 4P40 42.80 44' 18 45'56
45'31 46.80 48'27 49'73 51.18
47'50 49'01 50.51 52.00 53'48
29
28.17 29.25 30.32 31.39 32.46
30.68 31•79 32.91 34'03 35'14
34'38 35'56 36.74 37'92 39'09
3765 38.89 40.11 41'34 42.56
40.65 41'92 43'19 44'46 45'72
44'31 45'64 46 .96 48.28 49'59
46'93 48.29 49'64 50'99 52. 34
52.62 54'0 5 55'48
27'34 28'34
26.14 27.18 28.21 29.25 30.28
56-89 58'30
54'95 56.41 57.86 59'30 60.73
30 32 34 36 38
29. 34 31'34 33'34 35'34 37'34
31'32 33'38 35'44 37'50 39'56
33'53 35'66 37'80 39'92 42.05
36.25 38'47 40.68 42.88 45.08
40'26 42'58 44'90 4721 49'51
43'77 46'19 48.60 51'00 53.38
46'98 49'48 51.97 54'44 56.90
50'89 53'49 56.06 58.6z 61•16
53'67 56'33 58.96 61.58 64.18
5910 62.49 65.25 67.99 70'70
62.16 65•oo 67.8o 70'59 73'35
40 50 6o
39.34 49'33 59.33 69.33 79.33
41.62 51'89 62.13 72.36 82.57
44'16 54'72 65.23 75.69 86.,2
47' 27 58.16 68.97 79'71 90'41
51.81 63.17 74'40 85'53 96.58
55'76 67.5o 79.08 90.53 I01.9
59'34 71.42 83.3o 95.02 106.6
63.69 76.15 88.38 100'4 rI2•3
66.77 79'49 91'95 104.2 116.3
73'40 86.66 99.61 112.3 124.8
76'09 89'56 102'7
89.33 99.33
92.76 102.9
96.52 106.9
124.3
118•1 129.6
124'1 135.8
128.3 140.2
149'4
12
11'34
12'58
13 14
12.34 13.34
13'64 14.69
15
14'34 15'34
15'73
1732
16.78 17.82 18.87 19.91
18.42 19'51 20.60
20'95 21.99
22.77 23.86 24'94 26'02
16 17 18 19
16'34 17'34 18'34
20
19.34
21
20'34
22 23
21 '34
24
23'34
25 26
24'34 25'34
27 28
70
8o 90
zoo
22 '34
26 '34
23.03 24'07 25•11
21'69
9'803
111.7
107.6 118.5
41
16.81
1372
45'97
115.6 128.3 140.8 153'2
TABLE 9. THE t-DISTRIBUTION FUNCTION The function tabulated is
F„(t)
ray +1-) f
=
,
VV 7T
- co k I m
ds svoi(v+i) .
F„(t) is the probability that a random variable, distributed as t with v degrees of freedom, will be less than or equal to t. When t < o use F„(t) = i F„( t), the t distribution being symmetric about zero. The limiting distribution of t as v tends to infinity is the normal distribution with zero mean and unit variance (see Table 4). When v is large interpolation in v should be harmonic. -
V
=
I
-
V =
V =
Omitted entries to the right of tabulated values are (to four decimal places).
V =
2
t = o 0 0.5000 •1 '5317
t = 4•0 4.2
0.9220 .9256
'2
'5628
.9289 '9319 '9346
•5700
-2
.5928 •621
4'4 4'6 4.8
'2
.3 '4
•3 '4
-6038 •6361
'3 '4
0.5
0'6476
•6
•6720
.7
'6944
•8 '9
•7148 '7333
5.0 5'5 6.0 6.5 7.0
0.9372 '9428 '9474 '9514 '9548
0.5 -6 '7 -8 '9
0.6667 .6953 •7218 '7462 • 684
I•0
0.7500
I.0
•7651
7.5 8.0
0.9578
I
'2
'7789
8.5
•9627
'2
'3
'7913 •8026
9.0 9.5
.9648 .9666
1.5 •6 •7 •8 '9
0.8128
10. 0 I0•5
-8386 '8458
II-5 I2•0
2•0
0.8524 •,_, R585
12.5
'2
•3 '4 2'5
0.8789
•6 •7 -8 .9
•8831 -8871
t = 0.0
0.5000 '5353
2
v= t = 0.0
3
V
=
3
0•5000
t = 4.0
.5367
.1
0.9860 .9869
'2
'5729
'2
'9877
.9760
•3 '4
•6081 •6420
•3 '4
'9891
4'5 '6 '7 -8 '9
0 '9770
0.5
0. 6743
4'5
'9779
-6
.7046
.6
'9788 '9804
.7 •8 •9
-7328 .7589 -7828
'7 .8 '9
5'0
0'9811
I.0
'2
•9818 .9825
•I '2
0 '8045 - 8242 - 8419
5•0 •I •2
0.9923
I
'3 '4
0.7887 8070 -8235 -8384 •8518
•3 '4
.9831
'9837
•3 '4
.8578 •872o
'3 '4
'9934 '9938
0.9683 •9698 .9711 '9724 '9735
r5 •6 '7 .8 .9
0.8638 .8746 - 8844 .8932 .9011
5'5
0.9842 •9848 '9853 .9858 •9862
/.5 -6 •7 -8 •9
0.8847 •8960
5.5 .6 '7 .8 '9
0'9941
0'9746 .9756
21)
0'9082
6.0
0.9303 '9367
'8642
13.5
'9765
'2
'9206
•I '2
'9875
2'0 'I '2
0 '9954
'9147
0.9867 -9871
6.0
13•0
'9424
.8695
14.0
'9773
14'5
'9781
'9308
'3 '4
'9879 '9882
'3 '4
'9475 .9521
-9960
'8743
'3 '4
•2 •3 '4
. 9961
15
0.9788
2.5
6.5
0'9561
•6 .7 -8 •9
.9598 .9631
- 8943
.6 '7 .8 '9
-9687
6.5 -6 -7 -8 '9
0.9963
•9801 •9813 -9823 .9833
0.9886 -9889
2'5
16 17 i8 19
3•0 •I '2
0. 8976 •9007 '9036
20 21 22
0'9841
3•0
'I
0.9712 '9734
7.0 •I
-3 '4
•9063 -9089
23
•9862
0.9970 .9971 -9972 '9973
24
3.5 •6 .7 -8 •9
0'9114
25
•9138 -916o •918z •9201
30
4'0
0'9220
'4
•8222 -8307
-8908
•9604
t = 4*0 •I
-
•6 '7 •8 •9
'9259
0.9352 -9392
•6 .7 -8
'9429 -9463 '9494
0 '9714
.9727 '9739 '9750
-9796
-9892 .9895
•9062 •9152 .9232
-9661
1
•9884
0.9898 •9903 .9909 . 9914
'9919 -9927 '9931
'9944 '9946 '9949
'9951 -9956 -9958
.9965 -9966
.9967
.9
-9898
7•0 •I '2
.9753
•2
'9867
'3 '4
0.9901 '9904 .9906 .9909 •9911
3•0
'3 '4
0.9523 '9549 '9573 '9596 •9617
'3 '4
'9771 '9788
'3 '4
3'5 •6 .7 -8 '9
0.9636 - 9654 •9670 •9686 •97ot
7.5 -6 -7 •8 •9
0.9913 •9916 •9918 •9920 .9922
3.5 -6 '7 .8 .9
0.9803 •9816 -9829 '9840 •9850
7'5 .6 '7 -8 '9
0 '9975
45
0.9873 '9894 '9909 •9920 '9929
50
0'9936
4 '0 0.9714
8.0
0.9924
4.0
0.9860
8.0
0.9980
35
40
'9849 '9855
'2
42
2
'9969
'9974
.9976 '9977 -9978 '9979
TABLE 9. THE t-DISTRIBUTION FUNCTION 4
5
6
7
8
9
xo
II
12
13
14
t = 0.0
0.5000
0•50o0
0.5000
0.500o
0.5000
0.5000
0.5000
0.500o
0.500o
0.500o
0.5000
'I •2
'5374 '5744
'3 '4
•6104 . 6452
'5379 '5753 •6119 '6472
.5382 .5760 •6129 .6485
.5384 '5764 •6136 . 6495
.5386 .5768 •6141 •6502
'5387 '5770 •6145 •6508
.5388 '5773 •6148 •6512
•5389 '5774 •6151 •6516
'5390 '5776 •6153 •6519
'5391 '5777 •6155 •6522
'5391 '5778 .6157 •6524
0.5 •6 '7 .8
0•6783
0.6809
0.6826
•7096 .7387 .7657
.7127
•7148
'9
•7905
'7424 •7700 '7953
'7449 '7729 .7986
0•6838 •7163 '7467 '7750 •8oio
0•6847 '7174 •7481 .7766 -8028
0•6855 -7183 '7492 '7778 •8042
0.6861 .7191 •7501 .7788 •8054
0•6865 '7197 •7508 '7797 •8063
0•6869 •7202 •7514 •7804 •8o71
0•6873 •7206 .7519 •7810 •8078
0•6876 •7210 •7523 •7815 •8083
ro •x
o•813o •8335 •8518 •8683 •8829
0•8184 •8393 •8581 .8748 .8898
0.8220 - 8433 •8623 •8793 .8945
0•8247 •8461 •8654 •8826 '8979
0.8267 •8483 •8678 •8851 •9005
0•8283 •85o1 •8696 •8870 •9025
0•8296 '8514 •8711 •8886 •9041
0.8306 .8526 •8723 •8899 -9055
0•8315 •8535 •8734 •8910 .9066
0•8322 .8544 '8742 •8919 .9075
0.8329 .8551 •875o .8927 -9084
I.5 •6
0.8960
0.9030
•9076
•9148
0'9079 •9196
'7 .8 '9
•9178 •9269 '9349
'925 1 '9341
0.9140 .9259 •9362 0 5 532 :9 94
0.9161 -9280 .9383 '9473 '9551
0.9177 '9297 •9400 '9490 •9567
0.9191 .9310 '9414 •9503 -958o
0.9203 '9322 156 1 5529 994 .9
9421
'9390 9469
0.9114 •9232 '9335 9426 .9 04
0.9212 '9332 '9435 '9525 •9601
0.9221 '9340 '9444 '9533 •9609
2'0
0'9419
'I '2
'9482 '9537
'3 '4
'9585 •9628
0.9490 '9551 •9605 •9651 '9692
0.9538 '9598 •9649 •9694 '9734
0.9572 -9631 •9681 -9725 •9763
0.9597 •9655 .9705 '9748 •9784
0.9617 •9674 '9723 '9765 •9801
0.9633 '9690 '9738 '9779 •9813
0.9646 .9702 '9750 '9790 •9824
0.9657 .9712 '9759 '9799 •9832
0.9666 '9721 .9768 .9807 •9840
0•9674 .9728 '9774 .9813 -9846
2'5 .6
0.9666
0.9728 '9759
'9730
•9786 •9810 •9831
0•9767 '9797 •9822 '9844 '9863
0'9795
•9700
'9823 •9847 -9867 •9885
0.9815 '9842 -9865 •9884 .9901
0.9831 -9856 •9878 .9896 '9912
0.9843 •9868 •9888 •9906 -9921
0.9852 .9877 •9897 '9914 -9928
0.9860 .9884 •9903 '9920 '9933
0•9867 .9890 -9909 '9925 '9938
0.9873 -9895 '9914 '9929 '9942
0.985o •9866 -9880 '9893 •9904
0.9880 .9894 '9907 .9918 -9928
0.9900 •9913 .9925 '9934 '9943
0.9915 '9927 '9937 '9946 '9953
0.9925 '9936 '9946 '9954 '9961
0.9933 '9944 '9953 -996o '9966
0.9940 '9949 '9958 .9965 '9970
0.9945 '9954 .9962 .9968 '9974
0.9949 '9958 .9965 '9971 '9976
0.9952 -9961 '9968 '9974 '9978
0.9914 '9922 '9930 '9937 '9943
0.9936 '9943 '9950 '9955 •9960
0'9950
0.9960 •9965 '9970 '9974 '9977
0.9966 '9971 '9975 '9979 •9982
0.9971 '9976 '9979 •9983 '9985
0'9975
'9956 .9962 .9966 '9971
'9979 •9982 •9985 -9988
0.9978 '9982 '9985 •9987 -9989
0.998o .9984 .9987 .9989 '9991
0.9982 .9986 '9988 '9990 '9992
0.9948 '9953 '9958 •9961 '9965
0.9964 .9968 '9972 '9975 '9977
0.9974 '9977 .9980 -9982 '9984
0•9980 •9983 '9985 •9987 •9989
0.9984 .9987 -9988 '9990 '9991
0'9987
0'9990
0.9991
0'9992
•9989 '9991 '9992 '9993
'9991 '9993 '9994 '9995
'9993 '9994 '9995 '9996
'9994 '9995 '9996 '9996
0.9993 '9995 '9996 '9996 '9997
0.9979 '9982 '9983 .9985 -9986
0.9986 •9988 '9989 '9990 '9991
0.9990 '9991 '9992 '9993 '9994
0.9993 '9994 '9994 '9995 '9996
0.9994 '9995 '9996 '9996 '9997
0.9995 '9996 '9997 '9997 '9998
0.9996 '9997 '9997 '9998 '9998
0 '9997
0 '9998
'9998 '9998 '9998 '9999
'9998 '9998 '9999 '9999
0.9988
0.9992
0.9995
0 '9996
0'9997
0.9998
0 '9998
0.9999
0 '9999
v=
'2 '3 '4
'7 .8 '9 3'0 'I '2 '3 '4 3.5 •6
'9756 '9779 0.980o •9819
'9835 •9850 '9864 0.9876
'9
•9886 •9896 '9904 •9912
4'0
0 '9919
'I '2 '3 '4
•9926 '9932
'7 .8
'9937 '9942
4.5 .6
0.9946
'7 .8 '9
'9953 '9957 .9960
0.9968 '9971 '9973 '9976 '9978
5'0
0.9963
0 '9979
'9950
.9300
43
TABLE 9. THE t-DISTRIBUTION FUNCTION v=
15
16
17
i8
19
20
24
30
40
6o
c0
t = 0.0 •1 .2 •3 '4
0.5000 .5392 *5779 •6159 '6526
0'5000
0'5000
0'5000
0'5000
0'5000
0'5000
0'5000
0'5000
0.5000
.5392
'5780 •6160 •6528
*5392 '5781 •6161 •6529
'5393 '5781 •6162 .6531
'5393 '5782 •6163 . 6532
'5393 '5782 •6164 *6533
'5394 '5784 •6166 '6537
'5395 '5786 •6169 '6540
'5396 '5788 -6171 '6544
'5397 '5789 •6174 '6547
0.5000 '5398 '5793 '6179 '6554
0.5 •6 '7 •8 '9
0.6878 •7213 '7527 •7819 •8088
0.6881 •7215 '7530 •7823 •8093
0.6883 •7218 '7533 •7826 •8097
0.6884 •722o '7536 •7829 -81oo
0.6886 •7222 '7538 . 7832 -8103
0.6887 •7224 '7540 . 7834 •8xo6
0.6892 •7229 '7547 '7842 •8115
0.6896 '7235 '7553 •7850 •8124
0.6901 '7241 '7560 •7858 •8132
0.6905 '7246 . 7567 •7866 '8141
0.6915 '7257 .7580 •7881 '8159
1.0
0.8339 •8562 '8762 '8940 '9097
0.8343 •8567 '8767 '8945 '9103
0'8347 .8571 -8772 *8950 '9107
0 '8351
0 '8354
0 '8364
•8578 '8779 *8958 •9116
•8589 .8791 '8970 •9128
0.8383 •8610 •8814 '8995 •9154
0 '8413
.8575 '8776 *8954 •9112
0.8373 •8600 •8802 '8982 •9141
0 '8393
'3 '4
0'8334 •8557 •8756 '8934 '9091
•8621 •8826 '9007 •9167
'8643 •8849 '9032 -9192
1.5
0'9228
0'9235
0'9240
0'9245
0'0250
0'9254
0'9267
0'9280
.6 '7 .8 '9
'9348 '9451 '9540 '9616
'9354 '9458 '9546 •9622
'9360 '9463 '9552 •9627
'9365 .9468 '9557 •9632
'9370 '9473 '9561 •9636
'9374 '9477 '9565 •9640
'9387 '9490 '9578 •9652
'9400 '9503 '9590 •9665
0.9293 '9413 .9516 •9603 •9677
0.9306 .9426 '9528 •9616 •9689
0.9332 '9452 '9554 -9641 .9713
2'0
0.9680 '9735
0.9691 '9745 '9790 '9828 '9859
0.9696 '9750 '9794 .9832 '9863
0.9700 '9753 '9798 .9835 •9866
0 '9704
0.9715 '9768 -9812 '9848 •9877
0'9727 '9779 •9822 '9857 •9886
0.9738 '9790 •9832 '9866 '9894
0.9750 •9800 •9842 '9875 '9902
0.9772 •9821 •9861 '9893 •9918
•I •z
'2
'9781
'3 '4
'981 9 '985 1
0.9686 '9740 .9786 '9824 '9855
2.5 '6 '7 .8 '9
0.9877 '9900 '9918 '9933 '9945
0.9882 '9903 '9921 '9936 '9948
0.9885 '9907 '9924 '9938 *9950
0.9888 '9910 '9927 .9941 '9952
0.9891 '9912 '9929 '9943 '9954
0'9894 '9914 '9931 '9945 '9956
0'9902
0'9909
'9921 '9937 '9950 *9961
'9928 '9944 '9956 '9965
0'9917 '9935 '9949 '9961 '9970
o'9924 '9941 '9955 •9966 '9974
0'9938 *9953 '9965 '9974 '9981
3'0
0.9955 .9963 '9970 .9976 '9980
0 '9958
0.9960 .9967 '9974 '9979 '9983
0.9962 -9969 '9975 -9980 '9984
0.9963 .9971 '9976 -9981 '9985
0 '9965
0 '9969
0.9973
0'9977
•9972 '9978 •9982 '9986
.9976 '9981 '9985 *9988
.9979 '9984 .9988 '9990
.9982 '9987 .9990 '9992
0.9980 .9985 *9989 .9992 '9994
0.9987 .9990 '9993 .9995 '9997
3'5 '6 '7 .8 '9
0 '9984
0 '9985
0.9987 '9990 '9992 '9993 '9995
0.9988 '9990 '9992 '9994 '9995
0.9989 '9991 '9993 '9994 '9996
0.9991 '9993 '9994 '9996 '9997
0 '9994
'9988 '9990 .9992 '9994
0.9986 '9989 '9991 '9993 '9994
0 '9993
.9987 '9989 '9991 '9993
'9994 '9996 '9997 '9997
'9996 .9997 '9998 '9998
0.9996 '9997 '9998 '9998 '9999
0.9998 '9998 '9999 '9999
4'0 'I
0 '9994
0 '9995
0 '9995
0.9999
'9998 '9998 '9999 '9999
'9999 '9999 '9999 '9999
'9999 '9999 '9999
'9999
'3 '4
0.9996 '9997 '9998 '9998 '9999
0 '9999
'9996 '9997 '9998 '9998
0.9996 '9997 '9998 '9998 '9998
0 '9998
'9996 '9997 '9997 '9998
0'9996 '9997 *9997 '9998 '9998
0 '9997
'9995 '9996 '9997 '9997
4,5
0 '9998
0'9998
0'9998
0 '9999
0 '9999
0 '9999
0 '9999
•1
•I
'2
•3 '4
'2
.9966 *9972 .9977 '9982
44
'9757 •9801 '9838 •9869
TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION This table gives percentage points tv(P) defined by the equation
P too
rav + - vw, r(#y)
tv(p)(1
dt t 2I p)i(P +1) •
Let Xi and Xz be independent random variables having a normal distribution with zero mean and unit variance and a X'-distribution with v degrees of freedom respectively; then t = XJVX2/P has Student's t-distribution with v degrees of freedom, and the probability that t t„ (P)is P/Ioo. The lower percentage points are given by symmetry as - t„ (P), and the probability that Iti t,,(P) is 2Phoo.
P (To)
30
40
25
20
V = I
0.3249
0.
7265
I•0000
1 '3764
2 3 4
0'2887
0'6172
0'2767 0'2707
0'5844 0'5686
0.8165 0. 7649 0.7407
-o607 0.9785 09410
5 6 7 8 9
The limiting distribution of t as v tends to infinity is the normal distribution with zero mean and unit variance. When v is large interpolation in v should be harmonic.
15
to
5%
2.5 31.82 6.965 4'541 3'747
r 963 I .386
3.078
I'250 1'190
1.638 1.533
6.314 2.920 2.353 2.132 2.015 1'943 1.895 1.860 1.833
2'571
2'262
3.365 3'143 2.998 2.896 2.821
1.812
2. 228
2.764
3.169
2'201 2'179 2'160 2'145
2'718 2'681 2'650 2'624
3'106
1 . 886
0.2672
0'5594
0/267
0. 2648
0- 5534 0'5491
0.2619 o- 26io
0'5459 0'5435
0.9195 0.9057 0.8960 0.8889 0.8834
1.156 1' 134
0'2632
0.7176 0.711I 0.7064 0.7027
1. 108 1•100
1'476 r 440 1'415 1 '397 1.383
0.2602 0.2596
0.5415 0'5399
0'6998 0'6974
0.8791 0'8755
r 093 1. 088
1.372 F363
0'2590 0. 2586 0'2582
0.5386
13 14
0.5375
0.6955 0. 6938 0'6924
0.8726 0'8702 0. 8681
I'083 I' 079 1'076
1'356 1'350 1'345
1'796 1'782 I'771 1'761
15
0.2579
0 '5357
0. 6912 0.69o1 0'6892 0.6884 0. 6876
0.8662 0.8647 0.8633 0.8620 o• 8610
r 074 .071 1069 1.067 r•o66
I • 341 1.337 1'333 1'330 1.328
1'753 1/46 1' 740 1'734 x729
2.131
0'2576
2. 120 2' I I0 2' IOI 2'093
0.6870 0.6864
o.8600 0.8591
0'6858
0. 8583 0'8575
I'064 1'063 1'06' I .06o
I ' 325 1 . 323 1'321 1'319
I ' 725 I . 721 I'717 1'714
0.8569
r 059
1.318
1.711 1'708 P 706
to II
12
0'5366
0.5
12.71 4.303 3.182 2.776
'I19
2'447 2.365 2.306
0•X
63.66 318.3 636.6 31.6o 9.925 22'33 12.92 5.841 10.21 8.610 7.173 4'604 4'032 3.707 3'499 3'355 3'250
5'893 5.208 4'785 4'501 4'297
2. 947 2.921 2.898
3'733 3.686 3.646
2'878
3'610
2.861
3.579
4'073 4.0 x 5 3.965 3.922 3.883
2.086
2.528
2.845
2. 080 2'074
2'518 2'508
2.o69 2.064
2.500 2.492
2'831 2'819 2'807
3.552 3.527 3- 505 3.485 3'467
3.850 3.819 3-792 3.768 3'745
2. 060 2. 056 2.052 2'048 2-045
2.485 2.479
3'450 3'435 3.421 3'408 3.396
3.725 3.707 3.690 3'674 3.659
2'042 2'037 2.032 2. 028 2. 024
2.457 2.449 2441 2434 2429
2.750 2. 738 2'728 2'719
3'385 3. 365 3'348 3'333 3.319
3.646
3'551 3'496 3. 460 3'373 3.291
0.2571 0.2569
20 21 22 23
0'2567 0'2566 0'2564 0'2563
0'5329 0'5325 0'5321 0.5317
24
0.2562
0.5314
0.6853 0.6848
25 26 27 28
0. 2561 0. 2560 0' 2559 0.2558 0 ' 2557
0.5312 0.5309 0.5306 0.5304 0.5302
0'6844
0'8562
1. 058
1'316
0.6840 0.6837 0'6834 0.6830
0.8557 0' 8551 0.8546 0.8542
r 058 r 057 i• 056
P315 1 '314 1.313
1.055
1.31
1.699
30
0- 2556
0.5300
0.6828
0.8538
r 055
1.310
32
0'2555
0'5297
0'6822
0'8530
0.2553
0.5294
0.68,8
0.8523
36 38
0'2552 0'2551
0'5291 0'5288
0'6814 0'6810
0'8517 0'8512
1.309 1.307 1'306 1'304
I '697 r 694
34
I'054 I'052 1'052 1'051
1.688 1.686
40 50 6o
0.2550 0- 2547 0.2545
0.5286 0.5278 0.5272
0.6807 0.6794 0.6786
2'403 2'390
2/04 2'678 2•660
0. 6765
1.684 1676 P671 1658
2423
0'5258
1. 303 r 299 1.296 1.2.89
2'009 2'000
0'2539
r 050 r 047 1. 045 1-041
2.021
X20
0.8507 0 ' 8489 0.8477 0. 8446
P980
2.358
2.617
3-307 3.261 3.232 3.160
op
0.2533
0.5244
o•6745
o•8416
i•o36
1•282
r645
1.960
2'326
2'576
3.090
45
1-69.
4.587 4'437 4.318
2. 602 2. 583 2. 567 2'552 2'539
0 ' 2573
29
5'041 4'781
3.055 3.012 2 '977
17 18 19
I.701
6.869 5'959 5'408
4'144 4'025 3'930 3.852 3.787
0- 5350 0 '5344 0.5338 0.5333
1'703
0'05
2'473 2'467 2.462
v 797 2.787 2/79 2. 771 2'763 2.756
2'71[2
4'221 4' 140
3.622 3.6ox 3.582 3.566
TABLE 11(a). 2.5 PER CENT POINTS OF BEHRENS' DISTRIBUTION 0 vz
=
o°
17.36 8'344 7.123 6.771 6.636 6.577
15.56 6.34o 4.960 4'469 4.218 4'074
I I•04
9'065
6'546
3'980
2'365
11.03
9.060 9.055 9.052
6.529 6.511 6-5o1
3'917 3.835 3.786
2.306
9•046
6'485
3'685
2'228 2'179 2'064
9.040
6.473
3.615
1.960
4'563 3'645 3.312 3'145 3'045 2 '979 2 '933 2 '873 2 '835 2•750 2.679
4'414 3.36o 2 '978 2.784 2.667 2.589 2 '534 2460 2 '414
4'303 3.182 2.776 2.571 2.447
3.191 2.816 2.626 2.513 2.437
17.36 11.54
3 4 5 6 7 8
12/ 1 12'71 12'71
I2•29 12'28 12•28
1 I•I x
12.71
12.28 12.28
2
12'71 12/1 12'71 12'71 12/1 12'71
= 2
4'303 4'303 4'303 4'303 4.303 4'303
4.303
I0
4.303
12
4.303
24
4.303 4'303
00
v, = 3 4 5 6 7 8
12'28
12.28
11'03
12'28 12•28 12'28
11.03 I I•03 I I•03
4.190
3'882
4'187 4.186 4.184
3'867 3'857 3'846 3'840 3.828 3.818
4'624 3'903 3'653 3'535 3'468 3'427 3'400 3.366 3'346 3.306 3.276
3.225 3.088 3.026
3.244 3.012 2.897
3.225 2.913 2.756
4'414 4'240 4'205 4'194
4.182 4.180 4.178
4'563 4'100 3'964 3'909
0
go° 12.71 4'303 3.182 2.776 2.571 2 '447
2'305 2•206
2'365 2'306 2'228 2'179 2'064 I•060
3.182
3.191
3'182 3'182 3.182 3.182 3.182 3.182 3.182 3.182 3.182
3'149 3.134 3.127 3.122 3'120 3.117 3.115 3.111 3.1o8
2'992 2'972 2'958
2'831 2'787 2'758
2'663 2'600 V556
2.942 2.933 2.913 2.898
2.719 v696 2.644 2.603
2.498 2.462 2.378 2304
2.312 2.267 2.162 2.067
2/76
2.776 2.776
2.772 2.754 2/46
2 '779 2.717 2.682
2.787 2.675 2.610
2.779 2.625 2532
2.772 2.582 2 '468
2/76 2.571 2 '447
2/76 2/76
2'741 2'738
24
2.776 2.776 2.776
2'365 2'306 2'228
CO
2'776
IO 12 24
00
v1 = 4 5 6 7 8
=4
I•o6 11.04 11•04
17.97 10.14 9.303 9.136 9.090 9.073
15.56 12.41
3 4 5 6 7 8
V2
75
1211
00
=3
6o°
12.71
24
V2
45°
2
IO
=
30°
P1 = I
12
V2
150
IO 12
2'384
2'660
2'567
2•471
2'392
2'734 2.732 2.727
2'646 2.628 2.617 2'594
2.428 2'371 2'335 2.252
2.339 2•268
2•723
2'576
2.537 2.498 2.475 2.421 2'377
If t1and t2 are two independent random variables distributed as t with v1, 1/2 degrees of freedom respectively, the random variable d = t1sin 0 t2 cos 0 has Behrens' distribution with parameters VI, V2 and 0. The function tabulated in Table II is dp = dP(vi, v2 0) such that
Pi
2'178
2'223 2'118 2•024
3.182 2.776 2.571 2.447 2'365 V306 2'228 2 '179 2 '064
1.960
2 '179 2 ' 064
1.96o
v2. When v1 < V2 use the result that
dp(vi , 1/2, 0) = dP(P2,
90° - 0)•
-
Behrens' distribution is symmetric about zero, so Pr (1d1 > dP) = zP/Ioo.
,
Pr (d > dp) = Phoo
Notice that in this table 0 is measured in degrees rather than radians.
for P = 2.5 and o•5 and a range of values of v1and v2 with
46
TABLE 11(a). 2.5 PER CENT POINTS OF BEHRENS' DISTRIBUTION 0 V2 =
5
=
7
v2 = 8
V2 = 10
V2=12
1/2 = 24
1/2 = CO
75°
90°
2.564
2'562
2'565
2'562
2'564
2'571
2 '554
2.470 2.410 2.367 2•310 2.274
2.449 2. 374 2.320
24
2.571 2.571 2.571
2.549 2 '546 2.541 2 '539 2.533
2'228 2'179 2'064
2'571
2'529
2.191 2'118
2'248 2'203 2'098
00
2.500 2.458 2.428 2.390 2.366 y312 2.266
2.447
2-571
2.527 2.505 2.490 2 '471 2.460 2.436 2.416
2•004
P960
2.435 2'413 2.398 2.379 2.367
2.436 2-394 2.364 2.325 2.301
2.435 2.375 2.331 2.274 2.239
2 '440 2'364 2'310 2'238 2'193
2 '447 2'365 2'306 2'228 2.179
2'342 2'322
2.247 2•201
2.156
2•088 P993
2.064 1.960
2'352 2'322 2'283
2'352 2'309 2'252
2'358 2.304 2'232 2'187 2'082
2'365 V306 2.228 2'179 2'064
P987
1.960
2. 300 2'228 2.183
2.306 2'228 2'179
2.077 1.982
2.064 P960
2'223 2'178 2'072
2179
1.977
1.960
2.571
2'365
2.306
v1 = 6
2 '447
2.440
7 8
2 '447
2 '434
2.447
xo
2 '447
12 24
2.447 2.447
00
2 '447
2.431 2.426 2.423 2.418 2 '413
7 8
2.365
2.358
2'352
2.365
2. 354
2.337
ICI 12 24 CO
2'365 2'365 2'365 2'365
2•350
2'317
2. 347
2.306
2.259
2.216
2'341 2'336
2'280 2'259
2'205 2•158
2•133 2'060
1,1 = 8 I0 12 24
2'306 2'306 2•306 2'306
2.300 2.295 2'292 2'286
2'294 2'274 2'262 2'236
2'292 2'254 2'230 2.175
2'294 2'237 2'201 2'118
00
2.306
2.281
2.215
2.128
2.044
V1 = 10 12 24 CO
2'228 2'228 2'228 V228
2'223 2.220 2'214 V209
2'217 2'205 2•178 2'157
2'215 2'191 2'136 2'089
2'217 2'181 V098 2'024
= 12
2'179
2'175
2'169
2'167
2'179
y179
2.168
2.142
2.112
2.179
2.163
2'120
2'064
2'169 2'085 2.01 1
2'175
24 CO
2.069 1.973
2.064 1.960
V1 = 24 00
2'064 2'064
2'062 2•056
2•058 2'035
2'056
V058
2'062
2'064
y009
1.983
P966
1•96o
vl = 00
1.960
1•96o
1.960
1'960
1.96o
1.96o
i.96o
V1
=
2'064
Pi
Pi
-
j.
V, v2
2'228
-
0 = tan-1 ( s -- - i s 2 )' 0 being 07
4 measured in degrees. Define r = I - + s2 and d =
2.082
If d > dp the confidence level associated with it 2 is less than P per cent, and if d < dp the confidence level associated with ft 2 is less than P per cent. (See H. Cramer, Mathematical Methods of Statistics, Princeton University Press (1946), Princeton, N.J., pp. 520-523.) Also, the values of Pi -#2 such that 1(Yi - - (#1-P2)1 < rdp provide a Ioo 2P per cent Bayesian credibility interval for #2.
This distribution arises in investigating the difference between the means #1, P2 of two normal distributions without assuming, as does the t-statistic, that the variances are equal. Let o i, p72 be the means and 4., 4 the variances of two independent samples of sizes n1, n2 from normal distributions, let v1= n1-1, v2 = n2 - 1 and
6o°
45°
2.571
5 6 7 8
12
v2
30°
2 '571
v1 =
xo
v2 = 6
15.
o°
I. -072 .
r
47
pi
-
TABLE 11(b). 0-5 PER CENT POINTS OF BEHRENS' DISTRIBUTION v2 = I
vl = I
2
3 4 5 6 7
8 io
12 24 c0 V2 = 2
V1 = 2
3 4 5 6 7 8 10
12
24
V2
=3
P2 = 4
o°
x5
3o°
450
6o°
75.
go°
63.66 63.66 63.66 63'66 63.66 63.66 63.66 63.66 63.66 63.66 63.66 63.66
77.96 61.61 61 '49 61'49 61 '49 61'49 61 '49 61 '49 61 '49 61 '49 61'49 61'49
86.96 55.62 55'15 55'14 55'14 55'14 55'13 55'13 55'13 55'13 55'13 55'13
90.02 46.18 45' 08 45'04 45.03 45.03 45.03 45.03 45'03 45.03 45.02 45.02
86.96 34'18 32.04 31.89 31.87 31.86 31.86 31.86 31.86 31.86 31.85 31.85
7796 21'11 17'28 16'70 16'59 16'57 16.56 16.55 16.55 16.54 16'54 16.53
63.66 9.925 5 .841 4'604 4. 032 3.707 3'499 3'355 3.169 3.055 2.797 2 '576
10'01
10'14 8'905 8.717 8.676 8.663 8.657 8.653 8.649 8. 647 8. 642 8.638
10'19 7'937 7'428 7'270 7'210 7'183 7'169 7155 7.148 7'134 7'124
10'14 6.966 6.082 5.716 5'535 5'434 5'373 5.308 5'275 5.223 5'194
10'0!
9'640 9'609 9'604 9'602 9.601 9'600 9.600 9'599 9'598 9'597
6.187 5 .049 4'5 28 4'235 4'049 3'921 3'759 3.660 3'446 3.276
9.925 5'841 4'604 4'032 3.707 3'499 3'355 3.169 3-055 2.797 2.576
5'841 5'841
5'754 5'694
5'640 5'349
5.841
5.681
5.256
5.841 5'841
5.676 5'673
5.218 5'199
5'640 4'720 4'316 4'095 3'958 3.866 3'753 3.686 3'548 3'449
5'754 4'601 4'076 3.782 3'595, 3'467 3'302 3'201 2 '977 2.789
5'841 4.604 4'032 3.707 3'499 3'355 3.169 3.055 2.797 2.576
4'400 3'983 3'755 3.613 3'517 3'395 3'323 3.167 3'045
4'525
4'604 4'032 3.707 3'499 3'355 3.169 3.055 2.797 2.576
9.925 9'925 9'925 9'925 9.925 9.925 9.925 9.925 9'925 9'925 9'925
.
Pi = 3 4 5 6 7 8 xo
5.841
5.671
5.189
5.841
1205 g.
5 'E1 1
5'669 5.668 5.666 5 .664
5'177 5.171 5.159 5.150
5'598 4'986 4'739 4'617 4'548 4'506 4'459 4'434 4'389 4'361
v1 = 4
4'604 4'604 4'604 4'604
4'525 4:505 4'497 4'493 4'490 4.487 4'486 4'482 4'479
4'400 4.283 4.229 4'201 4'184 4.165 4'155 4'135 4'i2i
4'350 4'084 3'945 3.862 3.809 3'745 3.709 3. 64° 3'592
5 6 7 8 I0
12 24
4. 604 4.604 4.604 4'604
4'604
If t1and t2 are two independent random variables distributed as t with v1, v2 degrees of freedom respectively, the random variable d = t1sin 0- t2 cos 0 has Behrens' distribution with parameters V1, V2 and 0. The function tabulated in Table it is dp = dP(vi, v2, 0) such that Pr (d
Pi
3'993
3-694 3'504 3'373 3.206 3'104 2.876 2•685
P2. When v, < V2 use the result that
0). dp(Vi, v2, 0) = dp(v2, V1, 90° Behrens' distribution is symmetric about zero, so Pr (1d1
> dp) = P/ioo
> dp) = 213 1 ioo.
Notice that in this table 0 is measured in degrees rather than radians.
for P = 2.5 and 0.5 and a range of values of vi and v2 with
48
TABLE 11(b). 0.5 PER CENT POINTS OF BEHRENS' DISTRIBUTION 0 V2 = 5
vl
= 5
6 7 8 10 12 24 00
=6 7 8 10 12
v2 = 6
24
00 V2 =7
v, = 7 8 xo 12
24 c0 v2 = 8
v1 = 8 10 12
24 00
o°
xs°
30°
450
6o°
750
900
4.032 4.032 4'032 4.032 4.032 4.032 4.032 4'032
3'968 3'957 3'952 3'949 3'945 3'943 3.938 3'934
3.856 3'794 3'760 3'739 3'715 3 '702 3'677 3'658
3.809 3.663 3'575 3'518 3'447 3'407 3'325 3'266
3.856 3'622 3'476 3'378 3'253 3. I 78 3'016 2.886
3.968 3.666 3'474 3'342 3.173 3.069 2.840 2.646
4.032 3.707 3'499 3'355 3.169 3.055 2'797 2.576
3'707 3'707 3'707 3.707 3.707 3.707 3'707
3'654 3'648 3'644 3'639 3'637 3'631 3'627
3'556 3'519 3'496 3'468 3'453 3.424 3.402
3'514 3'423 3'363 3.289 3'246 3'158 3.093
3'556 3'408 3'308 3.180 3'104 2.938 2'804
3'654 3-461 3'328 3.158 3'053 2.822 2.627
3'707 3'499 3'355 3.169 3'055 2.797 v576
3'499 3'499 3'499 3'499 3'499 3'499
3'454 3'450 3'445 3'442 3'436 3'431
3'369 3'344 3'314 3'298 3.265 3'241
3'331 3'269 3'193 3'149 3.056 2'987
3'369 3.267 3'138 3'060 2.892 2'755
3'454 3.321 3.149 3'045 2.812 2•616
3'499 3'355 3.169 3'055 2.797 2.576
3'355 3.355 3.355 3'355 3.355
3'316 3.310 3.307 3'301 3.295
3'241 3.210 3.192 3.158 3.132
3.206 3.129 3.083 2.988 2.916
3.241 3.110 3-032 2.862 2.723
3.316 4 13 49 3 :0
3'355
3'169
3'138
3.169 3.169 3.169
3.135 3'127 3.121
3.078 3.059 3'021 2.993
3.049 3'002
00
3.055 3.055 3.055
3'029 3.021 3.015
2'978 2.939 2.909
V2 = 24 VI = 24 00
2'797 2.797
2'784 2.777
P2 = CO V1 = 00
2 '576
2.576
V2 = 10
V1 = 10 12 24
00 V2= 12
vl = 12 24
3.078
3.138 3'033
2'904
2'998 2'825
2.828
2.684
2'798 2.600
3.169 3-055 2'797 2.576
2'954 2'853 2.775
2'978 2.803 2.661
3'029 2.794 2.595
3'055 2'797 2.576
2'759 2726
2 '747 2.664
2'759
2'784
2'797
2'613
2'584
2'576
2.576
2.576
2'576
2'576
2'576
If d > dp the confidence level associated with illt-C. /12 is less than P per cent, and if d < dp the confidence level associated with 121 11 2 is less than P per cent. (See H. Cramer, Mathematical Methods of Statistics, Princeton University Press (2946), Princeton, N.J., pp. 520-523.) Also, the values of -#2 such that I(x1- x2) - (01-#2)1 5 rdp provide a 200-2P per cent Bayesian credibility interval for it, -#2.
This distribution arises in investigating the difference between the means ltil #2 of two normal distributions without assuming, as does the t-statistic, that the variances are equal. Let oil, x2 be the means and 4, 4 the variances of two independent samples of sizes n1, n2 from normal distributions, / S2 •
-
,
let = - V2 = 712 -1 and 0 =
(071 N/V2)
S2 S 2
measured in degrees. Define r = ji- +1and d vi V2
2.806 2.608
3'169
3.055 2.797 2.576
U being -X2 r
49
TABLE 12(a). 10 PER CENT POINTS OF THE F-DISTRIBUTION The function tabulated is F(P) = F(Plv,, v2) defined by the equation
P zoo
rco
ITO “JTI)
Fip.-
r(i-v2) vl v2b2 F(p)(v2 +P,FP( P'+"')c1F'
for P = io, 5, 2.5, I, 0.5 and 0•1. The lower percentage points, that is the values F'(P) = F'(PIP1, P2) such that the probability that F < F'(P) is equal to Pim°, may be found by the formula
F'(P IPi,
VI =
I
P2) = I/F(Plv2,
2
3
(This shape applies only when vl > 3. When v1< 3 the mode is at the origin.)
4
8
xo
12
24
CO
58.91 9'349 5.266 3'979
59.44 9'367 5.252 3'955
60.19 9.392 5.230 3'920
60.71 9.408 5.216 3.896
62.00 9.450 5.176 3.831
63'33 9.491 5'134 3.761
5
6
7
39.86 8.526 5'538 4'545
49.50 9.000 5'462 4'325
53'59 9.162 5'391 4.191
55'83 9.243 5'343 4.107
57.24 9'293 5'309 4.051
58.20 9'326 5'285 4.010
4'060 3.776 3'589 3.458
3.78o 3.463 3'257 3.113
3.619 3.289 3.074
3.520 3.181 2.961
3'453 3.108 2.883
2'924
2'806
2.726
3'006
2.813
•693
2.611
3'368 3'014 2.785 2.624 2.505
3'339 2'983 2.752 2.589 2.469
3'297 2.937 2.703 2.538 2.416
3.268 2.905 2.668 2.5o2 2'379
3.191 2.818 2.575 2.404 2'277
3.105 2.722 2.471 2'293
3'360
3'405 3.055 2.827 2•668 2.551
3.285 3.225 3.177 3.136 3.102
2.924
2728 2.66o
2•414
2'377 2.304
2.323 2.248
2.284
2'245
2560 2.522
2.195
2'188 2'138
2'209 2'147 2'097
2'178 2'100 2'036 1.983
2 '055
2'451 2'394 v347 2.307
2'461 2'389
2.763 2.726
2.605 2•536 2.480 2.434 2.395
2 '154
2.095
2.0 54
P938
P904 1.846 P797
3'073 3.048 3'026 3.007
2'490
V361
2'273
2'208
2'158
2'119
2'059
2'017
2.462 2'437 2.416 2.397
2.333 2.308 2.286
2.244 2.218
2.178 2.152
2.128 2.102
2'990
2 '695 2.668 2.645 2.624 2.606
2'266
2'196 2'176
2'130 2'109
2.058
2.088 2.061 2.038 2.017
2.028 voox 1.977 P956
P985 P958 P933 I•912
P899 P866 P836 P810 1.787
P755 P718 P686 P657 P631
2.589 2.575 2.561 2'549
2.380 v365
2'249
2'158
2'091
2'040
2.233
2'142
2'075
2'351
2'219
2'128
2'060
23
2.975 2.961 2.949 2.937
2'339
2.207
2.115
2.047
24
2'927
2'538
2'327
V195
2'103
2'035
2.023 2.008 P995 P983
P999 P982 1.967 P953 1.941
P937 P920 P904 1.890 1.877
1.892 P875 P859 1.845 P832
P767 1.748 1.731 1.716 P702
P607 P586 P567 P549 1'533
25 26 27 28 29
2.918
2.528
2'317
2'184
2'092
2'024
2'909 2'901
2'519 2'511
2.307
2.174
vo82.
2.014
2'073
2'005
P952
2.503 2.495
2'299 2'291
2'165
v894 2.887
V I 57
2.283
2'149
2'064 2.057
P996 P988
P943 P935
1.929 P919 P909 p900 x.892
P866 P855 1.845 P836 P827
1•820 p809 P799 P790 1.781
P689 P677 1•666 1.656 P647
1.518 P504 1.491 P478 P467
30
2'881
P980 P967
P819
P773
1.638
P913
P870
1'805
P758
P622
34 36 38
2'859 2.850
2'466
2'252
V049 2'036 2'024
1.884
2.263
2.456
2.243
2'142 2'129 2'118 2'108
P927
v869
2.489 2.477
2'276
32
v014
P6o8 P595
2'234
2'099
2'005
1.858 P847 1.838
P745 P734
2'448
P901 P891 1•881
P793 1.781
2'842
P955 P945 P935
P772
P724
P584
1.456 P437 P419 1404 1.390
40 60
2.835 2/91
2'440 V393
2'226
2'347
P722
1'652
p574 1.511 1.447
P377 P291 1 '193
V303
1.873 P819 P767 1.717
P715 P657 I .601
2/06
P927 P875 1.824 P774
P763 1.707
2.748
P997 P946 1.896 1.847
1.829 p775
120 00
2.091 2.041 1.992 1.945
p670
P599
P546
P383
P000
P2 = I 2
3 4 5 6 7 8 9 10 II 12
13 14 15 16 17
18 19 20 21 22
2'86o 2'807
2'606
v177 2' I 3o 2.084
2'522
2.331 2.283 2.243
50
2'342 2'283
2.234 2 ' 193
2'079
P971 P961
2 '159
P972
TABLE 12(b). 5 PER CENT POINTS OF THE F-DISTRIBUTION
--1/-?X
If F = X
112
, where X1and X2 are independent random
variables distributed as X2 with v1and v2 degrees of freedom respectively, then the probabilities that F F(P) and that F F'(P) are both equal to Pilot). Linear interpolation in v1and v2 will generally be sufficiently accurate except when either v1> 1z or v2 > 40, when harmonic interpolation should be used. 0
F(P)
(This shape applies only when v1>. 3. When v, < 3 the mode is at the origin.) I
2
3
4
5
6
7
8
xo
12
24
CO
V2 = I
161 4
199.5
215.7
224.6
230.2
234•0
2
18'51 10'13
19'00
19.16
19.25
19-30
19.33
9.277 6.591
9.117 6.388
9.013 6•256
8'941
24P9 19.40 8.786 5.964
249'1 19.45 8.639
19.50 8.526
6.163
238.9 19'37 8.845 6.041
243'9 19'41
9'552 6.944
236.8 19'35 8.887 6.094
5'774
5.628 4'365 3.669 3.230 2.928 2.707
Ili =
3 4
7'709
8.745 5'912
254'3
5
6.6o8
5.786
5'409
5'192
5.050
4'950
4.876
4.818
4'735
4'678
4'527
6 7 8 9
5.987 5'591 5.318
5'143
4'757
4'534
4'387
4'284
4.207
4'147
4.06o
4.000
3.841
5.117
4'737 4'459 4'25 6
4'347 4.066 3.863
4'120 3.838 3.633
3'972 3.687 3'482
3.866 3.581 3'374
3.787 3.500 3.293
3.726 3'438 3.230
3.637 3'347 3.137
3'575 3.284 3.073
3.410 3.115 2.900
4.965 4.844 4'747 4.667 4.600
4.103 3.982 3.885 3.806 3'739
3.708 3.587 3'490 3.411 3'344
3'478 3'357 3.259 3.179 3.112
3.326 3.204 3.106 3.025 2.958
3.217 3.095 2.996 2.915 2.848
3.135 3.012 2.913 2.832 2.764
3.072 2.948 2.849 2.767 2.699
2.978 2.854 2.753 2.671 2.602
2.913 2.788 2.687 2.604 2.534
2 '737 2.609 2.505 2.42o 2.349
2.538
4'543 4'494 4'451 4'414 4.381
3.682 3.634 3'592 3'555 3.522
3.287 3'239 3.197 3.160 3.127
3.056 3.007 2.965 2.928 2.895
2.901 2.852 2.810 2.773 2.740
2.790 2'741 2.699 2.661 2.628
2.707 2.657 2.614 2.577 2.544
2.641 2.591 2.548 2.510 2'477
2.544
2.475 2.425 2.381
2.288 2.235
2.066
4.351 4'325 4'301 4'279
3'493 3'467 3'443 3.422
2'711 2.685 2.661 2.64o 2.621
2.514 2.488
2.420
3'403
2.866 2.84o 2817 2.796 2/76
2.599 2.573 2.549
4.26o
3.098 3.072 3.049 3.028 3.009
4'242 4.225
2.991 2.975 2.96o 2.947 2.934
2/59 2 '743
2'728
2 '572
2 '459
2.714
4.183
3.385 3.369 3'354 3'340 3.328
2.558 2.545
30
4.171
3.316
2'922
32 34
4'149
3.295
2.901
2.690 2.668
4'130 4.113 4.098
3'276
2'883
2'650
2.534 2.512 2'494
2'399 2.380
3'259 3.245
v866 2.852
2.634 2.619
2463
2.364 2'349
3.232 3.I50 3.072 2.996
2.839 2/58 2.68o 2.605
2.606 2.525
2'449
2'336
2.249
2.18o
2368
2'447
2'290
2. 254 2'175
2'372
2.214
2.099
2'167 2'087 2'010
2'097 2'016 P938
I0
II 12
13 14 15
16 17
18 19 20 21 22 23 24
25 26 27 28 29
36
38
4'210 4.196
40
4•o85
6o
4.001 3.920 3.841
120
00
2/01
2 '494
2.45o 2.412 2-378
2 '404
2.296 2.2o6 2'131
2'010 1.960
2 '342
2'190 2.150
2.308
2.114
2.278 2.250 2.226 2.204
1'843
P917 p878
2'397
2'528
2'464 2 '442
2. 375
2'348 2.321 2'297 2.275
2.508
2.423
2.355
2'255
2'183
2•082 v054 2.028 2.005 P984
2'603
2'490
2'474
2.405 2.388 2.373
2.337 2.321 2.305
2.236
2.587
2•220
2'165 2'148
P964 1•946
1•71 I 1'691
2.204
2.132
1.930
1.672
2'445 2.432
2 '359
2.291
2.346
2.278
2'190 2'177
2'118 2.104
1.915 P901
1.654 1'638
2.421
2.334 2313
2'165 2'142 2'123 2'106 2'091
2'092 2.070 2'050 2.033 2'017
I .887 1.864 P843 P824 1'808
2.077 I '993
2'003
P910 1'831'
P834 P752
P793 x.700 I .608
P509 P389 1.254
1.517
1•000
2 '477
51
2.447
2.266
2. 294
2'244 2'225
2.277
2.209
2'262
2'194
I•917
1 .812
P783 P757 P733
1'622
1.594 P569 1'547 I .527
TABLE 12(c). 2.5 PER CENT POINTS OF THE F-DISTRIBUTION The function tabulated is F(P) = the equation
P
r(iPi+ i-v2)
100
F( v1)r(iv2)
V2iv2
v2) defined by
F(p)(P2+
viflttpx+vo dF,
for P = 1o, 5, 2.5, I, 0.5 and o•I. The lower percentage points, that is the values F'(P) = FTP1v1, v,) such that the probability that F t F'(P) is equal to P/Ioo, may be found by the formula
0
F'(Plvi, v2) = IF(PIP2, PO.
v1=
F(P)
(This shape applies only when v1> 3. When v1 < 3 the mode is at the origin.)
5
6
7
8
ro
12
24
00
921'8
937'1 39'33 14'73 9.197
948.2 39'36 14.62 9'074
956.7 39'37 14'54 8.98o
968.6 39'40 14'42 8.844
976.7 39'41 14'34 8.751
997'2 39'46 14.12 8.511
1018 39'50 13'90 8'257
6.978 5.820
6.757 5.6o0 4'899 4'433
6.619
6'525
5.461
5'366
4'102
4'761 4'295 3'964
4'666 4' 200 3.868
6.278 5.117 4'415 3'947 3'614
6.015 4'849 4'142 3.670 3'333
3.365 3.173 3.019 2.893 2.789
3.080 2.883
2'701 2'625 2'560 2'503 2'452
v395 2.316 2.247 2.187 2-133
2'602 2'570 2'541
2'408 2'368 2'331 2'299 2'269
2'085 2'042 2'003
2.515 2'491 2'469 2'448 2'430
2 '242 2.217 2.195 2'174 2'154
I'906 1.878
2.412 2.38, 2.353 2.329 2.307
2'136 2'103 2'075 2'049 2'027
1.787 1.750 1.717 1.687 1.661
2.288
2'007 1'882 1'760 I'640
1'637 1'482 1'310 1'000
2
3
4
864.2 39.17 15.44 9'979
899.6 39'25 15'10 9'605
39'30 14' 88 9'364
V2 = i 2
647'8 38'51
3 4
12'22
799'5 39.0o 16.04 10•65
5 6 7 8 9
8.813 8.073 7'571 7.209
8'434 7.260 6'542 6.059 5.715
7'764 6.599 5.890 5'416 5.078
7.388 6.227 5.523 5.053 4'718
7.146 5.988 5-285 4'817 4'484
4'652 4'320
6.853 5.695 4'995 4'529 4'197
5'456 5.256 5.096 4'96 5 4'857
4'826 4'630 4'474 4'347 4'242
4%168 4'275 4'121 3'996 3.892
4'236 4'044 3.891 3-767 3.663
4'072 3.881 3.728 3 . 604 3.501
3'950 3'759 3.607 3'483 3.38o
3'855 3.664 3'512 3.388 3.285
3'717 3.526 3'374 3.250 3'147
3'621
13 14
6.937 6.724 6'554 6'414 6.298
Is
6'200
6.115 6'042
5.978 5.922
3.804 3'729 3.665 3.608 3'559
3'576 3.5oz 3'438 3.382 3'333
3'415 36 341 3.277
x8
4'153 4'077 4' 0 II 3'954 3.903
3.293 3.219 3.156 3.100 3.051
3'199 3.125 3.061 3.005 2.956
3.060 2.986
17
4'765 4'687 4'619 4'5 6o 4'508
2'963
z6
2'817
2'769 2'720
4%161 4'420 4'383 4'349 4'319
3'859 3.819 3.783 3'750 3.721
3.515 3'475 3'440 3'408 3'379
3.289
3.128 3.090 3.055 3.023 2.995
3.007 2 '969 2'934
2'913
2 '774 2 '735
2-637
2'902 2'874
2.874 2.839 2.808 2.779
3.129 3.105 3.083 3:063 3'044
2.753 2.729
2.613
2'923 2'903 2'884
2'802 2'782 2/63
2'707 2'687
2.568 2 '547
4'201
3'353 3.329 3'307 3.286 3.267
2'848 2.824
5.588
3'694 3.670 3'647 3.62,6 3.607
2.969 2 '945
5'610
4'291 4.265 4'242 4.221
2.669
2'529
4'182 4'149 4'1zo 4'094 4'071
3.589 3'557 3'529 3.505 3'483
3'250
3.026 2'995 2.968 2'944
2.867 2.836 2.808 2.785 2.763
2/46 2.715
2.651 2.620 2.593 2.569 v548
2'511 2'480
34 36 38
5.568 5.531 5'499 5'471 5.446
2.453
40 6o
5'424 5.286
3'463 3'343
120 co
5'152 5'024
4'05I 3'925 3.805 3.689
2'529 2'412 2'299 2'192
v388 2.27o 2 'I57 2.048
zo zz
12
zo 20 21 22 23
24 25 26 27
28 29 30 32
17'44
5.871 5'827
5.786 5-750 5'717 5.686 5.659 5'633
3'227 3'116
3'218 3'191
3.167 3'145 3.126 3.008 2. 894 v786
3'250 3'215
3.183 3'155
2'923
2. 904 2.786 v674 2.567
5'119
3'221 3'172
2.688 2.664 v643
2 '744
2.624
2.627 2.515 2.408
2.507 2.395 2.288
52
2'922
2.866
2'700
2.668 2•64o
2'590
2%429 2 407
3'430 3.277 3'153 3.050
2.889 2.825
2'676
2'169 2'055
1.945
2'725
2.595 2.487
r968 1'935
1.853 1'829 1'807
TABLE 12(d). 1 PER CENT POINTS OF THE F-DISTRIBUTION --2, where X1and X2 are independent random Xpi11X F=V2
If
variables distributed as X2 with v1and v2 degrees of freedom respectively, then the probabilities that F F(P) and that F < F'(P) are both equal to Nioo. Linear interpolation in vi or v2 will generally be sufficiently accurate except when either v1 > 12 or v2 > 4o, when harmonic interpolation should be used. 0
F(P)
(This shape applies only when v1 at the origin.) vl =
I
v2 = I 2
3 4 5 6 7 8 9 xo II 12
2
3
4
5
6
3. When v1< 3 the mode is
7
8
to
12
24
00
5928 99'36 27.67 14.98
5981 99'37 27.49 14'80
6056 99'40 27.23 14'55
6,o6 99'42 27.05 4'37
6235 99'46 26.6o 13'93
6366 99'50 26.13 13'46 9'020 6.88o
4052 98'50 34- 12 21.20
4999 99'00 30.82 18.00
5403 99'17 29.46 16.69
5625 99'25 28.71 15.98
5764 99'30 28.24 15'52
16.26 13.75
13.27 10.92
12.06 9.780
I1•39 9.148
10.97
10.67
10.46
10•29
8.746
8.466
8.26o
8.102
10.05 7'874
9.888 7718
9.466 7313
12.25 11.26
9'547 8'649
8'451 7.591
7'847 7.006
7'460 6.632
7.191 6.371
6.993 6.178
6.840 6.029
6.620 5'814
6.469 5'667
6.074 5'279
10.56
8'022
6'992
6'422
6'057
5'802
5.613
5 .467
5'257
5'111
4.729
4'859 4.31 1
10'04 9.646
6'552 6.217 5'953 5'739 5 .564
5'994 5 .668 5'412 5'205 5'035
5'636
5.386
5.200
5.316 5.064 4'862 4'695
5.069 4.821 4'620 4'456
4.886 4'640 4'441 4'278
5.057 4'744 4'499 4'302 4'140
4'849 4'539 4'296 4'100 3'939
4'706 4'397 4'155 3 .960 3'800
4'327 4'021 3'780 3'587
3.909 3.602 3.361 3 .165
3'427
3'004
3'434
3'666 3'553 3'455 3.371 3'297
3'294 3'181 3'084 2.999 2'925
2.868 2.753 2 '653 2.566 2.489
5859 99'33 27.91 15.21
5.650
13
9'074
7'559 7.206 6'927 6'701
14
8.862
6.515
15 16 17 18 19
8.683
6'359
5'417
4'893
4'556
4'318
4'142
4'004
3805
8.531 8.400 8.285 8.185
6.226
4'773 4'669 4'579 4.500
4'437 4'336 4'248 4'171
4'202 4'102 3'939
4.026 3'927 3-841 3'765
3.890 3'791 3.705 3'631
3'691 3'593
6.013 5.926
5'292 5'185 5'092 5010
20
8.096 8.017 7'945 7.881 7.823
5'849 5'780 5'719 5.664 5.614
4'938 4'874 4'817 4'765 4.718
4'431 4'369 4'313 4'264 4.218
4.103 4'042 3'988 3'939 3.895
3.871 3.812 3'758 3'710 3'667
3'699 3.640 3'587 3'539 3'496
3.564 3.506 3'453 3'406 3'363
3.368 3'310 3'258 3.211
3.231 3'173 3.121 3.074
2.859 2.8o1 2.749 2.702
2.421 2.360 2.305 2.256
3'168
3.032
2.659
2.211
7'770 7'721 7.677 7.636 7'598
5'568 5'526 5.488 5'453 5'420
4'675 4'637 4'601 4'568 4.538
4'177 4'140 4'106 4'074 4'045
3'855 3.818 3'785 3'754 3'725
3'627 3'591 3'558 3'528 3'499
3'457 3'421 3.388 3'358 3'330
3'324 3.288 3.256 3.226 3.198
3'129 3.094 3062 3.032 3.005
2'993 2.958 2.926 2.896 2-868
2.62o 2.585 2.552 2'522 2.495
2.169 2.131 2 '097 2 ' 064 2 '034
5.390 5'336 5'289 5'248 5'211
4'510
4.018
3'699
4'459 4'416 4'377 4'343
3'969 3'927 3'890 3'858
3'652 3'611 3'574 3'542
3'473 3'427 3 .386 3'351 3'319
3'304 3.258 3.218 3.183 3.152
3'173 3.127 3.087 3'052 3.021
2'979 2.934 2.894 2.859 2.828
2'843 2.798 2'758 2.723 2.692
2.469 2.423 2.383 2'347 2.316
2.006
34 36 38
7.562 7'499 7'444 7.396 7'353
1.911 1.872 1'837
40 6o
7'314 7077
5'179 4'977 4'787 4.605
4'313 4'126 3'949 3.782
3'828 3'649 3'480 3.319
3'514 3'339 3'174 3.017
3.291 3'119 2.956 2.802
3.124 2'953 2.792 2.639
2'993 2.823 2.663 2.511
2.801 2.632 2.472 2.321
2.665 2.496 2.336 2.185
2.288 2.115 1•950 1.791
1.8o5 1.601 1.381 1.000
21 22 23 24 25 26 27
28 29 30 32
9.330
120
6'851
00
6.635
4.015
53
3.508
1'956
TABLE 12(e). 0.5 PER CENT POINTS OF THE F-DISTRIBUTION The function tabulated is F(P) = F(Plv,, v2) defined by the equation
P
ravi+ -PO v
Ioo r(iv,) ra v2) 1
v iv2 _ co z
fF(p) (12+ viF)1(P.+92) dF,
for P = 1o, 5, 2.5, I, 0•5 and o•i. The lower percentage points, that is the values F'(P) = F'(Plvi, v2) such that the probability that F < F'(P) is equal to P/Ioo, may be found by the formula
F'(Plvi, v2) = i/F(Plv2, v1)•
Vi. =
I
2
3
4
1/2 = I
20000 199'0
21615
22500
2
16211 198.5
199'2
199'2
3 4
55'55 31•33
49'80 26.28
47'47 24.26
46'19 23.15
5 6 7 8 9
22.78 16.24 14.69 13.61
18.31 14.54 12.40 11'04 IO II
16.53 12'92 10•88 9'596 8.7i7
12.83 12.23 I r 75 1 P 37 ii•o6
9.427 8.912 8.510 8.186 7.922
15 i6 17 18 19
10•80 1o•58 10•38
20
(This shape applies only when vl at the origin.) 7
8
zo
12
24
(X)
23715 199'4 44'43 2 I .62
24224 43'69 20'97
24426 199'4 43'39 20.70
24940 199'5 42'62 20.03
25464
22'46
23437 199'3 44'84 2 1 •97
23925 199'4 44'13 2r35
15'56 12.03 1o•o5 8.805 7956
14'94 11.46 9'522 8.3oz 7'471
14'51 11.07 9'155 7952 7134
14'20 10.79 8.885 7694 6.885
13.96 /0'57 8.678 7496 6.693
13.62 10.25 8.38o 7.211 6.417
13.38 10'03 8.176 7.015 6.227
12.78 9'474 7-645 6'503 5/29
12 '14 8'879
8.081 7.600 7226 6.926 6.68o
7'343 6.88 6.521 6.233 5'998
6'872 6.422 6.071 5'791 5'562
6'545 6.102 5'757 5'482 5'257
6.3o2 5.865 5'525 5'253 5'031
6.116 5.682 5'345 5'076 4'857
5.847 5.418 5'085 4'820 4'603
5.661 5.236 4'906 4'643 4'428
5.173 4-756 4'431 4'173 3.961
3'904 3'647 3.436
7701 7.514 7354
6 '476 6.303 6'156
5'803 5.638 5'497
10'22
7215
6'028
5'375
10.07
7'093
5'916
5.268
5'372 5.212 5'075 4'956 4'853
5'071 4'913 4'779 4'663 4'561
4'847 4'692 4'559 4'445 4'345
4'674 4'521 4'389 4'276 4'177
4'424 4'272 4'142 4.030 3'933
4'250 4'099 3'971 3.860 3'763
3/86 3.638 3.5 3'402 3'306
3.260 3•112 2 '984 2'873 2.776
6.986 6.891 6.806 6/30 6.661
5.818 5.730 5.652 5'582 5.519
5'174 5.091 5.017 4'950 4.890
4'762 4.681 4.609 4'544 4'486
4'472 4'393 4.322 4'259 4'202
4.257 4'179 4'109 4'047 3.991
4.090 4'013 3'944 3'882 3.826
3.847 3'771 3'703 3'642 3.587
3.678 3.602 3'535 3'475 3.420
3.222 3.147 3'081 3'021 2.967
2'690
23 24
9.944 9.830 9.727 9.635 9'551
2.428
25
9.475
26 27
9.406
5.462 5'409 5.361 5.317
4'835 4/85 4.740 4.698 4-659
4'433 4'384 4.340 4.300 4.262
4'150 4'103 4.059 4.020 3'983
3'939 3'893 3.850 3.811 3'775
3'776 3'730 3.687 3.649 3'613
3'537 3'492 3'450 3'412 3'377
3'370 3'325 3.284 3'246 3.211
2.918 2'873 v832
2.377 2'330 2.287
2 '794
2.247
2.759
2.210
4'228 4'166
3'949 3'889
3'742 3'682
4'112
3'836
3'630
4'065 4'023
3'790 3'749
3'585 3'545
3'580 3.521 3.470 3.425 3'385
3'344 3.286 3.235 3.191 3.152
3'179 3.121 3.071 3.027 2.988
2.727 2.670 2.620 2.576 2.537
2.176 2'114 2.060 2•013 1.970
3'986 3/60 3'548 3'350
3'713 3.492 3'285 3'091
3'509 3.291 3'087 2.897
3'350 3.134 2 '933 2.744
3.117 2 '904 2 '705 2.519
2'953 2'742 2 '544
2.502
1.932 r689 1.431 I•000
io II 12
13 1 4
2/ 22
18.63
z8
9'342 9.284
6'598 6'541 6'489 6•44o
29
9'230
6'396
5'276
30
9.180
6 '355
5'239
32
9'090
6'281
5'171
34 36 38
0.012 8.943 8.882
6.217 6.161 6•
5.113 5.062 5•o16
4'623 4'559 4'504 4'455 4.412
8'828
6.066 5'795 5'539 5.298
4'976 4'729 4'497 4.279
4'374 4'140 3'921 3'715
40 6o 120 00
8'495
8'179 7.879
,5 23056 199'3 45'39
6
3. When v1< 3 the mode is
54
199'4
2'358
2'290
2.089 1.898
199'5
41-83 19.32
7.076 5-951 5.188 4'639 4'226
2.614
v545 2 '484
TABLE 12(f). 0.1 PER CENT POINTS OF THE F-DISTRIBUTION If
IX , F= X v, V2 -2
where X1and .7C2 are independent random
variables distributed as X' with v1and v2 degrees of freedom respectively, then the probabilities that F F(P) and that F < F'(P) are both equal to Piro°. Linear interpolation in v1or v2 will generally be sufficiently accurate except when either vl > 12 or v2 > 4o, when harmonic interpolation should be used. (This shape applies only when V1 at the origin.) vl =
I
v2 = I * 2
3 4 5 6 7 8 9
2
3
4053 998'5 167•0 74'14
5000 999'0 148.5 61.25
5404 999'2 141.1 56.18
47'18 35.51
37'12 27.00
33.2o 23.70
4
5
5625 999'2 137.1 53'44
5764 999'3 134.6 51'71
6 5859 999'3 132.8 50'53
3. When v, < 3 the mode is
7
8
I0
12
24
a)
5929 999'4 131•6 49'66
5981 999'4 130.6 49'00
6056 999'4 129.2 48'05
6107 999'4 128.3 47'41
6235 999'5 125.9 45'77
6366 999'5 123'5 44.05
26.92 18.41
26.42 17.99 13.71 11•19 9'570
25.13 16.90 12.73 10.30 8.724
23'79 15'75 11.70 9'334 7-813
8'445
7638 6.847 6 .249 5'781 5'407
6.762 5'998 5'420 4'967 4'604
5'101
31.09
29.75
28.83
28.16
27.65
20•80 16'21
20'03 15'52
19'46 15'02
19'03
29'25
21'69
18'77
21'92 17'20
14'63
14'08
25.41 22.86
18'49 16.39
15'83 13.90
14'39 12.56
13.48 11.71
12.86 11.13
12.40 10.70
12.05 10.37
11.54 9'894
21.04 19.69 18.64 17.82 17.14
14.91 13.81 12.97 12.31 11.78
12.55 1r56 io•8o 10.21 9.729
11•28 10.35 9.633 9'073 8.622
10•48 9.578 8.892 8'354 7.922
9.926 9'047 8.379 7.856 7'436
9.517 8.655 8•ooi 7'489 7.077
9.204 8-355 7.710 7.206 6.8o2
8.754 7922 7292 6-799
6. 404
7626 7.005 6-519 6.130
11'34 10'97
9'335
10•66 10.39 10•16
8.727 8.487 8.280
8.253 7944 7.683 7'459 7.265
7022
18 19
16-59 16.x2 15.72 15.38 15.08
6.808 6.622
6•081 5.812 5'584 5'390 5'222
5.812 5'547 5'324 5.132 4'967
4'631 4'447 4' 288
4'307 4'059 3.85o 3.670 3'514
20 2x
14'82 14'59
9'953 9'772
22 23 24
14'38
9'612
14'20 14'03
9'469 9'339
8•098 7'938 7'796 7669 7'554
7.096 6'947 6.814 6.696 6.589
6'461 6.318 6.191 6•078 5'977
13.88 13'74 13.61 13.5o 13.39
9.223 9'116 9.019 8.931 8'849
7'451 7'357 7.272 7.193 7.121
6'493 6.406 6.326 6.253 6.186
5.885 5.802 5.726 5.656 5'593
13.29 13.12
8.773 8.639
6.125 6•014 5.919 5.836 5.763 5.698 5.307 4'947 4.617
4'757 4'416 4'103
10 II 12
13 14 15 16 17
25 26 27
28 29
9'006
34 36 38
12'97
8'522
I2•83
8.420 8.331
7.054 6.936 6.833 6.744 6.665
40
6o
12.6i 11.97
120
11 . 38
00
1o•83
8.251 7.768 7321 6.908
6.595 6.171 5.781 5.422
3o 32
1211
7'567
7092
6.741
6.471
7.272
6.805
6.460
6.195
6'562
6'223
6.355 6.175
6.021 5'845
5.962 5.763 5'590
6•019 5.881 5'758 5'649 5'550
5.692 5'557 5'438 5'331 5-235
5.308 5.190 5.085 4'991
5.075 4'946 4'832 4'730 4'638
4'823 4'696 4'583 4'483 4'393
4'149 4'027 3.919 3.822 3'735
3'378 3.257 3.151 3.055 2.969
5'462 5.381 5.308 5'241 5.179
5'148 5.070 4'998 4'933 4'873
4'906 4'829 4'759 4'695 4'636
4'555 4480 4'412 4'349 4'292
4'312 4.2 38 4'171 4'109 4'053
3.657 3.586 3.521 3'462 3'407
2'890 2'819
5'534 5'429 5'339 5.26o 5.190
5.122 5.021 4'934 4'857 4'790
4.817
4'719 4'633 4'559 4'494
4.581 4'485 4'401 4'328 4-264
4'239 4'145 4.063 3'992 3'930
4.001 3.908 3.828 3'758 3.697
3'357 3.268 3.191 3.123 3'064
2.589 2498 2 '419 2'349 2.288
5•128
4'731 4'372 4'044 3'743
4'436 4' 086 3-767 3'475
4'207 3.865 3'552 3.266
3'874 3'541 3'237 2.959
3.642 3.315
3'011 2'694 2'402 2'132
v233
5.44o
* Entries in the row v2 = I must be multiplied by ioo.
55
3'016 2'742
4.846
2'754 2.695 2'640
I .890
1.543 I•000
TABLE 13. PERCENTAGE POINTS OF THE CORRELATION COEFFICIENT r WHEN p = 0 The function tabulated is r(P) = r(P1v) defined by the equation 2 1)
-
\ITT
1
rp)fr(P)
(1 - r2) 2 dr = P
2
Let r be a partial correlation coefficient, after s variables have been eliminated, in a sample of size n from a multivariate normal population with corresponding true partial correlation coefficient p = o, and let v = n - s. This table gives upper P per cent points of r; the corresponding lower P per cent points are given by - r(P), and the tabulated values are also upper 2P per cent points of For s = o we have v = n and r is the ordinary correlation coefficient. When v > 130 use the results that r is approximately normally distributed with
-1
6 7 8 9 xo II 12 13 14
5
2'5
I
0'5
0.9877 '9000
0.9969 •9500
0 '9995
0 '9999
•9800
.9900
Tables of the distribution of r for various values of p are given by, for example, F. N. David, Tables of the Ordinates
and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples, Cambridge University Press (1954), and R. E. Odeh, ' Critical values of the sample product-moment correlation coefficient in the bivariate normal distribution', Commun. Statist. - Simula Computa. II (I) (1982), pp. x-26. The z-transformation may also be used (cf. Tables 16 and 17).
0 '9343
0 '9587
0 '9859
•8822 '8329 •7887 7498
•9172 . 8745 . 8343 '7977
'9633 '9350 '9049 -8751
0'5494 •5214 '4973 '4762 '4575
0.6319 •6021 '5760 '5529 '5324
0.7155 •6851 -6581 '6339 •6120
0.7646 '7348 -7079 '6835 •6614
0.8467
0'4409
0'5140
'4259 '4124 '4000 •3887
'4973 '4821 '4683 '4555
20 21 22 23
0.3783 .3687 •3598 '3515 '3438
0.4438 '4329 '422 7 '4132 '4044
'
0.641 I •6226 •6055 '5897 '5751
0.7301 '7114 '6940 '6777 •6624
0 '5155
0.5614 '5487 •5368 •5256 •5151
0.6481 '6346 •62,19 '6099 .5986
'5034 '4921 '4815 '4716
0 '3365
'3297 •3233 •3172 •3115
0.3961 •3882 •3809 '3739 .3673
0.4622 '4534 '4451 '4372 '4297
30 31 32 33 34
0.3061 •3009 -2960 '2913 •2869
0.3610 '3550 •3494 '3440 •3388
04226
'4158 '4093 '4032 '3972
0.5052 '4958 '4869 '4785 '4705
0-5879 '5776 '5679 '5587 '5499
0.4629 '4556 '4487 '4421 '4357
0 '5415
0.2826
0'3338
0'3916
0 '4296
785
'3862 •3810
'4238
'2709
•3291 •3246 •3202
' 2673
'3160
' 2
'2746
'8199
'7950 -7717 •7501
0.5923 '5742 '5577 '5425 '5285
25 26 27 28 29
35 36 37 38 39
'9980
0.8783 •8114 '7545 .7067 •6664
15 16 17 18
24
0 '999995
o.8054 '7293 •6694 •6215 .5822
'3760 '3712
'4182 '4128 '4076
1
U-shaped.)
zero mean and variance -- (cf. Tables 16 and 17). v-3
P
r(P)
(This shape applies for v > 5 only. When v = 4 the distribution is uniform and when v = 3 the probability density function is
zero mean and variance--, or (more accurately) that v -1 z = tanh-1r is approximately normally distributed with
v --- 3 4 5
0
P v = 40
5
2'5
0'2638
0'3120
0'3665
42
'2573
'3044
44 46 48
'2512
'2455 '2403
-2973 ' 2907 - 2845
'3578 •3496
5c1 52 54 56 58
0'2353 '2306 '2262 '2221 •218I
0'2787
6o 62 64 66 68
0'2144 •2I08 ' 2075 '2042 '2012
0'2542
70 72 74 76 78
0.1982 •1954 1927 .1901 •1876
0.2352 '2319 •2287 '2257
80
0.1852 '1829 '1807 •1786 '1765
0'2199 '2172
90 92 94 96 98
0 '1745
•1726 1707 -1689 •1671
100
105 II0 115 120 125 130
0'1478 '1449
82 84 86 88
'5334 '5257 '5184 -5113 0'5045 '4979 '4916 '4856 '4797
56
0%5
O•I 0 '4741
'3420 '3348 0.3281 •3218 '3158 •3102 •3048
0.4026 '3932 '3843 •3761 •3683 0.3610 •3542 '3477 '3415 '3357
0.4267 '4188 '4114 '4043 '3976
0.2997 '2948
0.3301 •3248
0'3912
'2902
'3198
.2858 •2816
.3150 •3104
•3850 '3792 '3736 •3683
0.2776 '2737 '2700 •2664 •2630
0.3060 •3017 '2977 '2938 •2900
0.3632 •3583 '3536 '3490 '3447
0 '2597
0.2864 •2830 '2796 .2764 '2732
0'3405
•2565 '2535 .2505 '2477
0.2072 •2050 •2028 •2006 .1986
0.2449
0'2 702
0' 3215
'2422 '2396 '2371 ' 2 347
' 2673
- 2645
'3181 '3148
•2617 '2591
•3116 •3085
0. 1 654
0.1966 '1918
1576
. 1874
. 1541
•1832 '1793
0.2324 -2268 -2216 •2167
0.2565 '2504 •2446 '2393
0- 3054
- 1614
•2I22
'2343
0'2079 -2039
0.2296
1509
'2732 •2681 '2632 •2586 '2500
' 2461 '2423 '2387
'2227
' 2146 '2120 '2096
0.1757 •1723
'2252
'4633 '4533 '4439 '4351
'3364 '3325 •3287 '3251
'2983 '2915 '2853 '2794
0.2738 •2686
TABLE 14. PERCENTAGE POINTS OF SPEARMAN'S S TABLE 15. PERCENTAGE POINTS OF KENDALL'S K Spearman's S and Kendall's K are both used to measure the degree of association between two rankings of n objects. Let di (1 5 i n) be the difference in the ranks of the ith object;
-51-02(n+ 1)2(n— I) for S and ,72,1-n(n — t)(2n + 5) for K, and when n > 4o both statistics are approximately normally distributed; more accurately, the distribution function of X = [S n)]I[]n(n +1)' ” .17---1] -- is approximately equal to
Spearman's S is defined as E 4. To define Kendall's K, re-
Y
(130 (x)—
order the pairs of ranks so that the first set is in natural order from left to right, and let mi (1 5 i n) be the number of ranks greater than i in the second ranking which are to the
e
241/27T
SPEARMAN'S S 2'5
5
I
KENDALL'S K
0'5
0•I
5 6 7 8 9
2
0
6 16 3o 48
4
0 2
12 22
6
4
O
14
36
26
IO 20
4 Io
58 84 118 160
42 64 92 128 170
34 54 78 108 146
20
165
zo
34 52 76 104
220
II
286 364 455
222
194
140
616
284 354 436 53o
248 312 388 474
184 236 298 370
72 102
O
2'5
5
n=4
I0
—
P
i(n3—
0
II
—o.c:14(ign2+ 5n-36) *(n3—n)
and 110(x) is the normal distribution function (see Table 4). A test of the null hypothesis of independent rankings is provided by rejecting at the P per cent level if S x(P), or K x(P), when the alternative is contrary rankings. The other points are similarly used when the alternative is similar rankings. To cover both alternatives reject at the 2P per cent level if S, or K, lies in either tail. Spearman's rank correlation coefficient rsis defined as 1 — 6S/(n3 — n), and has upper and lower P per cent points I — 6x(P)/(n3— n) and — [1— 6x(P)/(n3— n)] respectively. Kendall's rank correlation coefficient ric is defined as 4K I[n(n — 1, and has upper and lower P per cent points 4x(P)/[n(n — 1)] r and I} respectively. — {4x(P)I[n(n—
right of rank i. Kendall's K is defined as E mi. i =1 For Table 14 the tabulated value x(P) is the lower percentage point, i.e. the largest value x such that, in independent rankings, Pr(S < x) P/ loo; in Table 15, K replaces S and the upper percentage point is given. A dash indicates that there is no value with the required property. The distributions are symmetric about means (n3— n) for S and in(n-1) for K, with maxima equal to twice the means; hence the upper percentage points of S are -i(n3 — n) — x(P) and the lower percentage points of K are in(n-1)— x(P). The variances are
P
(x3 — 3x), where y =
I0
n=4
20
5 6 7 8 9
I
0'5
9
I0
10
14
14
15
22
19 24 3o
20 25
27
18 23 28
12 13 14
33 39 46 53 62
34 41 48 56 64
56o 68o 816 969 1140
15 16 17 18 19
7o 79 89 99 II0
73 83 93 103 114
1330
121 133 146
126 138 151
159
164
172
178
144 157 171 185 216 232 248 266
120
5
31
26 33
7'5 I0.5 14 18
36 43 51 59 67
37 44 52 61 69
40 47 55 64 73
22.5 27.5 33 39 45.5
77 86 97 1(38
79 89 I00
83 94 105 117 129
6o 68 76-5
142 156 170 184 200
95 zos xxs.s 126.5 138
238 254 272
216 232 249 267 285
150 162.5 175'5 189 203
303
323 342 363 384
217.5 232.5 248 264 280.5 297.5 315 333 351'5 370.s 390
2I
I2
142
13 14
188 244
xs x6 17 18 19
388 478 58o 694
20 21 22 23 24
824 970 1132 1310 1508
736 868 to18 1182 1364
636 756 890 1040 1206
572 684 8o8
452 544 65o
1771
948 1102
768
2024
900
2300
20 21 22 23 24
25 26 27 28 29
1724
1566
1272 1460 1664 1888 2132
1584 1796
260o 2925 3276 3654 4060
25 26 27 28 29
186 201 216 232
2794
1784 2022 2282 2564
1388 1588 1806 2044 2304
It:48
1958
248
193 208 223 239 256
3o 31 32 33 34
3118 3466 3840 4240 4666
2866 3194 3544 3920 4322
2584 2884 3210 3558 3930
2396 2682 2988 3318 3672
2028 2280 2552 2844 316o
4495 496o 5456 5984 6545
3o 31 32 33 34
265 282 300 318 337
273 291 309 328 347
283 301 320 340 359
290 308 328 347 368
35 36 37 38 39
512o 5604 6118 666z 7238
4750 5206 5692 6206 675o
4330 4754 5206 5686 6196
4050 4454 4884 5342 5826
3498 3858 4244 4656
35 36 37 38 39
356 376 397 418 440
367 388 409 430 452
380 401
410
5092
7140 7770 8436 9139 988o
444 467
432 454 477
405 428 450 473 497
40
7846
7326
6736
6342
5556
10660
40
462
475
490
501
522
310
2214 2492
210
268 338 418 512
1210 1388
1540
57
n(n — I) 3
13
35 56 84
0•I
6
119 131
200
422
III 123 135 148
161 176 190 205 221
388
52.5
85.5
TABLE 16. THE z-TRANSFORMATION OF THE CORRELATION COEFFICIENT The function tabulated is
coefficient p, and let v = n-s. Then z is approximately normally distributed with mean tanh-1p+plz(v I) (or, less accurately, tanh-1p) and variance - 3). If s = o we have v = n and r is the ordinary correlation coefficient. For p = o the exact percentage points are given in Table 13.
z = tanh-1 r = loge (I
. If r < o use the negative of the value of z for -r. Let r be a partial correlation coefficient, after s variables have been eliminated, in a sample of size n from a multivariate normal population with the corresponding true partial correlation
-
I
r
z
r
z
r
z
r
z
r
z
0'00 •OI •02 '03
0'0000 '0 I 00 '0200
0.500 .5o5 •po '515 •52o
0.5493 .556o •5627 •5695 •5763
0'750
0.9730 0 '9845 0.9962 z•oo82 1.0203
0•9I0
•912 '9,4 •916 .918
1.5275 '5393 '5513 •5636 .5762
0.9700 •9705 •9710 '9715 •9720
2.0923 •xoo8 •1o95 •1183 .1273
09950 '995x '9952 '9953 '9954
'755 •760 .765 .770
r
z 2 '9945
3.0046 3'0149 3'0255
'04
•0300 •0400
0.05 o6 •07 •o8 •09
0.0500 •o6oi •0701 -o8o2 •0902
0'525
0'5832
0'775
.5901 '5971 •6042 -611 2
•78o .785 '790 '795
1.0327 .0454 .0583 •0714 . o849
0'920 '922 '924 '926 '928
1.5890 -6022 .6157 -6296 '6438
0.9725 .9730 '9735 '9740 '9745
2.1364 '1457 •1552 •1649 '1747
0'9955
•530 '535 '540 '545
0'I0 •II •I2
0'1003 •II04 •1206
0'550
'93, '932 '933 '934
1.6584 -6658 .6734 •681x •6888
0.9750 '9755 '9760 .9765 '9770
2'1847 •I950 - 2054 •2I6o
•1409
-56o .565 .57o
1.0986 •1127 •127o 1417 •1568
0'9960
1 307
o.800 .8o5 •810 .815 •820
0'930
.13 '14
0.6184 •6256 •6328 •64ox .6475
0.15 x6 '17 18 •19
0'1511 '1614 •1717 •1820 '1923
0.575 .58o .585 '590 '595
0. 6550
0'825 '830 '835
1'1723
0'935 .936 '937 .938 '939
1.6967 '7047 -7129 -7211 .7295
0'9775
2.2380 '2494 -2610 .2729
0.9965 •9966 '9967
•285I
•9969
'2027 •218I '2340
0'20 •2I '22 '23 '24
0'2027 •2I32 •2237
o.600 •6os .6 zo .615 •62o
0.6931 •70I0 '7089 •7169 •7250
o. 85o .852 '854 .856 -858
1•2562
0.940 '94x '942 '943 '944
1.738o '7467 '7555 .7645 '7736
0.9800 •9805 •98,o •9815 •9820
2'2976
0.9970 '9971 '9972 '9973 '9974
3.2504 .2674 . 2849 •3031 -3220
0'25 '26 '27
0 '2554
0•625 '630 '635 -640
0.7332 '7414 '7498 -7582 •7667
o 86o •862 '864 •866 •868
1-2933 •3011 •3089 •3169 '3249
0'945
r7828 '7923 •8019 •8117 -8216
0.9825 -983o .9835 •9840 - 9845
2.3650 '3796 '3946 '4101 '4261
0'9975
'946 '947 '948 '949
'9976 '9977 '9978 '9979
3'3417 •3621 '3834 '4057 -4290
0•870 '872
0.950 '95x .952 '953 '954
1.8318 •8421 •8527 -8635 - 8745
0.9850 .9855 •9860 •9865 •9870
2'4427
•876 .878
r333r '3414 '3498 •3583 •3670
'4597 '4774 '4957 '5147
0.9980 •9981 •9982 '9983 '9984
3'4534 '4790 •5061 '5347 •5650
2'5345 '5550 '5764 .5987 •6221
0.9985 -9986 •9987 '9988 .9989
3'5973 -6319 -6689 •7090 .7525
0.9990 '9991 '9992 '9993 '9994
3.8002 3'8529 3.9118 3.9786 4'0557 4'1469 .2585 '4024 •6o51 '9517
•28 .29
'2342 .2448 •2661 •2769 •2877 -2986
'555
'645
•6625 -6700 •6777 .6854
840 '845
•1881 '2044 •2212 •2384
•2634 •2707 •2782 .2857
•9780 .9785 '9790 '9795
-2269
•31o3 -3235 .3369 •3507
0.30 '31 .32 '33 '34
0 '3095
o.65o -655 -66o •665 •67o
0'7753
•3205 -3316 '3428 '3541
0.35 •36 '37 •38 '39
0. 3654 •3769 •3884 '4001 '4118
0.675 •68o .685 •690 .695
0.8199 •8291 -8385 -8480 -8576
o.88o •882 .884 •886 •888
1•3758 •3847 '3938 '4030 '4124
0'955 .956 .957 .958 '959
1.8857 -8972 •9090 .9210 '9333
0.9875 •9880
040
0.4236 '4356 '4477 '4599
0'700
0.890 .892
1.4219 '4316
1'9459
•720
.9588 •9721 '9857 '9996
0.9900 '9905 •9910 '9915 •9920
2'6467 - 6724 '6996 '7283
'4722
0.8673 -8772 •8872 '8973 •9076
0.4847 '4973 •510I •523o -5361
0'725
0.9181
•46 '47 '48 '49
'730 '735 '740 '745
0.50
0'5493
0'750
'41 '42 '43 '44 0'45
'
705
.7 zo
'7,5
'7840 .7928 -8017 -81o7
'874
'9885
-9890 •9895
'9956 '9957 '9958 '9959
'9961 •9962 '9963 '9964
'9968
'894
'441 5
'896 .898
'4516
•4618
0.960 '961 •962 '963 '964
0'900 •902
'9395 .9505 •9616
'904 '906 '908
1.4722 '4828 '4937 '5047 .5 x 6o
0.965 •966 '967 •968 '969
2.0139 -0287 .0439 .0595 .0756
0.9925 '9930 '9935 •9940 '9945
v7911 -8257 -8629 •9031 '9467
0'9995
'9287
0.9730
0'910
1.5275
0.970
2'0923
0.9950
2'9945
I'0000
58
•7587
'9996 '9997 .9998 '9999
3'0363
3.0473 .0585 •0701 -0819 '0939 3.1063 -I190 •132o •1454 .1591 3'1732 •1877
00
TABLE 17. THE INVERSE OF THE z-TRANSFORMATION The function tabulated is r = tanh z =
e22 -
+
. If z < o, use the negative of the value of r for -z.
z
r
z
r
z
r
z
r
z
r
z
r
0'00 '01 •02
0'0000 '0100
0'50
•52 '53 '54
0.7616 •7658 -7699 '7739 '7779
0.905! •9069 •9087 •9104 -9121
2'00 •02 '04
0.9640 .9654 •9667 -9680 .9693
3'00 •02
'0200 •0300 '0400
1'00 •OI '02 •03 '04
x.50 '51
'03 •04
0.4621 '4699 '4777 '4854 '4930
0.9951 '9952 '9954 '9956 '9958
0'05
0'0500
.0599
1.05 -06 -07 -08 .09
0.7818 -7857 •7895 '7932 -7969
x-55 •56 •57
0.9138 '9154
2•I0 •I2
'9170
-14
- 58
•9186
'59
- 9201
•x6 -18
0.9705 -9716 -9727 '9737 '9748
3'10 •I2
.0798 •o898
0.55 -56 '57 •58 '59
0.5005
•o6 •07 •08 •09 0•10
0.0997
*14
x.60 •6x -62 -63 - 64
0.9217 -9232 '9246 -9261 .9275
3'20 '22
'1293 •I39I
0.8005 •8041 -8076 •8110 - 8144
2'20 - 22
'I3
0.5370 '5441 •5511 •5581 . 5649
0.9757
•1096 '1194
o•6o •61 •62 -63 - 64
PIO
•II •I2
- 24 '26 '28
'9776 -9785 '9793
.28
0'15
0'1489
o•65 •66 -67 •68 -69
0.5717 '5784 •585o •5915 •5980
I•I5
I•65
0.9289 '9302
2'30 - 32
'67
.9316 '9329 '9341
-36 •38
0.9801 -9809 -9816 -9823 •983o
3.3o •32 - 34 •36 •38
0 '9973
-66
•17 -x8 •x9
0.8178 -8210 8243 -8275 •8306
0.70 '71 -72 . 73 '74
0.6044 •6107 -6169 •6231 •6291
I'20 •2I '22 •23 '24
0.8337 •8367 -8397 - 8426 - 8455
1.70 '71 '72 '73 '74
0 '9354
2.40 - 42 '44 '46 •48
0.9837 .9843 .9849 .9855 •9861
3'40 - 42 .44 - 46 •48
0.9978 '9979 '9979 -9980 '9981
0.75 •76 '77 •78 '79
0.6351 - 6411 - 6469 .6527 - 6584
1'25
0.8483 •8511 -8538 .8565 -8591
1'75
0 '9414 - 9425
2'50
'9436 '9447 '9458
•52 '54 -56 •58
0.9866 •9871 •9876 -9881 •9886
3-50 '55 -60 -65 •70
0.9982 '9984 -9985 -9986 -9988
0.6640 -6696 •6751 •68o5 -6858
1'30
x.8o
•32 '33 '34
0.8617 - 8643 •8668 •8692 -8717
-82 -83 -84
0.9468 '9478 '9488 '9498 -9508
2.60 -62 - 64 •66 -68
0.9890 -9895 -9899 .9903 •9906
3.75 •8o .85 •90 '95
0.9989 - 9990 '9991 '9992 '9993
4.00 •05 •xo .x5
0 '9993
- 20
'9994 '9995 '9995 '9996
•r7 -x8 •I9 0'20 •2I '22
•o699
•1586 •1684 '1781 '1877 0'1974 '2070
.2165
•23
•2260
'24
'2355
0.25
0 '2449
-26 •27 •28
'2543 '2636
'29
•282I
0'30
0.2913 •3004
'2729
-5080 '5154 .52,27 .5299
•II '12 - 13
-26 •27 -28 •29
'52
'53 '54
-
-68 -69
•76 '77 •78 '79
-9366 '9379 '9391 '9402
-06 •08
- 34
•9767
'04
-06 •08
'14 •x6 •x8
'24 '26
0 '9959
.9961 •9963 '9964 -9965 0.9967 -9968 •9969 '9971 '9972
'9974 '9975 '9976 '9977
'32
•3095
'33 '34
•3185 '3275
o•80 •81 -82 .83 -84
0.35 •36 - 37 •38 '39
0.3364 •3452 '3540 •3627 '3714
0.85 -86 .87 •88 -89
0.6911 -6963 •7014 '7064 •7114
1-35
0'8741
•36 - 37 •38 '39
-8764 -8787 .8810 -8832
1-85 -86 -87 -88 .89
0.9517 '9527 '9536 '9545 '9554
2'70 '72
'74 76 •78
0.9910 '9914 .9917 -9920 '9923
0'40
0.3799 .3885 •3969 '4053 •4136
0.90 '9I .92 .93 '94
0.7163 -7211 '7259 •7306 '7352
1 40
0.8854 •8875 -8896 •8917 .8937
x•90 '9, .92 '93 '94
0.9562 '9571 '9579 -9587 '9595
2.80 •82 '84 -86 88
0.9926 -9929 '9932 '9935 '9937
4'25 .30 '35 . 40 '45
0.9996 '9996 '9997 '9997 '9997
0.45 '46 '47 '48 '49
0'4219
0.95 •96 '97 •98 '99
0.7398 '7443 '7487 '7531 '7574
1'45
1'95 •96 '97 -98 '99
0.9603 -9611 •9618 -9626 -9633
0 '9940
•46 '47 •48 - 49
0.8957 .8977 -8996 •9015 .9033
2'90
'4301 .4382 '4462 '4542
•92 '94 -96 .98
'9942 '9944 '9946 '9949
4'50 - 55 •60 .65 -7o
0.9998 '9998 '9998 '9998 '9998
0'50
0'4621
1'00
0.7616
I•50
0•905I
2'00
0'9640
3'00
0.9951
4'75
0'9999
'31
'41 '42 '43 '44
.31
'42 '43 '44
59
TABLE 18. PERCENTAGE POINTS OF THE DISTRIBUTION OF THE NUMBER OF RUNS with the required property. When n, and n2 are large, R is
Suppose that th A's and n2 B's (n1 n 2) are arranged at random in a row, and let R be the number of runs (that is, sets of one or more consecutive letters all of the same kind immediately preceded and succeeded by the other letter or the beginning or end of the row). The upper P per cent point x(P) of R is the smallest x such that Pr {R x} 5 P/ioo, and the lower P per cent point x'(P) of R is the largest x such that Pr IR P/ioo. A dash indicates that there is no value
approximately normally distributed with mean
zni n2 + and ni+ n2
2n022(2n1n2— — n2)
. Formulae for the calculation (ni +n2)2 (ni +n2 — I) of this distribution are given by M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 2 (3rd edition, 1973), Griffin, London, Exercise 30.8. variance
UPPER PERCENTAGE POINTS
=3 4
112
P
5
=4 4 5 6
7 8 9 9 9
7 5
5 6
7 8 9 5 6
6
7
7
7
8
8
8
xo 6 7 8 9 xo
I
P
o•x
5
n1 = 8 n2 = 17 18 19 20
9 9
9
9
II
I0 II 12 13
II
14
9 I0 I0
I0 II II
II II
12 12
9 12 12 13 13
13
II 12 13
12 13 13 13
14
13
7
12
13
14
8 9
13
14
13
15 15
9 xo
15 16 I7 18 19 20 TO II
12 13
10 II
13 14
14 15 15 15
10
14 15 16 17 i8
10
19
14 15 15
II
20 II
15 15 15
II
18 19
8 9
13 14
14 15
16 16
xo II 12 13
14 15 15 15
17 17
14
16
15 16 16 17 17
15 ,6
16 16
17 17
12
14
13
14
14 15 16 17
II
12
12
16 16 16 17 14
I
17
17 17
18 18
17 18 18
19 19 19
18 16 16 17 17
19 17 18 18 19
17
19 19 20 20 20
19
18 19 zo
16
16 16 17
18 18
18 18 19 19 19
13
17
14
14
18 19 20 14 15 16 17
I2 13
19 19
20 20 21
14 15 16 17 18
18 19 19 19 20
20 20 2I 21 2I
21 22 22 22 23
19 20 12 13 14
20 20 18 18 19
22 22 19 20 21
23 23 21 22 22
15
19
21
23
I
o•x
20 20 21 21 21
22 22 22 23 23
23
19 20 20 21 21
21 21 22 22 23
23 23
21 22 22 20 21
23 24 24 22 23
25 25 26
21 22 22 23 23
23
25
24 24 24 24
24 24 25
24 24
25
24 24 25
26 26 27
21 22 22 23 23
23 24 24 25 25
25 26 26 27 27
19
24 23 23 24 24
26 24 25 26 26
28 z6 27 28 28
16
20
25
26
29
17
17 18
24 24
26 26
19
25
27
28 29
20
25
27
29
18 19 20
25 25 26
27 27 28
29 30 30
18 19 20
15
15 16 17
18 19
20 20
5
24
18 19 20 20 20 2I 21 21
13 14 15
x6
13
19 19 17 17 18
6o
n2 =
n1 =
16 17 17 18 18
15 15
P
0•I
15
20
16
16 17
x8
x8
19
20
28
19
26
28
20
27
29
30 31
20
27
29
31
TABLE 18. PERCENTAGE POINTS OF THE DISTRIBUTION OF THE NUMBER OF RUNS LOWER PERCENTAGE POINTS
P
=
2
2
n2
=
8 9
3
3
n1 =
8
n2 = 19
5
x
8 8 6 6 6
6 6 4 5 5
5 5 3 3 3
7 7 7 8 8
5 6 6 6 6
4 4 4 4 5
8 8 8 9 6
7 7 7 7 5
5 5 5 5 4
7 7 8 8 8
5 6 6 6 7
4 4 4 5 5
8 9 9 9
7 7 7 8 8
5 5 6 6 6 4 5 5 5 5
12 13
12
2
14
5
2
15 x6 17 18
2
19
5 5 5 5 5
4 4 4 4 4
5 3 4 4 4
4 2
3 —
3 3 3
2
I0
3 4 4 4 4
2
10
2
12
12 13 14
5 5 5 5 5
3 3 3
'3
15 16 z7 18 19
6 6 6 6 6
4 4 5 5 5
3 3 3 3 3
xo
20
5 3 3 4 4
4
II
2
14
8
10
6 4 4 5 5
3
15
9
6 6 6 7 7
II 12 13 Ls 15
5 6 6 6 6
4 4 5 5 5
3 3 3 3 3
II
16 17 18 x9
9 9 io xo xo
7 8 8 8 8
6 6 6 6 7
16 17 18 19
6 7 7 7 7
5 5 5 6 6
4 4 4 4 4
12
8 9 9 9 io
7 7 7 8 8
5 5 5 6 6
5 5 6 6 6
4 4 4 5 5
2
12
3 3 3 3
x8 19
lo io zo
6 7 7 7 5
5 5 5 6 6 6
13
2
14
2 2
=5
5
2 2
2
20
2
2
5 6
2 2
7 8 9
2 2
2
10
3 3
2
12
17 x8 19
4
4
2
4
5 6 7 8 9
3 3 3 3
zo
5 6
6
2
3 3 3 3 3
2
6
2 2
2 2 2
6 7
2 2 2 2
7
2 2 2
2 2
14
3 3 3
2 2
15 16
4 4
3 3
2
12 13
20
6 7 8 9 zo II
3 3 4 4 4
II
n2= I° II
18 19
20
5
2
P
2
2
3 3 3 3
4 5
o•x
II
16
4
I
I0
15
4
5
3 3 3 3 3
13 14
3
P
0' I
4 4 4 4
II
3
I
2 2
15 x6 17 2
5
2
7
2
7 8 9
20
17
4
3
2
8 9 xo
18 19
4 4
3 3
2
II
2
12
20
4 3 3 3 3
3
2
5 6 7 8 9
4
2
8
2
x6
2
17
6 7 7 7 7
x8
8
8
13
2
14
2
15
3
2
8
61
20
2 2
9
9
2
I0
2
II
2
9
2 3 3 3
12
13 14 15 x6 9
17 x8 19 20
2
I0
II
15 16 17
x8 19 20 II
12
2 2
20 12 13 14
xs 16
9
7 8 8
20
II
13
13
9
8 8 9 9 7
4 4 4 4 4
13
14
15 x6 17 x8
9 io io Jo ix
8 8 8 9 9
6 6 6 7 7
4
13
19
II
9
7
/7
TABLE 18. PERCENTAGE POINTS OF THE DISTRIBUTION OF THE NUMBER OF RUNS LOWER PERCENTAGE POINTS
P
nI= 13
722 = 20 14 15
16 17 14
18
15
19 20 15
5
I
0•I
II 10 I0 II II
10 8 8 9 9
8 6 7 7 7
II I2 12
9 10 10 9 9
7 8 8 7 7
II
16
II
P
=
15
5
I
o•x
II
I0 I0
8 8 8 8 8
th = /7 18 19 20
I2 12 I2
IO
16
16
II
10
16
17 18
I2 12 13 13 12
o To
19 20 17
17
II
nI = 17
II II
I0
5
19
n2 =
18 18
8 8 9 9 8
P
19 20
I
0•I
13
II
13
II
9 9 9 9 9
20
13
II
18 19
13
II
14
I2
20 19 20 20
14 14 14 15
12 12 12
13
I0 IO 10 II
TABLE 19. UPPER PERCENTAGE POINTS OF THE TWO-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION .. d(P). When rejecting at the P per cent level if nin2 D(ni, n,)?.
This table gives percentage points of
D(ni, n2) = sup I Fi(x) F2(x)I, where F1(x) and F2(x) are the empirical distribution functions of two independent random samples of sizes n, and n2 respectively, nI < n2 < 20 and n, = n2 loo, from the same population with a continuous distribution function; the function tabulated d(P) is the smallest d such that Pr {nin2 D(ni, n2) d} Phoo. A dash indicates that there is no value with the required property. A test of the hypothesis that two random samples of sizes n, and n2 respectively have the same continuous distribution function is provided by
— D(ni, n2) are n1and n2are large, percentage points of 4/n1n2 ni+ n2
—
5
=
2
"2 =
5
6 7 8 9 2
I0 II
12 13 14 2
16 17 x8 19 2
20
3
3 4 5 6
3
3
7 8 9 xo
14 16 18
P
o•x ni.
16 18
24 26
24
26
24 26 28
26 28 3o
z8 3o 32 34 36
3o 32 34 36 38
38
38
40
40
32 32
34 9 12 15 15 18 2I 21
12 13
27 30
14
33 33 36
=3
I0
5
2'5
I
0•I
36
39 42 42 16
42 45 45 48 16
45 48 51 51 —
48 51 54 57 —
—
16 18 21
20 20 24
20 24 28
—
—
24 27
28 28
28 32
32 36
14
28 29 36 35 38
3o 33 36 39 42
36 36 40 44 44
15 16 17 18 19
40 44 44 46 49
44 48 48 5o 53
45 52
20
52
6o
64
5 6 7 8
20
25
25
24 25 27
24 28 3o
3o 35 35 36 40
35 40 39 43 45
n2 = 17 18 19 20
18 20 22 24
II
16
I
10 12
24 27
15
2'5
approximately given by those in Table 23 with n = co. Formulae for the calculation of this table are given by P. J. Kim and R. I. Jennrich, ' Tables of the exact sampling distribution of the two-sample Kolmogorov—Smirnov criterion D,„„, m < n', Selected Tables in Mathematical Statistics, Vol. 1 (1973), American Mathematical Society, Providence, R.I.
20 22
4
4
4
5 6 7 8 9
4
xo II 12 13
15 18
18
21 21 24 27 30
2I 24 27 30 30
27 3o 33
3o 33 36 36 39
33 36 39 39 42
36 39 42 42 45
4
4 5
5
9 to II 12
13 6z
24 28
36 40
44 48 48
— 52 56
52 56 6o 6o 64
6o 64 68 72 76 76
3o 3o 32
68 25 3o 35 35
36 40 44 45 47
40 45 45 5o 52
45 5o 55 6o 65
52
54 57
TABLE 19. UPPER PERCENTAGE POINTS OF THE TWO-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION P nI
=5
5
5
n2 = 1 4 15 x6 17 x8
42
46
51
56
70
50
52
55 54 55 6o
55 59 6o 65
6o 64 68 70
70 75 8o 85
19
56 6o
61 65
66 75
30 28
30
36
30
30 34
35 36
71 8o 36 36 40
85 90 — — 48
39 40 43 48
13
46
52
44 48 54 54
45 48 54 6o 6o
54 6o 66 66 72
10
12
33 36 38 48
14
48
51 54 56 66
54 57 6o 6z 72
58 63 64 67 78
64 69 72 73 84
78 84 84 85 96
10
x5 x6 17 x8
II
20
6
6
6 7 8 9 I0
Ix
6
6 7
7
9 9
n1 =
9
xs 17 9
76
83
96
34
36
40 42
41 45
88 42 48 49
Ioo 49 56 63
xo
40
46
49
53
63
II 12
44 46 50 56
48 53 56 63
52
56 58 70
59 6o 65 77
7o 72 78 84
56 59 61
62 68
68 73 77
75 77 84
90 96 98
65 69
72 76
So 84
87 91
107
93 56 55 6o 64
112
64 64 7o 77
x3
13
64
72
79
8 9
40
48
40 44 48
46 48 53
86 48 48 54 58
5z 54 58 6o
6o 62 64 67
64 65 70 74
68 72 76 81
8o
72
8o
8o
88
104
x7 18 19
68
77
8o
88
72
8o
86
94
III 112
74
8z
90
98
117
20
8o 54
88 54
96 63
104 63
124 72
To
50
II
52 57
53 59
6o 63
63 70
8o 81
63
69
75
87
9
12
72• 76 81 85 90
t•x
78 84 90 94 99
91 98 105 no 117
90
99
io8
126
98 Ioo 70 68
107 III 8o 77
126 133 90 89
6o 64 68 75
66 70 74 8o
72 77 82 90
8o 84 90 Ioo
96 Ioo io6 115
76
84
go
Ioo
x18
18 19
79 8z 85
89 92 94
96 xoo 103
io6 108 113
126 132 133
20
I00
II0
120
130
150
ix
66
77
77
88
99
xo
12
17
12
64
72
13 14 15 16
67
75 82 84
76 84 87 94
86 91 96
99 1 08 115
102
120
89
96
io6
127 132 140
73 76 8o
92
102
III
122
12
20 12
96 72
107 84
116 96
127 96
146 154 120
12
13
71
95
117
78
81 86
84
14
94
104
120
15 16 17
84
93
99
io8
129
88 go
96 100
104
io8
116 119
136 141
x8 x9
96 99
io8 1o8
20
104
116
13 14
91 78
91 89
15 x6
87 91
101
17
iz
88
90 97
85
93
102
II0
88
97
107
118
96
Ito
126
15o
120 124 104
130 140 117
156
Ioo
104
164 130 129
104 III
115 121
137 143
114
127
152
131 138
156 164
18 19
96 99
105 110
104
114
120 126
13
20
108
14
x4 15 x6 17
98
120 112
130 II2
143 126
154
140
14
18 19 20
63
65 70 75 78 82
x
17 x8 x9
Ica
20
12
Ix
59 63 69 69 74
2'5
89 93 70 6o
15 16
78 42
5
81
x3 14
xx
lo
8o 84 6o 57
II
70
x5 16 17 18 x9
x8 x9 20
xo
72 42
7 8 9
n2 = 13 14 16
64
13 14 x5 x6 8
42
O•I
66 35
I0 II
8
50
I
19
14
7 8
48
2'5
20
13
7
P
Jo
169
92
98
no
123
96 Ioo
106 III
116
126
152
122
134
159
104
116
126
140
166
II0 114
121 126
133 138
148 152
176 180
TABLE 19. UPPER PERCENTAGE POINTS OF THE TWO-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION P ni = 15 n2 = 15 16 17 18 19
110
5
2'5
I
0'1
105 POI
120 114
135 133
165 162
105 III
116 123
135 119 129 135
142
165
147
114
127
141
152
P
xo
5
2.5
I
128
140 136 133
156 153 148
168
200
170 164
204 187
141
166
174
n j. = 16 n2 = 20 17 17 18 19
136 118 126
180
20
130
146
151 160
175
200 209
18
18
144
162
162
18o
216
19
133
20
136 152
142 152 171
159 166 190
176 182 190
212 214 228
144
16o
169
187
225
840 854 868 882 896
900
1020
1080
1320
915 992 ioo8 1024
1037 1054 1071 io88
1098 1178 1197 1216
1342 1364 1386 1408
910
1040
1495
1056 1072
1105 1122
1235
990 1005
4206
112273 54
1088 1104
1224 1242
1292 1380
1564 1587
1190 1207 1224
1260 1278 1296
1400 1420 1440
1610 1704 1728
15
20
125
135
150
160
195
x6
16 17 18 19
zi2 109 116
128 124 128
144 136 140
16o 143 154
176 174 186
19
120
133
145
160
190
20
ni = n2 = 20
160 168 198
180 189 198 230
200 210 220 230 264
220 231 242 253 288
260
21 22 23 24
273 286 299 336
ni = n2 = 6o 6z 62 63 64
275 z86
300
350
65
312
364
324 364 377
405 420 435
66 67 68 69
1020
1035
450 496
70 71
1050 1065 1080
207 216
240
25 26 27 28 29
225 234
2 90
308 319
297 336 348
30
300 310
330 341
360 372
390 403
31
243 280
250 260 270
o•x
19
;54 518 1
32
320
352
384
416
512
72
33 34
330 374
396 408
396 442
462 476
528 544
73 74
1095
1241
1314
1460
1752
II I0
1258
1332
1480
1776
1125 1216 1232 1248
1800
35
385
420
455
490
595
75
36
396
432
468
504
612
76
37 38 39
407 418 429
444 456 468
481 494 546
518 570 585
629 646 702
77 78 79
560 574 588 6oz 616
600 615 630 688 704
720 738 756 774 836
8o 8i
1280
1440
1296
1458
82
1312
1476
83 84
1328 1344
1264
1275
1425
1500
1292
1444
1596
1824
1309 1326 1422
1463 1482 1501
1617 1638
1925
1659
1975
1520
1680
2000
1539
1701
2025
1558
1722
2050
1494 1512
1660 1680
1743 1848
2075 2184
1700 1720
1870 1892
1740 1760 1780
1914 1936 1958
2210 2236 2262
1729 1748 1767 1786
1800 1820 1932 1953 1974
1980 2002 2416 2139 2162
2484 2511 2538
1995 2016 2037 2058
2185 2208 2231 2254
2565 2592 2716 2744
40
440
520
41 42 43 44
492 504 516 528
533 546 559 572
45 46 47 48 49
540
585
675
720
855
85
1360
1530
552 564 576 637
644
690 705
736 752
874
893
720
768
912
735
833
980
86 87 88 89
1462 1479 1496 1513
1548 1566 1672 1691
90 91 92
1530 :5 546.4 7
93 94
1581 1598
658 672 686
50
650
700
750
51
663 676 689
714 728 742
765 832 848
850 867 884 901
1020 1040 1060
702
810
864
918
1134
55
715
56 57
728 798
825 84o 855
88o 896 912
990 1008 1026
1155 1176 1197
95 96
1615 1632
52
53 54
1000
1710
1950
2288 2 314 2430 2457
58
812
870
928
1044
1218
1764
59
8z6
885
1003
1062
1298
9 99
1805 1824 1843 1960
1782
1980
2079
2277
2772
6o
84o
900
1020
1080
1320
I00
I 800
2000
2100
2300
2800
64
TABLE 20. PERCENTAGE POINTS OF WILCOXON'S SIGNED-RANK DISTRIBUTION cent level if W+ x(P); a similar test against u > o is provided by rejecting at the P per cent level if W- 5x(P), and, against # o, one rejects at the 2/:' per cent level if W, the smaller of W+ and W-, is less than or equal to x(P). When n > 85, W-F is approximately normally distributed. Formulae for the calculation of this table are given by F. Wilcoxon, S. K. Katti and R. A. Wilcox, ' Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test', Selected Tables in Mathematical Statistics, Vol. I (1973), American Mathematical Society, Providence, R.I.
This table gives lower percentage points of W+, the sum of the ranks of the positive observations in a ranking in order of increasing absolute magnitude of a random sample of size n from a continuous distribution, symmetric about zero. The function tabulated x(P) is the largest x such that Pr {W+ < x} P/Ioo. A dash indicates that there is no value with the required property. W-, the sum of the ranks of the negative observations, has the same distribution as W+, with mean ln(n+ 1) and variance -Nn(n + 1) (n + ). A test of the hypothesis that a random sample of size n has arisen from a continuous distribution symmetric about p = o against the alternative that j < o is provided by rejecting at the P per P n= 5
6 7 8 9 10 II
12 13 14
zs
5 0 2
3 5 8 10 13 17 2I 25
2'5 0 2
3 5 8 10
17 21
0'5
I
I
o
3
I
5 7 9
3 5 7 9
I
n = 45
371
46 47 48 49
389 407 426 446
343 361 378 396 415
312 328 345 362 379
322 339 355
249 263 277 292 307
so 51 52 53 54
466 486 507 529 550
434 453 473 494 514
397 416 434 454 473
373 390 408 427 445
323 339 355 372 389
12 15
12
573 595 618 642 666
536 557 579 602 625
493 514 535 556 578
465 484 504 525 546
407 425 443 462 482
I
2
4 6
19 23
17 18 19 20 21 22 23 24
6o 67 75 83 91
25
loo
26 27
110
119
107
92
83
64
28
130
116
IoI
91
29
140
126
I TO
100
71 79
120 130 140 151 162
109 118 128 138 148
159 171 182
0'5 291 307
0.1
32 37
15 19 23 27 32
8 I 14 18 21
55 56 57 58 59
52 58 65 73 8,
43 49 55 62 69
37 42 48 54 61
26 30 35 40 45
6o 61 62 63 64
690 715 741 767 793
648 672 697 721 747
600 623 646 669 693
567 589 61i 634 657
501 521 542 563 584
89 98
76 84
68 75
51 58
65 66 67 68 69
8zo 847 875 903 931
772
879
718 742 768 793 819
681 705 729 754 779
6o6 628 651 674 697
86 94 103
70
960 990 1020
907 936
846 873
805 831
964
112 121
73 74
1050
994
901 928
io81
1023
957
884 912
721 745 770 795 821
131
75
1112
141
76
1144
151 162 173
77 78 79
1209
1053 1084 1115 1147 "79
986 1015 1044 1075 1105
940 968 997 '026 1056
847 873 900 927 955
185
1276 1310 1345 1380 1415
1211 1244 1277 1311
1136
Io86 1116 "47
1345
1168 1200 1232 1265
1178 1210
983 MI 1040 1070 1099
1451
1380
1298
1242
1130
27
151
137
163
147
175 187 200
159
35 36 37 38 39
213 227
195 208 221 235 249
173
40
264 279 294
238 252
43 44
286 302 319 336 353
310 327
45
371
343
41 42
2'5
0
25 29 34 40 46
241 256 271
5
O
30 35 41 47 53
3o 31 32 33 34
P
O'I
170 182
185 198 211
224
194 207
71
72
266 281 296
220 233 247 261 276
209 222 235
8o 81 8z 83 84
312
291
249
85
197
65
1176 1242
798 825 852
858
TABLE 21. PERCENTAGE POINTS OF THE MANN-WHITNEY DISTRIBUTION x(P), and a similar test against level P per cent if UB /LA < ,I.tB is provided by rejecting at the P per cent level if UA x(P). For a test against both alternatives one rejects at the 2P per cent level if U, the smaller of UA and UB, is less than or equal to x(P). If n1and n2 are large UA is approximately normally distributed. Note also that UA +UB = n1n2.
Consider two independent random samples of sizes n1and n2 respectively (n1 < n2) from two continuous populations, A and B. Let all n, + n2 observations be ranked in increasing order and let RA and RB denote the sums of the ranks of the observations in samples A and B respectively. This table gives lower percentage points of UA = RA -ini(ni+ 1); the function tabulated x(P) is the largest x such that, on the assumption that populations A and B are identical, Pr {UA x} < P/too. A dash indicates that there is no value with the required property. On the same assumption, UB = RB — in2(n2+ t) has the same distribution as UA, with mean ini n2 and variance 12-n1n2(n1+ n2 + 1). A test of the hypothesis that the two populations are identical, and in particular that their respective means /tit, itB are equal, against the alternative itA > AB is provided by rejecting at
P =
2
2
5
2'5
I
0'5
Formulae for the calculation of this distribution (which is also referred to as the Wilcoxon rank—sum or Wilcoxon/ Mann—Whitney distribution) are given by F. Wilcoxon, S. K. Katti and R. A. Wilcox, ' Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test', Selected Tables in Mathematical Statistics, Vol. I (1973), American Mathematical Society, Providence, R.I.
0'1
12 13 14
I0
15 16 I7 x8 19
O
I
O I
15 16 17 18 19
3
I
0
3
I
0
3
2
0
2 2
0 I
0
2
I
0
20
4
3 4 5 6
0
7 8 9 To II
12 13 14
15 16 17 18 I9 20 4 5 6 7 8 9
4 5
4 4
2
4
5 6 7 8 9
0
3
4
7 8 9 to II
II
=4
3
3
n2 = ro
O
O
2
3
2.5
6 7 8 9
12
3
5
n2 = 5
II
2
P
5
0
I
o
2
I
—
12
I0
14
II
I
0.5
3
2
O
4
2
O
5 5 6
3 3 4
O
7 7 8 9 9
5 5 6 6 7
15
II
16
12
17
13
20 5 6 7 8
18 4
14 2
to
8
I
O
5 6 8
3 5 6
2 3 4
I 2
9 ro II
9 II
7 8 9
5 6 7 8 9
3 4 5 6 7
12
12 13
15
12
16 18
13
I0
15
14
II
II
2
I
O
2
O
2
I
O
19
15
12
3 3
I
O
20
17
13
7 8 9 to
I
O
22
18
14
II
5 6 7 7 8
4 4 5 5 6
2
I
2
I
2
I
3 3
2
15 i6 3 4 6
9 9
4 4 4 5
2
O
2
O
3 3
0
II
6 7 7 8
I
O
IO
18 5 6
2
6
I
0
2
I
O
3 4 4
I
O
2
I
3
I
6 7 8 9 ro II 12 13
0
6
2
3 4 5 6
19 20
66
14 15 16 17 18
23
19
25 7 8 to
20
12 14
IO
i6 17 19
13 14 16
5 6 8
II
21
17
23
19
25
21
26
22
28
24
I I I 2 2
3 3 3
I
3 4 4 5
5
0•x
I2 13
0 I I 2 2
3 3 4 5 5 6 7 7
2
3 4
O
7 8 9 II
5 6 7 9
12
I0
2 3 4 4 5
15 16 8 19
12
II 13 15 16
I
6 7 8 9 to
TABLE 21. PERCENTAGE POINTS OF THE MANN-WHITNEY DISTRIBUTION P n1 = 6
7
7
2'5
I
0'5
n2 = 19
30
25
20
17
II
20
32 II
27
22
18
I2
8 10
14
15
50
12
4 6 7
2
15
6 7 9
I
13
3
x6
17 19
14 16
17
13
21 24
14
z6
18 20 22
15
28
16
30
17
7 8 9 10 II 12
7
x8 19
7 8
20
8 9 I0 II
8
P
5
II
9
12 14 16
10 12
O•I
n1 = II
5
2'5
I
0'5
38 42 46 54
33 37 40 44 47
28 31 34 37 41
24 27 30 33 36
57 61 65 69 42
51 55 58 62 37
44 47 50 53 31
39 42 45 48 27
29 32 34 37
47 51 55 6o 64
41 45 49 53 57
35 38 42 46 49
31 34 37 41 44
23 25 28 31 34
18 19
68
61
53
47
37
72
65
56
51
40
20
13
77 51
14
56
69 45 50
6o 39 43
54 34 38
42 z6 29
i5
61 65 70 75 8o
54 59 63 67 72
47 51 55 59 63
42 45 49 53 57
32 35 38 42 45
84 61 66 71 77
76 55 59 64 69
67 47 51 56 6o
6o 42 46 50 54
48 32 36 39 43
20
82 87 92
74 78 83
65 69 73
15 16
72
64
56
77
70
61
58 63 67 51 55
46 50 54 40 43
18 19
83 88 94
75 8o 85 90 75
66 70 75 8o 66
6o 64 69 73 6o
47 51 55 59 48
81 86 92 98 87
71 76 8z 87 77
65 70 74 79 70
52 56 6o 65 57
93 99 105 99 io6
82 88 93 88 94
75 81 86 81 87
61 66 70 66 71
112 113 119 127
I00 101
92
76
107
93 99
114
105
77 82 88
n2 = I2
13
II
17
13 15
5 6 7 8 9
12
12
24
19
16
zo
12
13
26
21
18
II
14
33 35 37
28 30 3z
23
19
13
15
24
21 22
14
x6
15
17
39 15 18
34 13 15 17
z8 9 II 13
24
16
19
15
7 9 II 13
4 5 6 8
22
17 20 22
20 23
z6
18 19 20
12
13
15
9 II
16
12
17
24 26
17 18 20 22
14 15
19
34 36 38 41
28 3o 32 34
24 z6 28 30
17 18 20 21
15
21
17
14
II
7
17
24 27
20 23
13 16
8 10
26 28
14
36
31
26
18 20 22
12
13
30 33
16 18 21
15 x6 17 x8 19
39 42 45 48 51
34 37 39 42 45
28 31 33 36 38
24 27 29 31 33
23 25
9
20
54
10
I0
27
40 19
36 16
26 10
II
22 24
18 21
12
29
13
31 34 37
48 23 26 33
27
24
17
17
14
41
30 33 36 38 41
26 29 31 34 37
17
44 48 51 55
36 39 42 45 48
19
15
23 25 27
44 47
39 42
29 32
25
21
15
26 z8 31 33 36
24 26 29 31
20
39 41 44 47
9 xo
12
13 14 15
16 8
17 18 19
9 9
II 12
9
12
xo
16 17
18 10 XX
19
58
52
20
6z 34
55 30
II
23
13
18
13
20
14
14
x6
14
x8 19
15
14
15
15
17 19 21
17
20
I00
i6
16
83
x6
17 z8 19
89 95 101
20
I07
17
96
14
21
18
18
102
19
109
20
115
x8
109 116
19
18
20
19
19
20
67
20
123 123 130
20
138
0•I
17 20 22 24 27
20
TABLE 22A. EXPECTED VALUES OF NORMAL ORDER STATISTICS (NORMAL SCORES) The values E(n, r) are often referred to as normal scores; they have a number of applications in statistics. In carrying out calculations for some of these applications the sums of squares of normal scores are often required: they are provided in Table 22 B.
Suppose that n independent observations, normally distributed with zero mean and unit variance, are arranged in decreasing order, and let the rth value in this ordering be denoted by Z(r). This table gives expected values E(n, r) of Z(r) for r 5 En+ r); when r > En+ I) use
E(n, r) = - E(n, n+ 1- r). n= r= I
I
2
3
0'0000
0.5642
2
6
4
5
0.8463
1. 0294
1.163o
1•2672
•3522
•0000
0'2970
0'4950
0.6418 02015
0 '7574
0.0000
3 4
7
0.3527 0.0000
8
9
xo
1 4136 0'8522 0%4728 0'1525
1 '4850 0'9323 0*5720 0•2745
1.5388 P0014 0'6561 0*3758
0'0000
0'1227
5
n=
II
12
13
14
15
16
17
18
19
20
1'8445
1.8675 P4076 ply's, 0.9210
Y = I
1'5864
1'6292
1.6680
1.7034
P7359
P7660
2
•0619
1•1157
P1641
P2079
P2479
3 4
0.7288
0.7928 0.5368
0.8498 0.6029
0.9011 0•6618
0 '9477
0.4620
0.7149
1.2847 0.9903 0.7632
P7939 1.3,88 1.0295 0.8074
1.8200 1•3504 1.0657 0.8481
P3799 P0995 0.8859
5 6
0'2249 -0000
0'3122 •1026
0'3883 •1905 •0000
0•4556 .2673 •0882
0'5157
0'5700
0'6195
•3962
'4513
'2338 •0773
'2952
0.6648 •5016 •3508 •2077 •o688
0.7066 '5477 .4016 •2637 •1307
0 '7454
'3353 •1653 •0000
0.0000
0.0620
7 8
•1460 •0000
9 I0
n=
•5903 •4483 •3149 •1870
21
22
23
24
25
26
27
28
29
30
1.8892
1.9097 1.4582
P9292
1'9477
•5034
P9653 .5243
P9822 '5442
P9983 .5633
2'0285
.4814
2'0428 1'6156
1.1582
r=x 2
1'4336
3 4
i•16o5
1.1882
•21414
'2392
•2628
'2851
'3064
2'0137 1.5815 1 '3267
0.9538
0.9846
•0136
•0409
•0668
.0914
•1147
1.1370
5 6
0.7815
0.8153
0'8470
7 8
'491 5 •3620 •2384
0.9570 •82o2 •6973 •5841 .4780
P0261
•7012 .5690 .4461
0.9317 '7929 •6679 .5527 '4444
1•0041
•6667 .5316
0.9050 •7641 •6369 '5193 •4086
0'9812
.6298
•8462 .7251 -6138 •5098
0.8708 0.7515 0.6420 0.5398
0.894.4 0.7767 0.6689 0.5683
04110 •3160 •2239 -1336 •0444
0.4430 •3501 •26o2 .1724 •0859
0 '4733
0'0000
0'0415
9 10 II 12
13
'4056 •2858
•3297
0.8768 '7335 •6040 '4839 •3705
0•1184
0.1700
0.2175
0.2616
0.3027
0.3410
0.3771
•0000
'0564
•1081
'1558 •0518
'2001 •0995
•2413
•2798
•1439 •0478
•1852 •0922
'0000
•0000
•0000
14
15
68
1.5989 1'3462
1•3648 1.1786
•3824 •2945 •2088 •1247
TABLE 22A. EXPECTED VALUES OF NORMAL ORDER STATISTICS (NORMAL SCORES) =
31
32
33
34
35
36
37
38
39
40
T = I
2.0565
2.0697
2'0824
2'0947
2'1066
2'1181
2. 1293
2'401
2'1506
2
1'6317
1• 647 I
1.6620
P6764
1.6902
1.7036
1.7166
P7291
P7413
z• 1608 1.7531
3 4
1•3827
1'3998
1 '4323
1 '4476
1'1980
1.2167
1.4164 1.2347
1•2520
1•2686
1.4624 1.2847
1.4768 1.3002
1.4906 1.3151
1'5040 1.3296
1 '3437
5 6 7 8 9
1.0471 0.9169 0.8007
x.o865 0.9590
1.1051 0.9789
p1230
1'1402
0 '9384
0 '9979
1.0162
1.1568 r0339
0.8455 0.7420 0.6460
0.8666 0.7643 0.6695
0.8868 0.7857 0.6921
0.9063
0'9250
1.1883 1.0674 0.9604
1.2033 1.0833 0'9772
0.8063 0.7138
0r8261 0.7346
0.8451
0.8634
0'5955
0.8236 0.7187 0.6213
1.1728 x.0509 0.9430 0'7547
0'7740
0.881 0.7926
10
0.5021
0.5294
0 '5555
0'6271
0.6490
0'6701
0.6904
0'7099
'4129 '3269
*44 I 8
'4694
13 14
'2432 .1613
'3575 '2757 •1957
•3867 •3065 .2283
0.5804 '4957 '4144 '3358 •2592
0.6043
II 12
•5208 •4409 •3637 •2886
'5449 •4662 •3903 •3166
.5679 '4904 '4158 '3434
•5900 •5136 .4401 .3689
•6113 '5359 4635 '3934
-6318 '5574 '4859 '4169
15
0.0804 •0000
0.1169 •0389
0.1515 .0755 •0000
0.1841 •xi0r -0366
0.2151 •1428 -0712 -0000
0'2446
0'2727
0 '2995
•1739
•2034
•2316
0.3252 •2585
0.3498 •2842
•1040 •0346
•1 351 '0674 '0000
'1647 '0985 •0328
'1929 '1282 •0640
•2199
0'0000
0'0312
x6 17 18
0.6944
1.0672
19 20
n=
1•5170
•1564 •0936
41
42
43
44
45
46
47
48
49
50
r=I
2.1707
2'1803
2'1897
2.2077
2.2164
2'2249
2'2331
I .7646 1•5296
1'7757
1.7865
1.8073
p8173
•827,
1.8366
2'2412 1'8458
2'2491
2
2.1988 P7971
1.5419 1•3705
1.5538 1•3833
1.5653
1. 5875
1. 6187
1•4196
1.5982 1.4311
1.6086
P3957
1'5766 I.4078
1'4422
1'4531
1.6286 1. 4637
1.2456 1•1281 1•0245 0.9308 0.8447
1.2588 P1421 p0392 0.9463
1.2717 1.1558 1.0536 0.9614
1.2842 1.1690 1.0675 0.9760
1.2964 p1819 1.0810 0.9902
1.3083 1.1944 1'0942 I.0040
0.8610
0.8767
0.8920
0.9068
0'9213
1.3198 1.2066 1.107o 1.0174 0 '9353
1'3311 1'2185 P1195 I'0304 0.9489
0.7645 •6889 •6171 '5483 •4820
0.7815 •7067 -6356 -5676 -5022
0'7979
0.8139 '7405 -6709 -6044 '5405
0.8294 .7566 .6877 •6219 '5586
0.8444 -7723 '7040 •6388 '5763
0.8590 -7875 .7198 •6552 '5933
0.8732 -8023 .7351 -6712 '6099
0.4389 '3772 •3170
0'4591
0.4787 '4187 -3602 •3029 •2465
0.4976 '4383 •3806 '3241 •2686
0 '5159
0 '5336
'4573 '4003 '3446 •2899
'4757 '4194 '3644 •3105
0.5508 '4935 '4379 •3836 '3304
0. 1910 •1360
0'2140 •1599
0'2361
0'2575
0'2781
•0814
•1064
'1830 '1303
•2051 '1534
•2265 '1756
'0271
'0531
*0781
•1020
'1251
•0000
•0260
-0509
'0749
0.0000
0'0250
3 4
1 '3573
7
1.2178 1•0987 0 '9935
8 9
0.81 06
1.2319 1.1136 1.0092 0.9148 0.8279
10 II 12
0.7287
0 '7469
•6515 -5780
'6705
13 14
•5075 '4394
•5283 •4611
15 16 1.7 18 19
0'3734
•3089 .2457 •1835 •1219
0.3960 •3326 '2704 -2093 '1490
0.4178 '3553 ' 2942 '2341
'2579
•1749
•1997
20 21 22 23 24
0'0608
0.0892
0•1163
O'1422
'0000
'0297
'0580
'085,
'0000
'0283
5 6
0.8982
'5979
.7238 .6535 •5863 •5217
•3983 '3390 •2808 •2236 0.1671 •IIII '0555 '0000
25
69
1 '8549
TABLE 22B. SUMS OF SQUARES OF NORMAL SCORES This table gives values of S(n) = E [E(n, r)]2. r=1
S(n)
n
S(n)
3 4
o•0000 0•6366 1.432 2'296
xo xx 12 13 14
7.914 8.879 9.848 1o•82o 11.795
5 6 7 8 9
3'195 4.117 5'053 5'999 6.954
15 16 17
10
7.9x 4
n
2
n
S(n)
n
S(n)
n
S(n)
43 44
37479 38'473 39-466 40.460 41'454
20
17'678
30
27'558
40
2x
18.663
3x 32 33 34
28'549 29'540 30'531 3P523
41
32'515 33'507 34'500 35'493 36'486
45 46 47 48 49
42.448 43'443 44'437 45'432 46.427
37'479
50
47'422
22
19.649
23 24
20'635 21.623
12.771 I3.750 14'730
25 26
18
15-711
28
22.610 23'599 24'588 25'577
19
16 '694
29
26'567
35 36 37 38 39
20
17.678
30
27'558
40
27
42
TABLE 23. UPPER PERCENTAGE POINTS OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION n'D(n) d(P). The distribution of n1D(n) tends to a limit as n tends to infinity and the percentage points of this distribution are given under n = co. This table was calculated using formulae given by J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function (1973), Society for Industrial and Applied Mathematics, Philadelphia, Pa., Section 2.4.
If F„(x) is the empirical distribution function of a random sample of size n from a population with continuous distribution function F(x), the table gives percentage points of D(n) = sup IFn(X)-F(X)1;the function tabulated is d(P) such that the probability that niD(n) exceeds d(P) is P/Ioo. A test of the hypothesis that the sample has arisen from F(x) is provided by rejecting at the P per cent level if 10
5
2'5
I
0•I
P
10
5
2.5
x
o•x
0.950 r098
0.975 1'191
0.9875 P256
0.995 P314
n = 20
P184
3 4
1'102 1' 130
1•226 1'248
1•330 1'348
1436 1468
0.9995 P383 1. 595
21 22 23
•185 •186 •187
24
•188
P315 •316 '317 •318 '319
1.434 '435 '436 '438 '439
1.576 •578 '579 •58o -582
1.882 .884 .887 •889 •890
5
P139
P260
P370 •382 •391 •399 '404
1'495 '510 •523 .532 '540
P747 '775 '797 .813 •825
25 26 27
1•188 •189 •190
P320
28
•190
29
•1 9 1
'322 •323 •323
P440 '440 '441 '442 '443
P583 •584 '585 •586 '587
1.892 *894 *895 •897 .898
1 '546
1 '835
'551 •556 '559 .563
'844 *851 -856 .862
30
P192 .196
P324 •329 •332 .335 •337
1•444 '449 '453 '456 '458
P588 '594 .598 -601 •604
P899 .908 '914 •918 •921
r565 •568 .570 .572 '574
1866 •87o '874 .877 .88o
P338 '339 •340 '346 '358
1'459 '461 '462 '467 '480
x•605 •6o7 •6o8 '614 '628
1.923 •925 •927 '935 '949
P n=I 2
6
•146
-272
7
•154
'279 •285 •290
8
59
• 1
9
•162
xo
1. x 66
I/ 12
•169 •171
13 14
•174 •176
•303 •3 05
P409 '41 3 '417 '420 '423
15
P177 •179 •180 •182 •183
P308 •309 •311 •313 .314
P425 '427 '429 '431 '432
x6 17 18 19
P294 '298 •301
1'701
40 50
•1 99
6o
•20I
70
•203
8o
P205
90 100 200
'206 '207
00 20
1'184
p315
p434
p576
P882
70
'212 •224
•321
TABLE 24. UPPER PERCENTAGE POINTS OF FRIEDMAN'S DISTRIBUTION Consider nk observations, one for each combination of n blocks and k treatments, and set out the observations in an n x k table, the columns relating to treatments and the rows to blocks. Let the observations in each row be ranked from I to k, and let Ri (j = I, 2, k) denote the sum of the ranks in the jth column. This table gives percentage points of Friedman's statistic
M
12
k
3n(k + 1)
nk( + 1) =
on the assumption of no difference between the treatments; the function tabulated x(P) is the smallest value x such that, on this assumption, Pr {M x} < Pima. A dash indicates that there is no value with the required property. A test of the hypothesis of no difference between the treatments is provided by rejecting at the P per cent level if M x(P). The limiting distribution of M as n tends to infinity is the X'-distribution with k - I degrees of freedom (see Table 8) and the percentage points are given under n =
k=3 P
lo
5
n=3
6•000 6•000
6•000 6.50o
8.000
8•000
5.200 5'333 5'429 5.25o 5'556
6.400 7.000 7'143 6.25o 6.222
7.600 8.333 7'714 7'750 8.000
8.400 9.000 8.857 9•000 9'556
10'00 12'00 12'29 12'25 12'67
9
5-000 5.091 5.167 4'769 5'143
6.2oo
7.800 7.818 8.000 7'538 7'429
9.600
12.6o 13.27 12.67
I0 II 12
12'46 13'29
13 14
4 5
6 7 8 9 I0
II 12
13
14
6'545
6.500 6.615 6.143
2.5
6.400 6.5oo 6.118 6.333 6.421
7.600
4'900 4'95 2 4'727 4'957 5.083
6'300 6•095 6'091
7'500 7'524 7'364 7.913
25 z6 27 z8 29
4'88o
6.080 6.077 6•000 6.5oo 6.276
7'440 7'462 7'407 7'71 4 7.517
3o 31 32 33 34
4'867 4'839 4'750 4'788 416 5
6•zoo 6.000 6•063 6•061 6•059
7400 7548 7.563 7.515
4'605
5.991
4'933 17
20 21 22 23 24
4'875 5.059 4'778 5.053
4'846 4'741 4'571 5. 034
6'348 6'250
7.625 7'41 2
7'444 7.684
7'750
I
9'455
9'500 9.385 9'143
o.z
5 n =3 4
6-600 6.3oo
740o 7.800
8.2oo 8.400
9•o00 9.60o
5 6
6.36o 6.400 6.429 6.3oo 6•zoo
7.800 7.600 7.800 7.650
8.76o 8.800 9.000 cr000
7.667
8.867
9'960 10'20 10'54 10'50 10'73
1 3'46 13'80 14'07
6.36o 6.273 6.300 6.138
7.680 7.691 7.700 7.800
10•68
14'52
7'714
10•75 10•80 10'85 10'89
1 4.80
6. 343
9.000 9.000 9.100 9.092 9.086
7.720 7.800 7.800 7'733 7.863
9.160 9.150 9.212 9.200 9-253
10'92 10'95 11'05 10•93 11'02
7.800 7'815
9.240 9'348
I 1'10
15'36
11'34
16-27
7 8
8.933 9'375 9. 294 9.000 9'579
12.93 13.50 13.06 13.00 1 3'37
18 19
6.280 6.300 6.318 6-333 6'347
9.300
13.3o
20
6.240
9.238
13. 24
CO
6'251
9.091 9'391 9.250
13.13 13.08
8.960 9.308
1. 10 12•60 12'80
1 4'56
14'91 15.09 15.08 15.15 15.28 15.27 1 5'44
1 3'45
5 n=3 4
13'52 13'23
9'407
13'41
9'172
13'50 13.52
9. 214
k= 4 2.5
5 6 7
7467 7.600
8.533 8.800
7680
8.96o 9.067 9'143 9'200
k=5 2.5 9.600 9.800
I
43•x
i0•13 11.20
13'20
'0.40 10'51 10'60
11'68 11'87 12'11 12'30
14'40 15.2o 15.66 16•oo
10'24
I I .47
13'40
8
13'42 13.69
9
7733
9'244
10.67
12'44
16.36
1 3'52 13'41
00
7'779
9.488
11.14
I3.28
18.47
7'471
9.267 9.290 9.25o 9.152 9.176
7'733 7'771 7.700
7'378
9.210
13.82
k=6
c1:4
71
P
zo
5
n= 3 4
8.714 9.000
9.857 10.29
io.81 11.43
11.76 i2-71
13.29 15.29
5 6
9•00o 9.048
10.49 1(3.57
11'74
16'43
00
9'236
11'07
13'23 13'62 15'09
2.5
12'00 12'83
I
O•I
1705 20'52
TABLE 25. UPPER PERCENTAGE POINTS OF THE KRUSKAL-WALLIS DISTRIBUTION Consider k random samples of sizes n,, n2, ..., nk respectively, n1 n 2 ... nk, and let N = n1+ n2 + ... nk. Let all the N observations be ranked in increasing order of size, and let R, (j = I, 2, ..., k) denote the sum of the ranks of the observations belonging to the jth sample. This table gives percentage points of the Kruskal-Wallis statistic k
12
H
N(N+ r)j
tinuous population; the function tabulated, x(P), is the smallest x such that, on this assumption, Pr {H P/ioo. A dash indicates that there is no value with the required property. The limiting distribution of H as N tends to infinity and each ratio n;IN tends to a ppsitive number is the x2-distribution with k I degrees of freedom (see Table 8), and the percentk). A test of age points are given under n;= oo (j = 1, 2, the hypothesis that all k samples are from the same continuous population is provided by rejecting at the P per cent level if H x(P). -
R2
E
3(N+ I)
on the assumption that all k samples are from the same con-
k n1, n2, ns 2,
=
re.
=3 5
I
cvx
ni, n2,
123
6, 5, 6, 6,
5
540 4:007
5:7 92 459 4
6, 6, 6 6, 4 3 2
4'438 4'558 4'548
5.410 5.625 5'724
6, 5 6, 6 I,
44 4...2L47 32
7 5:8o65i
2,
I
4'200
2, 2
4'526
4'571 4'556
5'143 5'361
5.556
3, 4, 4, 4, 4,
3, 3
4'622 4'500 4'458 4'056 4'511
5.600
5.956
5'333 5.208 5'444
5.500 5'833 6.000
6.444
6, 6, 7, 7, 7,
4, 4, 4, 4, 4,
3, 4, 4, 4, 4,
3
4'709 4'167 4'555 4'545 4'654
5'791 4.967 5'455 5'598 5.692
6 '155 6.167 6.327 6 '394 6.6i5
6 '745 6. 667 7.036 7'144 7.654
7, 7, 7, 7, 7,
5, 2,
I
4.200 4'373 4'018
6.000 6.044 6-004
6. 533
4'533
5.000 5.160 4.960 5.251 5.648 4'985 5.273 5.656 5.657 5.127
5'858 6.068 6.410 6 '673 6•000
6 '955
6.346 6.549 6•760 6.740 5.600 5'745 5'945 6.136 6.436 5-856
5,
3, I 3, 2
I
2
3 4
2, 2
5, 3, I 3, 2 5, 3, 3
5,
I
4.714
4'65 1
4, 4, 4, 4,
3 4
5, 5,
I
3'987 4'541 4'549 4'668 4'109
5, 5, 5, 5, 6,
5, 5, 5, 5,
2 3 4 5
4'623 4'545 4'523 4'560
2,
I
4'200
5'338 5'705 5.666 5.780 4.822
6, 6, 6, 6, 6,
2,
3, 3, 3, 4,
2 I 2
4'545 3'909 4'682 4'500 4'038
5'345 4'855 5.348 5'615 4'947
6, 6, 6, 6, 6,
4, 4, 4, 5, 5,
4'494 4'604 4'595 4'128 4'596
5.340 5.610 5.681 4'990 5.338
4'535
5.602
4'522
5•66 1
5, 5, 5, 5,
2
3 I 2
3 4 z 2
6, 5, 3 6, 5, 4
I
-
7.200
8.909 9-269
=3 5
3, I 3, 2
7
P=
Ic•
4'571 4 5 6 42080
2, I 2, 2
k
.o. 2'5
2 I 2
3, 3, 3, 3,
2, 2, 2,
P
4.706 5'143
2
3, 3 4, I 4, 2
6.848 6.889 5'727 5.818 5-758 6.201 6.449
I
0.1
8.028 7.121 7.467 7.725 8•000
10.29 9.692 9.752 10.15 10'34
8.124
10'52
8'222
10-89
7.000 7.030
-
6.184
6.839 7.228 6.986 7.321
8. 654 9.262 9.198
5 .'6520 3
6:7 5078 7
7 7:5 14 0
4:0 415
5 :0 39 634
1 :9 2:3
06510 7:4
3, I 3,
2'5 6.788 5-923 6.2to 6.725 6.812
7 4 5'3952
3 4.'5 1 2 4'603 4'121 4'549
4'986
5191
5'376
4:55 6 2 27
5.620
4, 3 4, 4 5, I
8-727
7, 7, 7, 7, 7,
5, 3
4'535
5'607
6.627
7.697
9. 67o 9'841 9.178 9.640 9.874
7.205 7'445 7'760 7.309
8.591 8'795 9.168 -
7, 7, 7, 7, 7,
5, 5, 6, 6, 6,
4 5 I
4'542 4'571 4'033
6'738 6.835 6.067 6'223 6.694
7.931 8.108 7'254 7- 490 7.756
io•16 10'45 9'747 10.06 to.26
7.338 7'578 7.823 8•000 -
8.938 9'284 9.606 9.920 -
7, 7, 7, 7, 7,
6, 6, 6, 7, 7,
2
6.970 7.410 7.106
8.692 -
7, 7, 7, 7, 7,
7, 7, 7, 7, 7,
6.667 5.951 6.196
7.340 7.500 7'795 7.182 7.376
8.827 9.170 9.681 9.189
6.667 6.750
7'590
7.936
9.669 9.961
6'315
6.186 6%538
6-909 7.079
-
6'655 6 '873
5, 2
2
4'500
3
4'550
5'733 5-708 5.067 5'357 5.680
4 5 6
4'562 4'560 4'530 3'986 4'491
5.706 5170 5'730 4.986 5-398
6.787 6 '857 6.897 6.057 6.328
8.039 8'157 8.257 7.157 7.491
10.46 10'75 11.00 9.871 10 '24
3 4 5 6 7
4'613 4'563 4'546
5.688 5.766 5.746 5'793 5.818
6.708 6.788 6.886 6.927 6.954
7.810 8.142 8.257 8-345 8.378
10 '45 10.69 10.92 11.13 11.32
8, x, I
4'418 4.011 4.010 4'451
4.909 5.356 4.881 5.316
5.420 5:0 86 14 7 6 6.195
4...050 31
5(D364 9134 7
6.588 g.•189 835
8,
2,
I
I
8, 2, 2 8, 3, x 8, 3, 2
4'568
4'594
4.587
8, 3, 3
8, 4, 1 8, 4, 2
72
6 6..8 60 64 3
7.022
8.791
6 7...3 3 97 50 3
89%940 921 36
TABLE 25. UPPER PERCENTAGE POINTS OF THE KRUSKAL-WALLIS DISTRIBUTION k=3 P = to
nb n2, n5 8, 8, 8, 8, 8,
k =4 -
5
2.5
I
0• I
ni, n2, n3, n4
9'742 icror 9'579 9.781
4, 4, I, 4, 4, 2, I
P=
3 4 I 2 3
4'529 4'561 3.967 4'466 4'514
5.623 5'779 4'869 5'415 5.614
6.562 6750
5.864 6.260 6. 614
7'585 7853 7.110 7'440 7.706
8, 5, 4 5 8, 6, 8, 6, 2 8, 6, 3
4'549 4'555 4'015 4'463 4'575
5.718 5.769 5.015 5'404 5.678
6.782 6. 843 5'933 6. 294 6658
7'992 8.146 7.256 7'522 7'796
10. 29
8, 8, 8, 8, 8,
6, 4 6, 5 6, 6 7, 7, 2
4.563 4'550 4. 599 4'045 4'451
5'743 5.750 5'770 5'041 5'403
6'795 6.867 6.932 6'047 6 '339
8-045 8.226 8.313 7.308 7. 571
10.63 10.89 11.10 10.03 10.36
8, 8, 8, 8, 8,
7, 7, 7, 7, 7,
3 4 5 6 7
4'556 4'548 4'551 4'553 4'585
5.698 5'759 5.782 5.781 5.802
6.671 6.837 6. 884 6.917 6.98o
7.827
8.1,8 8. 242 8.333 8.363
10•54 10.84 11.03 44.28 11.42
2, 2,
2, 2,
I, 2,
I, I,
I I
2, 2,
2, 2,
2, 2,
2, 2,
I 2
3,
2,
X,
X,
X
8, 8, 8, 8, 8,
8, 8, 2 8, 3 8, 4 8, 5
4'044 4'509 4'555 4'579 4'573
5-039 5.408 5.734 5'743 5761
6'oo5
io•16 10.46 10.69 10.97 1.18
3, 3, 3,
2, 2,
2,
I,
I
2,
I
2,
2,
2, 2,
6.920
7'314 7.654 7889 8.468 8.297
8, 8, 6 8, 8, 7 8, 8, 8
4'572 4'571 4'595 4.582
5'779 5'791 5.805 5.845
6.953 6.98o 6995 7'041
8'3 67 8.41 9 8.465 8.564
11.37 44.55
4, 4, 5, 5, 5,
8, 5,
9, 9, 9
4' 60 5
00, 00, OD
5'991
6.351 6.682 6.886
7'378
9. 210
10'04
10.64
9'840 io.n I0 '37
n4
2,
3,
2, 2, 2,
2, 2, I,
I 2 I
3, 3,
2, 2, 2, 2,
I
2,
3, 3, 3, 3, 3, 3,
2
I,
3, 2, I 3, 2, 2 3, 3, 3, 3, 2
3, 3, 3, 3 4, 2, I, 4,
2,
2,
4, 2, 2, 2 4, 3, I, I 4, 4, 4, 4, 4,
3, 3, 3, 3, 3,
2, I 2,
2
3, I 3, 2 3, 3
P= 5'357 5.667 5.143 5.556 5'644
5
25
I
5'679 6.467
6.667
6.667
5.833 6.333
6.250 6.978
6 '333 6. 244 6 '527 6 .600 6.727
6'333 6.689 7'055 7.036 7.515
7.200 7.636 7.400 8.015
6.026
7'ooO
7.667
8.538
5.250 5'533 5'755 5.067
5.833 6.133 6'545 6.178
6.533 7'064 6.741
7.000 7'391 7.067
5'591 5'750 5.689 5.872 6•016
6-309
6'955
6.621 6.545 6.795 6. 984
7.326 7.326
7'455 7.871 7'758 8.333 8.659
7'564 7'775
2.5
I
0•I
5'945 6.386 6.731 6.635 6'874
6'955 7.159 7.538 7.500 7'747
7.909 7.909 8.346 8.23, 8.621
8.909 9'462 9.327 9'945
8876 8.588 8.874 9'075 9.287
10'47 9.758 10.43 10'93 1I-36
4: 4,3 2: 3, 4, 4, 3,
2 I 2
5.182 5.568 5.808 5.692 5'901
4, 4, 4, 4, 4,
3 I 2 3 4
6.019 5.654 5'914 6.042 6•088
7.038 6.725 6 '957 7.142 7.235
7.929 7.648 7'914 8'079 8.228
oo, 00, oo, oo
6.251
7'815
9'348
4, 4, 4, 4, 4,
3, 4, 4, 4, 4,
n4, n2, n3, n4, n5
3, 3,
41.95
5.786 6.250 6.600
11.34
6'982 6'139
6.511 6.709 6955 6.311 6.6o0
2
I,
I
5
2'5
6.750 7.333 7.964
7.533 8.291
6'583
--
--
6.800 7'309
7.200 7'745
7'600
7.682
8.182
7.1n 7.200
7.467 7.618
8.538 8-06 z 8'449 8.8,3 8.703 9.o38 9'233
2,
I 2
6.788 7.026 6.788
2,
I
6'910
2,
2
7'121
7'591 7'910 7'576 7'769 8.044
3, 3, 3, 3, I 3, 3, 3, 3, 2 3, 3, 3, 3, 3
7.077 7.210 7'333
8.0o0 8.2oo 8.333
CO, 00, 2), CO, 00
7'779
9'488
3, 2, 3, 2, 3, 3, 3, 3, 3, 3,
I
6.750 7.133 7.418
2,
3, 3, 3, 3, 3,
11'70
2,
P = zo
I
I, 3, 3, I,
16.27
0'I
-
8.12,
-
--
8'127 8.682 8.073
9'364 -
8.576 9.115 8'424 9.051 9.505
9.303 10403 9'455 9'974
9'451 9.876
10'59
10-64
13'82
0.1
k= P=
2-5
-
I
7.600 8•348 8'455
7.800 8.345 8.864
8'455
2,
2
8.154
8.846
9.385
I,
I
7'467 7'945 8.348 8'731 9'033
7.667 8.236 8.727 9.248 9.648
7.909 8.303
8'564
I,
2,
I,
I,
2,
2, 2,
2, 2,
I, 2,
2,
2,
2,
2,
I,
2, 2,
2, 2,
2, 2,
I I I
Io
• 17
10'20
11'67
13.28
18'47
6
5
I,
2,
11.14
6.833 7.267 7.527 7.909
/42,
7'133
5'333 5.689 5'745 5.655 5.879
5
k=5
k=4 nb nz, n3,
70
0. I
8.648 9'227 9'846
9'773 I 0'54
8.509 9.136 9.692
9.682 I0'38
9'o30
3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
9.513 -
2,
I, 2,
I I
7.133 7418 7.727 7.987
2,
2,
2
8'198
I,
I,
2, 2,
I, I, I 2,
2, 2,
3, I, I, I, I moo 3, 2, I, I, I 7.697 3, 2, 2, I, I 7'872 3, 2, 2, 2, I 8.077 3, 3,2, 2, 2, 2 8.305
3, 3, 3, 3,
8.909 9.482 9'455
8.667
10'22
11'11
8'564 9'045
8'615
9.128
8'923
9'549
10-15
n -oi
9.190
9.914
10-61
11'68
15.09
20*52
9.628
10.31
10'02 CO, 00, 00 , 00, CO, 00
73
9.236
11.07
12.83
• TABLE 26. HYPERGEOMETRIC PROBABILITIES Suppose that of N objects, R are of type A and N— R of type B, with R N—R. Suppose that n of the objects, n < N—n, are selected at random without replacement and X are found to be of type A. Then X follows a hypergeometric distribution with the probability that X = r given by
Here the rows correspond to types A and B and the columns to ' selected' and not selected' respectively, and the marginal totals are given. Fisher's exact test of no association between rows and columns, or of homogeneity of types A and B, is provided by rejecting the null hypothesis at the P per cent level if the sum of the probabilities for all tables with at least as extreme values of X as that observed is less than or equal to Pj roo. More extreme' means having smaller probability than the observed value r of X, given the same marginal totals. This test may be either one- or two-sided, as shown below.
p(rjN, R, n) =
(':)(Nn — T(Nn) This table gives these probabilities for N < 57 and n < R (if not, use the result that p(rIN, R, n) = p(rIN, n, R)). For N > 57 these probabilities may be calculated by using binomial coefficients (Table 3) or logarithms of factorials (Table 6). When N is large and RI N < c•r, X is approximately binomially distributed with index R and parameter p = n/N (see Table r); similarly, if N is large and n/N < o•1, X is approximately binomially distributed with index n and parameter p = R/N. If N is large and neither R/N nor n/N
Example. I 5 4 4 5 9
(X+.', — nR I N)I[R(N — R) n(N — n)I Nz(N — 1)11 is approximately normally distributed with zero mean and unit variance; a continuity correction of 2 , as with the binomial distribution, has been used. A representation of the data in the form of a 2 x z contingency table is useful:
✓ R— r R n—r N—R—n+r N — R n N—n N N
2 I I = 0 0'5000 I '5000
5 =
I 2
Rn 2 2
I
0'7500
•6000 .r000
I
.1429
I
•2500
0.8333 •1667
O I
O 06667
4 O I
2 0'5000 •5000
4
2 2
O
0•1667
x
•6667
2
'1667
N R n
2 I
= 0
6 2 x I
8
0-8571
4 I I 0'7500 '2500
I I
= 0
6 x O
7
N R n
0'3000
3
O 06667 I '3333
N R n
7
2 I
8
2 2
O I
01143 2857
O I
0.5357
2
-0357
7
2 2
•4286
2 2
I
0.0714 '4286
2
'4286
0
3
8 3
2
I
*4762
O
06250
2
•0476
I
•3750
3 4
O
0'4000
I
'5333
2
•0667
7 3
8 3
03571 '5357
2
'1071
001 43 •2286 '5143 •2286 •0143
028 57
6 3
I
. 571 4
0
O I
2
•1429
I
2
5 x
O
O cr8000 I .2000
•
-6000
2
'2000
0'2000
5 2 I
6 3 3
O o.6000 I •4000
O I
0 0500
2
'4500 *4500
3
•0500
8 3 3
o•1786
2
7 3 3 6 3
9 I z
O 0.8889 I
'III'
2
O
o•5000 -5000
2
O 0.1543 I '5143 2
'3429
3
•o2.86
8
O 0.8750 •125o I
3
'5357 2679 •0179
8 4 O o.s000 I -5000 8 4 2 O 0. 2143 I '5714 2
74
'2 1 43
2
0
0.4167
I
•5000
2
'0833
9
2 I
O 0.7778 I '2222
O
0'2381
I
2
'5357 ' 2143
3
'0119
9 4 I O I
2 2
O I
0.5833 '3889
2
'oz78
0.5556 '4444 2
O I
0'2778 *5556
2
'1667
9 4 3 I
2
3
9 3 I
0
O 06667
I
'3333
I
0
O o 8000 '2000 I I0 2 2 O I
0'6222
2
'0222
'3556
zo 3 I I
'3000
xo 3
2
O 04667 '4667 • 2
'0667
0'1190
. 4762 •3571 '0476
9 4 4
I
I0 I
= 0 0'9000 I ' 100
O 0.7000 9 4
0
9
N R n
I0 2 I
.0714
8 4 4 I
O I
9 3
r=
9 3 3
O 04762
7 3 I O 0. 5714 I •4286
N R n
8 4 3
r=
'3333
6
14
From the tables p(1114, 6, 5) = •2098. A more extreme onesided value is r = o, giving a total probability of •2378, not significant evidence of association or of inhomogeneity. If a two-sided test is required, r = 4 and r = 5 have probabilities •0599 and •003o respectively, less than •2098; the total is now .3007. When N > 17 and nR/N is not too small, a (two-sided) test of the hypothesis of no association, or of homogeneity, is provided by rejecting at the P per cent level approximately if x2 = N[rN — nR] 21[R(N — R) n(N — n)] exceeds A(P) (see Table 8). (Cf. H. Cramer, Mathematical Methods of Statistics (1946), Princeton University Press, Princeton, N.J., Sections 30.5 and 30.6.)
is less than o•1,
N R n
6 8
013397 '3175 2 '4762 •i587 3 •0079 4
xo 3 3 O I
0'2917 •5250
2
-175o •0083
3 I0 0 I
4
o.6000 '4000
TABLE 26. HYPERGEOMETRIC PROBABILITIES N R n 10 4
r=
2
N R n II 3
2
N R n 12 I I
0
0.3333
1' = 0
0.5091
Y= 0
I
'5333
I
x
2
.1333
2
.4364 *0545
0.9167 .0833
12 2
10 4 3 O I
0.1667 - 5000
2
- 3000
3 I0
O
'0333 4 4 0.0714
xi 3 3 0 0.3394 I
•5091
z 3
•1455 •006I
Ix 4 1 I
'1143 •0048
xx
io 5 x O I
0.5000 -5000
0.8333 •1667
12 2 2
o
0.6818
I 2
'3030 '0152
0 0.6364
I '3810 2 -4286
3 4
0 I
I
•3636
4 2
0 0.3818 •5091 x 2
'1091
II 4 3
12
3 i
o I
0'7500 *2500
12 0
3
2
I
0.5455 .4091
2
-0455
o 0'2121 22 3 3 12 - 5091 I 0'2222 2 •2545 0 0.3818
N R n
N R n
N R n
N R n
12
13
13 5 5
14 3
5 4
Y= 0 I 2
0'0707
3 4
' 1414 •oioi
'3535 '4242
I
.5556
3
•0242
2 '2222 10
5 3
ix 4 4 0 0•1061
O
0.0833
I 2
'4167
I 2
•4167 •0833
4
3
3
'4242
•3818 •0848 •0030
1
.4909
2
*1227
3
.0045
12 4
I
0
0.6667
I
'3333
12 4 2 I0
5 4
O
0'0238
I
•2381 .4762 - 2381 '0238
2
3 4
xo 5 5 0
0'0040
x
-0992.
2
•3968
3 4 5
-3968 .0992 .0040
II I I O
I
0'0091 '0909
II 2 I
O 1
0.8182 •1818
II 2 2
O •
0. 6545 .3273
2
'0182
II
3 O 0.7273 I •2727
II 5 I 0 I II
0. 5455 •4545 5 2
0
0'2727
I 2
O I 2
0'4242
•4848 '0909
5 5
12
.5455
O x
0. 2545 •5091
'1818
2
'2182
3
•.0182
II 5 3 O
0.1212
x
-2210
2
3
'441 9 '2652
4
' 044 2
5
•0013
I
'4545
0 0. 1414
*3636
3
.0606
I 2
*3394
3 4
.0646 .0020
II 5 4
•4525
O
0.0455
I
•3030
12
5 I
0 I
0.5833
2
*4545
3
•1818
4
'0152 12
6 x
12 0 I
0.5000 •5000
6
12
Ix
5 5
O I 2
0'0130 -1623 '4329
3 4 5
.3247 -0649 •0022
O I 2
2
0.3182 .5303 .1515
0 I
0 2273 . '5455 ' 2273
6
12
3
0 0'0909
x
.4091
2
409 1
3
.0909
12
6
4
0
0'0303
I 2 3
• 2424 .4545 . 2424 0303
4
0 I 2
6
5
0'0076 •1136
-3788 •3788 .1136 .0076
3 4 5
12 6 6 0 I 2
0'0011 •0390
3 4 5 6
'4329 '2435 .0390 .00 1 1
'2435
13 I I O I
0- 9231 -0769
5 3
O
0.8462
O
0'1591
I
'1538
•
'4773 •3182. .0455
2
3
r = 0 2704 4335 51 I .2.720 3
13 3 I I
'2308
13 3
2
0 0. 5769 '3846 I '0385 2
0 0.4196
x
-47zo
2
'1049
3
.0035
13 4 I 0
0'6923
x
•3077
13 4 0 I 2
2
0 . 4615 •4615 '0769
13 4 3
13 2 I 12
- 0128
2
'4167
5
•2821
2
x3 3 3
12 4 4
2
1
0 0-0265
12 12 4 3
7 = 0 0'7051
4 5
•2176 3 01 51 00
0 0.7692
xo 5 O
2 2
75
13 6 I O I
0'5385
O I 2
2
0'2692 '1923
x3 6
3
O I 2
0'1224 *4406 '3671
3
-0699
13 O I 2
3 4
6 4 0.0490 .2937 .4406 -1958 •0210
x3 6
5
I
- 1632
3
2 '4079
I
-4699
2 '3021
3 4 13 O I
.0503 .00i4 5 i 0.6154
3846
13 5 0
I 2
3 4
13 O I 2
6 6 0'0041 '0734 - 3059
'4079 '1836 •0245 6 •0006
3 4 5
'0714
'3916 '1119 '0070
0. 7143 - 2857
14
O I 2
4 0'4945 .4396 •0659
14 4 3
0 I
0.3297 '4945
2
'1648
3
•0110
14 4 4 O I 2
0'2098 .4795 - 2697
3 •0400 4 •0010 14 5 I x
0.9286
2
0 I
.3571
5 •0047
I
0.0979 .3916
-0907
•0027
0 0.6429
O
O I
2
3
•0816
14
13 5 4
0'4533 '4533
4
5128 '1282
2 '2797 .0350 3
O I
.3263
2
13 5 3 0 0.1958 -4895 I
14 3 3
3
0.3590 •
'0330
.5385
0.0163
0 0- 1762
• 3626
14 4 I 13 6
O
13 4 4
I 2
'4615
0 0'2937 -5035 I •1888 2
•0140
2
r = 0 0. 6044
14 2 I
O I
0.8571 •1429
14 2 2 O I 2
0/253 '2637 '0110
14 3
O 0.7857 '2143 I
14 5 2 O I
0.3956
2
'1099
'4945
14 5 3 O
0'2308
I 2 3
*4945 '2473 -0275
14 5 4
O I 2
0.1259 •4196
3 4
.0899
'3596 '0050
14 5 5
O
0'0629
• 2
'3 147 '4196
3 4
'0225
5
.1798
•0005
TABLE 26. HYPERGEOMETRIC PROBABILITIES N
R n
14
6
1
N 14
R n 7
5
N 15
R n
N
R n
N
R n
N
R n
N
4
15
6
x6
x
16
5
16
3
r= 0
0'5714
7' = 0
0'0105
r= 0
0.3626
I
-4286
x
•1224
I
. 4835
2
'3671
2
3 4 5
•3671 •1224
3
•1451 •0088
•0105
15
14 o
6 2 0.3077
I
•5275
2
.1648
14
6
3
0
14 0
7
6
•1510
I
2
14
7 7
0
0.0003
1
'3357
2
•4196
3 4
•1598
I
•0143
•0150
2
'1285
'2098
2
'4196
3 4 5
'2797 '0599
14
0030
6
6
0
0'0093
I
'1119
IS
•1285 0143 ;0003
I
1
•-0667 2
I
0.8667 '1333
2
3497
3 4
'3730 '1399
I
5
'0160
15
6
*0003
0
0.7429
I
'2476 '0095
14
7
1
0
0'5000
I
•5000
14 0
7
2
2 15
2
3
2
1
0
0.8000
I
•2000
I
0.2308 -5385
15
2
'2308
0
0.6286
I
'3429
2
•0286
14
7
3
2
0.0962, '4038 '4038
3
-0962
0
I
14
7
4
15 0
3
2
3
3
-0022
0'0350
' 2448
15
2
' 4406 ' 2448 ' 0350
0 j
15
1
0.6667
1
'3333
15 0
5
2
0 .4286
I
• 4762
2
'0952
15
5
3
0
0'2637
X
'4945
2
'2198
3
'0220
15
5
4
0
0'1538
I
'4396
2
'3297
3 4
. 0037
15 0
'0733
5
5
0-0839
I
'3497
2
'3996
3 4
'1499 •0167
5
'0003
15 0 I
15 0
6
1
0.6000 ' 4000
6
2
0-3429
I
5143
2
' 1429
0'4835 '4352
I
3 4
3
I 2
0
5
0
x
0.9333
0
15
3569
'3569
0
15
16
'3776 '3357
'4079 . 2448 '0490 •0023
0.0280
6
I
3 4 5 6
I
6
2
'3297 ' 0549
5
'0020
'0007
2
6
0 I
•0322
'0490 '2448
14 o
15
16
3 4
I
3 4 5 6 7
3 4 5
'4835
2
00699
-4196 '2398 '0450
'2418
•4615
4
2
r= 0 I
1
0.1538
6
0'0420 *2517
2
I
14 0
4
0 1
0'0023
0
3
4
0'2418
r=
5
'0791
4
I
0.7333 '2667
4
2
15
6
3
0 1
0.1846
2
*2 967
3 x5
o
0.0168
3 4 5 6 15
'1079 •0108 •0002 7
x
0
0 '5333
I
-4667
15
7
0.2667
2
'2000
7
6¢
0
0'0923
I
.3692
0
0'5238
2
x
•4190
'3956
2
'0571
3 4
•0110
'1319
2
I
0'8750
'1250
3
2
0
0•6500
I
' 3 2 50
'0250
3
3
0
05107
I
. 4179
2
•o696
3
.00'8
.0769
0
0•7500
I
.2500
•2872 4308 '2051
3 4 15
0
•0256
7 5 0•0186
I
1632
2
•3916 •3263
3 4
'0932 '0070
5 x5 0 I
7
0.0056
'0783
-2937 -3916 . 1958
2
3 4 5 6
.0336 •0014 7
7
2
0'5500
-4000
2
'0500
0
4 3 0.3929
1
'4714
2
•1286
3
•0071 4
5
5
•3231 '4154
•0002 6
x
16
I
'3750
3 4 5
'0721
x6
6
2
0
01750
I
•5000
2
'1250
16
6
3
o
0'2143
x 2
'4821 •2679
3
'0357
16
6
4
16
•Ixoi '3304
3 4 5 6
.3671
x6 0 I
.0514
2
* 2313
.1099
3 4
' 2570
3 4 16
•0082
6
5
o
0.0577
x
•2885
2
'4121
3 4 5
.2060 0343 •0014 6
6
$
6 7 16
'3125
16
-1828
16
2
'1964
'0002
3
'01 79
0 1
'0843 .0075 •0001
5
3
0- 2946
49 11
7
8
z
•5000
16 0
8
2
0.2333 '5333 '2333
8
3
0
0'1000
I 2
'4000 '4000
3
•1000
I
0•5625
x6
x
'4375
0
7
'0001
x
0
16
•0664
•0055
0•5000
16
3 4 5 6
3855
0
'3934 '2997
.3807 -3046 .0914 •0087
7
-3709
2
•0833
7
0'0031
•3956
•0005
'4583
0009
I 2
•0264
I
'0236
0- 1154
3
2
'1573
0
4
'0305
6
I
I
0'0012
7
2
2
I 2 3 4 5 6 7
- 0048
0'0105
•1888
2
-2885
0
0•0262
5
.20'9 '4038
x
0.4583
5
0.0288
0
o
7
0 x
'2176
x
'0192
'0126
'4835
5
.1731
2
4
0•6875
4
0'0692
I
0 I
7
0
2
x6
'4500
0.6250
16
x
0.1500
0
0•2720
0
76
x6
0
16 15
4
z
x
x6
6
4
0
x6
z6 16
3 4
3
x
•0625
'3777 ' 1259
i fs
2
3
2
'1875
x6
•0604 •0027
3 4 5
2
4
3 4
'2333
' 4308 '3692
7
'3375
'0083
1
0'0513
2
I
0. 123I
0
'4533
•3022
2
x
3
I
'3777
3
7
2
0•1058
0
15
0.1813
R n
r= 0 I
0
o
2
0'8125
16
r=
4
1
2
0.7583
I
2
3
0 '9375 '0625
0
x6
'5333
'4747 '0 440
x6
2
0 x
15
0
z
2
0
0'3000
z
.525o
2
* 1750
8
4
0'0385
I
•2462
2
'4308
3 4
•2462
. 0385
TABLE 26. HYPERGEOMETRIC PROBABILITIES N R n x6 8 5 r= o o.0128 I
'1282
2
'3590 '3590 • I282 •oiz8
3 4 5
16 8 6 O
0.0035
I
.0559
2
'2448
3 4
5
-3916 '2448 ' 0559
6
'0035
x6 8 7 O
0'0007
x
•0196 .1371 '3427 '3427 ' 1371 .0196 •0007
2
3 4 5 6 7
16 8 8 O I
0'0001 '0050
2
'0609 '2437 '3807 '2437 '0609
3 4 5 6 7 8
'0050 '0001
N R n 17 3 3 r = 0 0'5353 I
O
0'9412
I
•0588
17
I
2
'0618
2
3
'0015
17 4 2 0 0. 5735 I •3824 2
'0441
17
4 3 O 0.4206 1 '4588 2
' 1147
3
'0059
17 4 4 o 0-3004 x -48o7 .1966 2 3 .0218 '0004 4 17
5
1
O
0'7059
I
•2941
x7 5
2
O 04853 I '4412 2 '0735 5 3 O 0.3235 '4853 I
2 3
'1765 •0147
17
5 4 O 0.2080 I
'4622
2 2
2
'2773
O
0'7721
I
'2206
3 4
'0504 '0021
17
2 '0074 17 17
3 O 0.8235 x -1765
17 3
2
O 0.6691 I '3088 2
'0221
2
.4853 '1103
17 6 3 17 4 1 o 0.7647 .2353 I
2 I
O 0.8824 I •1176
17 6
r = 0 04044
'4015
17
17 I I
N R n
5 5
O I
0'1280 '4000
2
'3555 .1o67 '0097
3 4 5
'0002
17 6 I o I
6 0._47r •3529
o 0.2426 i '4853 2
3
N R n
N R n
17 7 6
x7 8 7
r = 0 0'0170
I 2
3 4 5 6
'1425 .3563 '3394 ' 1273 '0170
•0006
'2426
.0294
17 6 4
17 7 7 0 o•oo62 .0756 I
= 0 0'0019 I '0346
2
'1814
3 •3628 4 '3023 •1037 5 '0130 6 7 •0004 17 8 8 0 0'0004 '0118
0 0.1387
2
'2721
I
I
'4160
'3466
'3779 .2160 •0486 .0036 •000i
2 '0968
2
3 4 5 6 7
3 '0924 4 •0063 17 6 5 0
0.0747
I 2
'3200 '4000
3 4 5
' 1 778
-oz67 '0010
17 6 6 O
0'0373
x
'2240 '4000
2
•2666 3 4 •o667 5 '0053 6 •000l
17 8 x 0 I
0'5294 '4706
x7 8 0 I
2
0.2647 • 5294
2 '2059
x7 8 3 0 O'1235
I
*4235
2
'3706
3
•o824
17 8 4 17
O I
7 I
o
0'5882 '4118
x
17 7 2 O
0'3309
I
'5147
2 '1544 17
7 3 O o.1765 •4632 I '3088 2 .0515 3
17
7 4 O 0.0882 I '3529 2
'3971
3 4
.14.71 '0147
2
3 4
0 0.0204 I '1629 2 '3801
3 4 5
3 4 5
'3258 .1o18 '0090
17 8 6 o x
o-oo68 .0814 .2851 2 '3801 3 '2036 4 5 '0407 6 '0023
7 5 O 0.0407 I
'4235 .2118 '0294
x7 8 5
17
2
0'0529 '2824
'2376 '4072
'2545 •0566 '0034
77
3 .2.903 •3628 4 '1935 5 6 '041 5 '0030 7 8 •0000
TABLE 27. RANDOM SAMPLING NUMBERS Each digit is an independent sample from a population in which the digits o to 9 are equally likely, that is, each has a probability of-116. 84 28 64 49 o6 75 09 73 49 64 93 39 89 77 86 95
53 03 65 76 31 97 97 o8 4! 70 44 z6
87 57 37 49 24 65 97 52 46 33 59 68
75 09 93 64 33
12
83
76
z6 29 51
45 70 14
OI
14
04
49 59 50 32 73 8z 98 27 74 00 78 6o
36 88 8o 79 98 77 12 39 04 40 71 92
23 92 z6 69 o8 73 19 16 79 86 16 99
36 17 74 41 05 o8 82 42 72 92 41 6o 25 35 05 44 8o 31 79 46 65 8z 31 96 40 50 44 68
36 78 65 96 81 75 74 o6 96 37 69 17 61 97 01 97 89 13 24 34 8o 31 81 o6 64 6z 77 58 33 57 36 65 92 02 65 63 22
50
4z 87 41 46 56 35 81 69 6o 05 88 34 29 75 98
56 77 39 73 69 96 89 II 8o 49 36 ii 19 03 51 77
22
09
30 77 03 46 65 68 93 61 54 z8 61 68
12
21
76
13
39
73 85
59 68
53 66
04
60
30
10
44 89 55 67 57 21
63 38
8o 13 77 42 76 97 95 85 98 17
46
99 85 50 92 69 51 27 44 40 92
20 40 19 72 89 73 52 12
84 74 69 25 03 59 91
02
30 76 81 6z 49 07
48 46 6z 68 12
16 98 04 61 64 27 86 93 25 00
20
29 96
75 68 48 82
20
14
20
10 73 62 73 19 92
18 85 76 06 52 68
91 86 46 70 67 68 00 76 64 85 26 32 71 57 99 51 81 14 35 II 15 17 24 78 76 49 97 56 11 76 04 47 18 85 z6 04 92 27 28 47 61 o8 89 81 zi
o6 69 53 91
87 22
19 99 97
63 55 38 31 97 56 43 15
4 6o 52 5
2 17 5
09 14 61 09 91 93 19 58 85 24 35
54 14 65 59 28 19 77
12 z8
zi
09 57 74 70
76 46 II 99 85 6o 39 22
8z 72
58 83 54
z6 21
64 40 56 72 0! 90 49 85 88 19 37 37 04 79 64 II 83 4 94 64 67 54 io 88
16
96 27 94 42
16 53 z8 78 36
92
52
12
83 97 II s 15 3 1 -1 28 94 54 6o 39 16 16 33 33 46 6 3 37 15 89 94 15 97 16 54 32 76 86 21 25 i8 6o 48 64 6i 48 63 10 76 58 38 98 R 17 32 2 3 33 23 89 45 08 44 6o 15 84 (D 7II 44 39 98 68 io 66 69 87 95 87 65 70 5 85 83 12 33 43 24 96 56 97 63 97 17 83 00 6o 65 09 44 77 96 43 40 11 36 44 33 05 40 43 42 91 65 62 83 53 05 20 53 70 52 51 62 2 3 74 76 96 88 83 69 o8 24 6z 95 47 58 6z 35 22 35 72 22 73 91 58 76 56 87 00 6z io 22 06 84 03 83 87 00 87 76 6z 31 65 91 30 71 56 08 3 03 74 8 o 77 40 59 16 0 7 72 96 25 59 35 69 71 3! 20
66 86 09 37 07 97
91 18 92 47
2 02 20 24 22 86 73 49 00 42 27 44 23
83
37 35
37 96
25 34
88 84 00 33 35 30 61 34 35
1 61 9 70 84 83 87 67 67 22 03 17
24
14
6o 8o 42 08 57 24 58 44 33 75
83 17 29 54 05 33 89 43 12 15
78
69 78 10 02 43 10
6o 76 06 64
41
91 14 26
98 34 65 28 37 6o 92
8o 30
9z
91 30 17 41 57 41 46 II 68 77
90
69
93 73 95 32 72 64 87
68 52 52 oit 78 77 63
29 21
26
90
55 27 74 48 41 02 o6 42 87
66 09
87
o8 8 92 67 o8 93 19 72 47 89 29 02
62 99 81
21
17 68 03 12 8z 82 o6
67
40
53 19 8z 41 93 94 16 61
65 33 63 48 52 68 66 89 14 94 45 o6
21
04 07 6o
38 88
73
22 21
40
22
6z 64 03 95 45 of 34 76
52
42
63 8 67
72 79
10
36 33 04
21
o6
14 63
04
97 99 94 13 30 95 II 49 90 86 51 55 90 19 39 67 88
9 98
4 67
39 76 53 38 70 56
90 07 47 04 48 83 90 36 97 56
02
74 55 67 43 72 63 40 03 07 47 02 62 20
19
45 23 8o 99
16 89 52 85 91 00 z8
86 39 33 73 48 14 91 z6
75 58 30 54 52 of
68 33 95 70 02
00 20
41 30 44 70
72 49 7
29 33
48 47 52 88 7 46 5 36
47 21 86 6i 0 8: 89
22
85 47 95 Jo
22
76 01 23 44 65 92 15 17 55 09 83 z6 o8 62 78 39 54 55 19 57
02
z6 44 58 40 o6 59 12
04 17 69 65 31 65 58 01 85 90 74
TABLE 28. RANDOM NORMAL DEVIATES Each number in this table is an independent sample from the normal distribution with zero mean and unit variance. 0.7691 -0.5256 0.9614 0.3003 1•1853
1.0861 P5109 0-3639 1.7218 -1.7850
0'2411 0'2614 1'0204 1'0167 PI2I1
-0•2628 0'3413 0.8185 -0-1489 0.4711
0.2836 - P7888 -0. 4654 0.7887 0.9046
-0.9189
-0.2884
0.9222 0.0989 -0.8744
-0'1051 -0'2588 -0'7164 0•1110 -0'3172
-0'7442
P9225 0.8966
-0'2911
- P4II9 - p2664 -0'4255 -0'2201
1'5256
0•6820
0 '4547 0.0213
0.8897 0.4814 -0.4014 -0.9607 P258o
1.8266 0.8452 - p4908 0.2071
-0 ' 40 70
-0'5601
-0'2685
-
-0'3797 -0.9013 1.6169
-0.6995 -0.0617 1.2541 P4531 -0.8250
0.8620 24288 0.0450 0.2532 -0.9363
-0.8698 0.4890 -0.1291 0.1939 0.2668
-0.1144 -0.0339 -0.1236 01285 -0.7122
0.5823 0.7836 0.1600 1.0383 0•1671
0.1137 0.4104 -0.3707 -0.4590
-1.1334 0.2755 0.3674
2'1522
0'2133
0'3379 0. 34-44 -0-3912 -0-5941 -0.0768
- V06 37 -0 ' 0948
0. 4198 -1•8812 0. 0778 0.8105
23696 -0.3968 1.1401 -0.1992 0.7894
-0.5056 -0.5669 0.7913 0- 9914 1.7055
-1.9071 -0-3260 0.4862 -0.8312 -1-9095
0.7738 -I-3150 P2719
I•I404 0'1964 -0'2309 0'9651 - P1403
P 6399 0.7164 1.9058 -0'5440 -1'3378 1'5939
0.7378 p4320 0.5276 -2.1245 P6638 -0.0429 -0'1320 -0'2098 -0'1563 -0'8492 -1'8692
-0'5447
0.6299 -0.1507 - P1798 1.3921 I•1049
P2474 P1397
-
P9211 0 '4393
-0'4597
0'7258
I.4880 -0.4037 -1.1855 -0.0251 -0.4311
PI002
0'1176
-0'6501
1'7248 -1'0621 0'9133
-0.456o 0.8729 0.3646 0.1885
-0-9633 0.6117 1.0033 2.1098 0.8366
P2725 1.0492 -1.1969 0.2146 -0'3594
P2193 0'2024 0'4722 -0'2230 -0'4389
- P5498 -I•5027 -16761 0. 1433 0 '7375
-0.5608 -2'6278
0.7064
-0.5104 -0.6110
0'2239 -0. 6841 0'2177
0•5802 0.0556 2'0196
-18613 0.8646 - V0438 0.2533 -0. 4953
0'8258
0.6571 0.0679 0.9970 0.6705 -0.1985
-0'0917
0•9517 0'7272 -0'2223
0.5697 0.4869 -1.3296 -0.1765 -0.2777
-0.7707 0.3990 0. 9649 -1'5953 -0.0382
-0.2558 - P5290 -0.7695 0.0153 -2.6190
-0.3052 - P2785 -0.3767 •o193 - P6919
-0.1825
0.2461 0.8169 0.0790 0.7225 0.9014
-0'4089
0.3838 0.5219 0 '3779 -1'9919
-0.1679 -0.004I -0.3111 0.7127
0.1428
-0'3749
0.0722 -o-7849
-0'6237 1.5668 0.45 21
0.1263 0.1663 -0.2830 1.2061 -1.4135
P0313 1'8116 - P9062 2'2544 -0'6327
0. 5464 -1.4139
0.1833 -1.6417
-0'4379
-0'3937 -0.0851 -0.2088
0.2889 -0. 1720
0.3946 -0. 0909
0'7673 - P9853
p6459 0.8910 P1387 0.6764
0. 2794
0'8007
-0/296 -0.5887
0.2325
- P0242 - P4929
-0'1122
-
1.2370
0'7125 P1813 -0'8344 -0'8015
0.6259
-1.4433
-0'3211
-1.2630
0•7890 - P2187 -2.6399
-0'7494
-0.9592 - 1.1750 -1.2106
-0-7991 1.0306
-0'6252
0'4124
-
-1.5349 0 '3377
-0'7473
0.4011 -0.2193
-0'5749
-0.4263 -0.1614 0.5114
-0'3337
-0. 5094 0.2414 -0.5231 1.8868 0. 6994
0'2013 P3071 - P2255 -0•6109 -0'7522
0.4899 0.9586 -1' 2 947 0.5067 0.5021
1.3002
0'4787 -11240 - 2'0142 -0/707 0'1095
-0'0994
1'0811 P5762 0/726 -0'8558 1'3333 -0.1512 -0-0416 P1621 -o.2743
v7767 - p8o3I 2.1364 0.1295 0. 2454
1.8961 0.3863 -0.0943 -0.7132 0.248,
V1558
-0-0814
-0'7431
P4721
0.5274
-0'3755
-0-3730 0.1049 -0.1819 I.2704 0.6109
-0.8716 0.36o2
1'3133 0.4986 -12309 0.2453 -i•1675
0•1115 0.6226
-0'2521 -0•5518 -11584
79
-0.6933
-
-1.1761 -0.5156 -0.5671
P2094 1'0500 0'6314 P5742
0.6715
-0'7459
0. 1543 -0.1108 0.5970 0.0842 - P5805
-0. 2542 -0-4762 0.9149 -0.8178 -0.5567
0. 0945
0.7350 - P6734 -1.8237
-1'0210
P6674 -0.8427 0.0398 0.5787
1'5481
0.2236
-0.8393 -0.2523 1.4846 0.8527 0 '5541
- 0 • 7841 -0'9212 -2'4283 0'0046
-0.3490 -0.6525 -10642 -i.o6o6
0 '4431
0 '9379
3'4347 0.7703 -0.6135 P3934
P0013 0'8129
-0.4194 -0.0173 0.5664 -0.7216 -0'3349
0.8688 I.41 I0 -
P40II 0'6272 P2943
P4732 2'1097 0'5529 -0'1047
0.6484 0.9714
0.0982 -0.6845 P6357 P2928 0.1785
-0.2936 -1.1208 0.7254 -1•1351 P4302
0.6226 0.6017 1.1673
-0.0962 -11846
- P4375 po786
0 '5354 0.6161
0.6177 -0.4680 0.5638 0.3650 -0.1867
1.0176 -0.6125
-0.0772 0.9166 p4564 -0.2898 1.0821
1.1889 p5315 -0.7601 -0.2105 -0.6962
0 '4598
- P7724
0.5089 P3761
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER If r is an observation from a binomial distribution (Table 1) of known index n and unknown parameter p, then, for an assigned probability C per cent, the pair of entries gives a C per cent Bayesian confidence interval for p. That is, there is C per cent probability that p lies between the values given. The intervals are the shortest possible, compatible with the requirement on probability. The tabulation is restricted to r < Zn. If r > Zn replace r by n - r and take 1 minus the tabulated entries, in reverse order. Example 1. r = 7,n = 12. Use n = 12 and r = 5 in the Table, which at a confidence level of 95 per cent gives 0.1856 and 0•6768, yielding the interval 0.3232 to 0-8144. The intervals have been calculated using the reference prior which is uniform over the entire range (0,1) of p. The entries can be used for any beta prior with density proportional to pa(1-p)b , where a and b are non-negative integers, by replacing r with r + a and n with n + a + b. If r + a is outside the tabulated range, replace r + a with n - r + b and n with n + a+ b, and take 1 minus the entries, in reverse order. Example 2. r = 7, n = 12. If the prior has a = 2, b = 1, then r +a = 9, n+ a + b = 15 and n - r + b = 6. Use n = 15
posterior probability density of p
,
p
(This shape applies only when 0 < r < n. When r = 0 or
r = n, the intervals are one-sided.) and r = 6 in the Table, which at a confidence level of 95 per cent gives 0.1909 and 0.6381, yielding the interval 0.3619 to 0.8091. When n exceeds 30, C per cent limits for p are given approximately by
± x(P)[i(1 - P)/n]1 where /5 = r/n, P = 1(100 C) and x(P) is the P percentage point of the normal distribution (Table 5). -
CONFIDENCE LEVEL PER CENT
90 n =1 r=0
95
99
99'9
0.0000
0.6838
0.0000
0.7764
0.0000
0.9000
0.0000
0•9684
0'0000
0'5358
0'0000
0'6316
0. 0000
0'7846
0•0000
0'9000
'1354
.8646
.0943
.9057
-0414
'9586
•0130
•9870
0.0000
0'4377 •7122
0.0000 -0438
0.5271 •7723
0.0000 .0159
0•6838 •8668
0.0000 -0037
0'8222
'0679
r=0
0. 0000
0. 4507
0.0000
0. 6019
0•0000
0. 7488
•0425 •1893
0•3690 •6048
0.0000
I
•0260
•6701
•0083
•7820
•0016
'8788
•8107
•1466
'8534
•0828
•9172
-0375
.9625
0.0000
0. 3187
0.0000
0. 3930
0'0000
•0302
•5253
-0178
•5906
•0052
05358 •7083
0.0000 .0009
0•6838 •8186
•I380
•7
•I 048
•7613
*0567
'8441
•0242
.9133
n
=2
r =0
n
=3 =
n=
0
4 2
n
'9377
=5 =0
2
8o
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT
90
r=0
99
95
n=6 '4641
0.0000 '0133
•22 53
•6317 '7747
•0805 '1841
•5273 -6846 •8159
r= 0
0•0000
0'2505
0.0000
0'3123
0•0000
0 '4377
I
•0185
•0105 •065o •1488
'4759 •6210 '7459
•0028 .0331 .0934
.5913 •7174 .8227
0.0000 •0004 •0129 .0495
0.5783 •7113 •8115 '8912
0. 0000
I
n=
2
'02 31 '1076
3
0.2803
99'9
0'3482
0'0000
0'4821
0'0000
o'6272
•0037 •0421 •1177
•6452 •7769 •8823
-0006 •0171 •0639
•7625 •8616 •9361
7 2
•0878
3
•1839
'4155 •5677 •7008
r= 0
0'0000
0'2257
0'0000
0'2831
0'0000
0'4005
0.0000
0'5358
I
•0154 -0739 '1549
•3761 '5152 .6388
•0086 '0542 •1245
'4334 •5676 •6854
.0022 -0271 •0769
'5451
'2514
'7486
'2120
'7880
•1461
•6651 •7679 '8539
•0003 -0103 •0400 .0884
•6651 '7645 •8463 •9116
r=0
0.0000
0'2057
0.0000
0.2589
0.0000
0•3690
I
'01 32 •0638 '1337
'3435
'4714 •5863
'0073 •0464 •io68
'3978 •5224 '6332
•0018 •0229 '0652
•5053 •6192 '7184
'2165
•6901
•1816
'7316
'1237
'8039
0.0000 •0003 •0085 '0333 '0739
0.4988 '62 37 •7212 •8032 •8714
0'1889
0•0000
0'2384
0.0000
3 4
'1175 •1899
•0063 •0406 .0934 •1586
•3675 '4837 •5880 •6818
•0016 '0197 •0564 .1071
0'0000 '0002
0'4663
•3160 '4344 '5416 .6393
0•3421 '4706
2
0'0000 '0115 •0560
'5788 -6741 '7578
•0072 •0284 •0632
-5866 •6817 •7627 •8320
5
0'2712
0'7288
0.2338
0'7662
0'1693
0'8307
0'1100
0'8900
r=0
0'0000
•0102
0.1746 •2926
0'0000
I 2
'0499
3 4
•1047 •1691
5
0'2411
=8
n
2
3 4 n
=9 2
3 4
n
= Io r=0 I
n=
II 0'2209
0'0000
01187
0.0000
.4027 .5030 '5951
-0055 '0360 •0829 '1407
'3415 '4502 '5485 '6377
.0013 •0173 '0497 .0943
'4402 '5431 '6344 '7156
•0002 •0062 .0248 '0551
0'4377 '5534 -6456 •7252 '7943
0.6803
0'2070
0'7191
0'1488
0'7878
0'0958
0'8539
See page 8o for explanation of the use of this table.
81
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT
90
99
95
99'9
rt = 12 r
=0
0•0000
I
•0091
2
'0449
3 4
'0944 •1524
•5564
5 6
0.2169 •2870
I
0.1623 •2724
0.0000 •0049
0.2058 •3188
0.0000 •0012
'3753 '4695
•0323 '0745 •1263
•4210 '5138 •5987
•0154 '0443 •0841
0'6374 '7130
0.1856 .2513
0•6768 '7487
0.0000 •0082
0.1517 •2548
0.0000 •0044
2
-0409
3 4
•1386
'3514 '4400 •5223
•2604
0.0000
0.2983
0.0000
0.4122
'4134 •5113 '5987 •6773
•0002 •0055 .0219 •0488
•5234 •6128 •6905 '7588
0.1326 •1887
0 '7479
•8113
0.0848 •1290
0.8188 •8710
0.1926 •2990
0.0000 . 001 I
0.2803 '3896
0.0000 •0001
0.3895
•0293 •0676 '1146
'3953 •4832 '5639
•0139 •0400 '0759
•4829 •5666 '6424
-0049 •0196 '0437
0'5994 •6717
0-1682
0.6388
0.1195
•7082
•1698
0.7112 '7738
0.0759 '11 54
0'7855
•2274
n = 13 r
=0
5 6 n = 14 r=0 I
.o859
0.1971
'4963 •5828 '6585 '7257
'8384
0'1423
0'0000
0.1810
0.0000
0.2644
0.0000
0.3691
•0075
'2394
.0375 •0788
.3303 '4140
.0040 -0267 •0619
•1271
.4921
'1048
•2814 -3726 '4559 '5329
.0009 -0126 '0364 •0691
•3684 '4574 '5376 •6106
-0001 '0044 •0177 '0396
•4718 '5554 •6290 '6948
o•i8o6
0-1537 '2075 •2659
0.6045 '6715 '7341
0.1087 '1542 '20 51
0.6775 •7388 '7949
0.0687 •1043 '1457
0 '7539
-3000
0•5654 '6346 •7000
r=0
0'0000
0'1340
0.0000 •0009
0.3506
•2257
0.1708 •2658
0.0000
•0069
0.0000 '0037
0.2505
i 2
-0346
-3116
3 4
•0728
'3909
'1173
'4650
•0246 -0570 '0966
'3522 '4315 '5049
'0115 .0334 '0634
'3493 '4344 .5113 •5817
•0001 '0040 •0162 •0361
'4495 '5303 •6017 •6660
0.1666
0'5349 •6012 •6641
0.1415
0'5736 •6381
0'0997 .1413
0.6465
0.0627
. 1909
•7063
.0951
'2442
•6988
•1876
-7615
•1327
0.7242 '7770 •8246
2
3 4 5 6 7
'2383
•8070 '8543
n = 15
5 6 7
•2197 •2762
See page 8o for explanation of the use of this table.
82
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90
99
95
99'9
n = 16 =
0
0.0000
0.1267
0.0000
0.1616
0.0000
0.2373
•oo64
•2135
2
•0321
•2949
3 4
•0676 .1090
.3703
•0034 •0228 •0528
'4408
•o895
•2518 '3340 .4095 '4797
•0008 •oio6 •0308 '0585
•3320 '4135 '4874 '5552
0.0000 •0001 .0037 •0148 .0332
0'3339
i
5 6 7 8
0.1546
0.5075
0.1311
-2037 '2558 •3108
'5710
0'5455 •6076
•6314 •6892
•1767 •2258
•2781
•7219
o•o920 •1303 •1728 -2193
o•618o •6762 .7304 •7807
0.0576 •0873 •1217 •i6o6
0•6964 •7486 •7962 '8394
It = 17 r= 0
0.0000
0.1201
0.0000
i
•006o
-0032 •0492 .0834
0•1533 .2393 .3175 •3897 '4568
o•0000 •0007 '0099 •0286 '0544
0.2257 •3164 '3945 '4656 .5310
o•0000 •0001 .0034 '01 37 .0307
0.3187 •4105 •4860 '5533 '61 44
0.5200 '5798 •6366 •6905
0.0854 •1209 •i6oi •2030
0.5917 •6483 .7013 '7508
0.0533 •0807 •1124 •1481
0.6703 •7217 -7690 -8124
0.2152 •3021
0.0000 •0001
0.3048
-0031 •0128 •0286
.3934 '4665 .5317 '5912
r
2
•0300
3 4
•0631 •1017
•2025 .2799 •3516 '4189
5 6 7 8
0.1442
0.4827
0.1221
'5435
•0213
•6664
'4292 .5073 .5766 .6393
•1899 •2383 •2893
•6o17 '6574
•1644 -2099 -2583
0.1141 •1926 •2663
0.0000 •0030 . 0199
0.1459
0.0000
2
0.0000 •0056 •0281
•2279 '3026
•0007 •0092
3 4
'0592 '0953
'3348 '3991
.0461 •0781
'3716 -4360
-0267 •0508
'3771 *4455 •5086
5 6 7 8 9
0.1351
0.4602
0.1142
0.4967
0 '0797
0'5674
•1778 .2230 -2705 •3201
•5185 '5745
-1537 •1962
•6282
•2412
•6799
•2886
'5543 •6092 -6615 . 7114
•1127 '1492 •1889 •2316
•6224 '6741 •7228 •7684
0.0496 '0750 .1044 '1374 •1738
0.6459 '6964 '7432 -7864 •8262
r= 0
0.0000
0• I087
0'0000
0'1391
I
-0052
•1836
•0028
•2175
2
•0264
'2540
•0187
•2890
'3551 •4170
0•0000 •0006 •0086 '0251 .0476
0.2057 •2891 •3612 •4271 •4880
o.0000 •0001 •0029 -0119 •0267
0.2920 '3776 '4484 •5117 -5696
0'4754
0.0747 .1056 '1397
0'5449
'5984 •6488
0.0463 •0701 '0974
o•6231 •6726 '7187
•6964
•1281
•7615
'7413
-1619
-8013
n = 18 r=0 I
n = 19
3 4
'0557 -0897
'3194 •3810
.0433 .0734
5 6 7 8 9
0•1271 •1672 •2096 •2540 .3004
0.4396 . 4957 '5495 •6014 •6514
0.1073 .1444 '1841
'5309 •5839
'2261
•6346
•1766
•2704
•6832
•2164
See page 8o for explanation of the use of this table.
83
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90
95
99
99'9
n = 20 r=0
0.0000
0. 1039
0.0000
0.1329
0.0000
0'1969
0'0000
0.2803
I
•0049
'1 754
•0026
2
'0249 •0526
•2428 '3055
•0176
'3645
.0409 '0692
•0006 •oo8i •0236 '0448
•2771 •3466 •4101 '4690
•000i •0027 •0112 •0251
-3630 '4315
-o847
•2080 •2766 •3401 '3995
'5494
5 6 7 8 9
0'1200
0•4208
0'1012
0 '4557
•I578 .1 977 •2395 -2828
'4747 •5266 .5767 .6253
.1361 •1734 •2129 '2544
'5093 5606 •6097 •6569
0.0703 '0993 •1312 •1659 '2030
0.5241 .576o •6253 •6717 •7158
0.0435 •0657 .0913 •1199 .1514
0.6016 •6501 '6955 '7379 '7775
io
0'3281
0.6719
0'2978
0•7022
0.2425
0'7575
0.1856
0•8144
0
0.0000
0.0994
0.0000
0.1273
I
-0047
•0025 •0167
'1994 '2652
0.0000 •0006
-3262 '3834
•0223 '0423
0.1889 -2661 '3331 '3944 '4514
0.0000 •0001 •0026 '0105 •0236
0.2695 '3494 . 4159 '4757 •5306
0.0664 '0937 •1238 •1563 '1912
0.5048 '5552 •6030 •6485 '6917
0.0409 •0619 •0859 •1128 .1423
0.5815 -6290 '6735 •7153 '7546
3 4
'4931
n = 21
r=
n=
2
•0236
•1679 '2325
3 4
•0498 •0802
•2926 '3494
•0387 .0655
5 6 7 8 9
0.1136 ' 1493 ' 1870
0.4035 '4554
0.0957 '1287 '1639
I0
•0076
•2265
'5055 '5539
•2675
•6007
•2402
0.4376 '4894 '5389 •5866 •6324
0.3099
0.6461
0.2809
0•6766
0.2281
0.7328
0.1742
0.7914
0
0.0000
•0044
0'0000 '0005
•0224
'0473 •0762
•2809 '3354
•0621
'2547 '3134 -3686
-0072
3 4
0'0000 '0023 •0158 0367
0'1221 '1914
2
0'0953 •1611 '2231
0.1815
I
'2557 •3206 '3798 '4350
0-0000 •0001 •0024 .0099 •0223
0.2594 '3369 •4014 '4594 •5129
5 6 7 8 9
0.1079
0.3875
0.0908
0.4209
0.0628
-1418 •1 775
'4376 '4859
'4709
.5189 •5651 •6096
•0887 •1171 '1478 •1807
0.4868 '5358 -5823 -6267 -6690
0.0387 •0584 •0811 •1064 -1341
0.5626 •6091 -6528 '6939 •7328
I0
0.7094 '7479
0-1641 '1963
0.7693 •8037
•2011
22
r=
ii
'0211
-0401
•2148
'5327
-2536
-5781
-1220 •1554 '1905 -2274
0.2937 '3351
0.6221
0.2659
0'6526
0.2154
'6649
'3059
'6941
'2521
See page 8o for explanation of the use of this table.
84
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90 II =
95
99
99'9
23
r=0
0.0000
I
•0042
2
•0214
0.0915 . 1547 •2144
0.0000 •0022 .0150
0.1173 •1840 •2450
3 4
.0451 -0726
•2700
.0349
3016
0.0000 •0005 •0069 •0200
0.1746 •2465 •3089 •3663
. 3225
.0591
'3548
.0380
*4197
0.0000 •0001 •0023 •0094 •0211
5 6 7 8 9
0.1027
0 '3728
0.0864
0.4053
0.0597
0.4700
0.0367
0'5448
-1349 -1689 •2043
'4211 *4678
•1160 •1475
'4537 •5005
•5131
•1810
.5450
'2411
'5570
•2160
•5883
'0842 -II 11 •1402 •1712
.5176 •5629 •6062 •6476
.0554 •0768 •1007 •1269
•5903 •6331 .6736 .7119
I0
0.6872 •7251
0.1551 •1854
0.7481
0.2791
0.5998
0.2524
0.6302
0.2041
ii
'3183
•6413
•2902
•6707
•2386
/1 = 24 r=0
0'woo
0•0880
0.0000
0.1129
0.0000
I
•0040
•0021 •0143
•1772
•0005
0.1682 '2377
0.0000 •0001
li
0.2505 •3252 •3878
*4442 '4963
•7824
2
•0204
•1489 •2063
•2360
•0065
•2981
•0022
3 4
'0430 •0692
'2599 •3106
.0333
•2906
•0191
'0090
•0564
•3420
•0362
'3537 '4055
0.2414 •3142 '3753 '4300
•0201
•4807
5 6 7 8 9
0.0980
0.3591
0.0824
0'3909 '4377
0.0568 '0799
0.5280 '5725 '6145 '6543 •6920
I() II
•4828
•1057
'5447
'5374
'1724 '2056
.5263 •5684
'1333 •1627
'5869 •6274
0'0348 •0526 '0729 '0956 •1203
0.2659
0.5789
0.2402
12
•3031 '3414
-6193 •6586
•2760 •3131
0.6092 •6487 -6869
0.1938 -2265 •2607
0•6662 '7035 '7393
0.1471 '1756 •2060
0.7279 •7618 '7940
= 25 r=0
0'0000
0'0848
0.0000
0'1088
0'0000
0' I 623
0.0000
0'2333
'1435
•0020
•1708
•0004
'0195
'1988
•2276
•0062
•0411
•2505
•0318
•2804
•0182
-0662
'2995
'0539
'3301
' 0346
•0001 •0021 •oo85 '0191
•3040
•0137
'2295 •2880 '3419 '3921
5 6 7 8 9
0'0937
0'3464
0.0787
0 '3775
0'0542
0'4395
0.0332
•4228
•0764
•4846
•0501
•ioo8 •1271 '1551
•5276 -5688 -6084
•0694 •0910 -1145
0.5122 '5557 '5969 •6360 •6731
0•1846 •2156 •2480
0.6464 •6830 •7182
0.1398 •1668 '1955
0.7085 •7421 '7741
I
2
3 4
•1287
•1610 '1 948 '2297
'0038
•4058 •4510 '4948
•1106 •1407
-1230 '1 539 -1861
'3916
•1056
'4353 '4778
'1344 '1646
•2194
•5191
•1962
'4665 •5088 '5497
I0
0.2538
0.5594
II
.2893
12
'3257
'5986 .6369
0.2291 •2632 •2983
0.5894 •6279 •6654
0'4543
'5011
See page 8o for explanation of the use of this table.
85
•3631
•4166 •4660
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT
n
90
= 26 r=
99
95
99.9
0
0'0000
0.0817
0.0000
0.1050
o•0000
0.1568
I
-0037
•1384
•0019
•1649
'0004
'2219
•00005
'2944
2
•0187
3 4
.0394 •0634
•1919 •2418 •2892
.0131 •0305 •0516
-2198 •2709 '3190
•0059 .0174 .0331
•2786 •3308 '3796
•0020 •008, •0183
.3519 '4040 •4522
5 6 7 8 9
o•o898 '1179 "474
0'3345
0.0753 •1011 •1286
0 '4973
'1575 '1877
'4696 •5115 .5517
•2100
'4618 '5019
o•o518 '0731 •0963 .1214
0'0317
'1781
0•3649 •4089 •4513 '4924
0'4257
•3783 •4206
'5322
•1481
'5904
'0478 •o663 •0868 •1091
'5399 •5802 -6185 -6551
10
0•2429
0'5411
0'2190
0'5708
0•1762
o'6276
0.1332
II
'2767
12
-3114 '3470
'5793 •6166 '6530
'2515 •2850 •3195
•6084 •6450 •6805
•2057 •2365 -2686
•6635 •6981 •7314
-1589 -1861 •2148
0.6899 •7232 '7549 •7852
o•0000 •oo18 •0126 '0292 '0495
0.1015 '1594 -2125 •2620 •3086
o•0000 •0004 •0057 •0167 •0317
0.1517 •2148 •2698 •3205 '3679
o•0000 •00005 •0019 '0078 '0175
0.2186 '2854 *3414 '3921 '4391
0'3531
0'0496
0'4127
0.0303
0'4832
-0700 '0922 '1162 .1417
'4554 '4963 '5355 '5733
'0457 •0634 •0829 '1043
'5248 '5643 •6019 '6379
13
0.0000
0.2257
I 1 = 27
r=0 2
•0035 •0179
3 4
'0378 •0609
0.0789 '1337 •1854 '2337 .2796
5 6 7 8 9
0.0861
0.3235
'1131 '1414 •1708
'3658 •4069
0'0723 *0970 ' 12 33
-2014
'4469 '4859
'1509 •1798
'3958 •4370 '4770 '5157
10
0.2328
0.5239
0.2098
0'5534
0.1685
0.6098
o.1272
0.6722
•2408
'5900
•1966
'6450
'1516
'7051
-2260 -2565
•6790 •7118
'1775 •2048
'7365 •7665
o•0000 •0004
0•1468 .208 I
0.0000
0.2119 '2769
I
II
0.0000
•2651
•5611
12
'2983
'5974
13
•3323
•6330
•2728 .3057
•6257 •6605
28 r=0
0.0000
0.0763
o•0000
0.0981
I
•0034
'1293 '1793
'0018
'1543 •2057
ii =
2
•0172
3 4
•0364
5 6 7 8 9
0.0828 •1087 -1358 •1641 '1934
'o585
'00004
'0055
'2615
•0018
.0475
'2537 '2989
•o16o '0304
•3107 '3569
•0075 •0168
'3314 •3809 •4268
0'3131
0'0694
0'3421
0'0476
0'4005
0'0290
0'4698
'3542 '3941 '4329 '4708
'0931 •1184 '1449 '1724
.3836 •4236 •4624 '5004
•o672 •o885 •1114 •1358
'4420 •4819 •5203 '5572
'0438 •0607 '0794 '0998
•51o6 '5493 •5862 •6215
.226 I '2705
•0121 •0281
See page 8o for explanation of the use of this table.
86
TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90
95
99
99.9
n=28 I' = IO
0.2235
0.5078
0'2013
'2 545 •2863 •3188
'5439 '5794 '6140
.2310 '2615 -2930
'3520
'6480
'3253
r=0
0.0000
I
0'0739 •1253
0'0000 '0017
"737
•0116
3 4
•0032 •0166 •0350 •0564
5 6 7 8 9 10
II 12
13 14
0'1615
0'5929
0.1217
0.6553
.5727 •6075 .6415 .6747
-1884 •2164 .2455 •2757
-6274 •6608 •6931 '7243
'1450 •1697 '1957 .2229
.6877 •7188 '7486 '7771
0'0950
0'0000
0.1423
0'0000
0.2057
•1494 •1993
•0004 '0052
•2018 '2 537
0.5369
n=29 2
II
•00004 •0017 -0072 -016i
•2689 •3220 '3703 '4151
'2190
•0270
•2458
'0154
'3016
•2621
-0458
•2898
•0292
'3465
0.0797 •1046 •1307 .1579 •186o
0.3034
0.0668 '0896
0.3317 •3720
0.0458 •0645
0.3890 '4295
0.0279 '0421
•1138
•4110
'0850
'4684
'0582
'5349
'4197 •4566
.1393 .1659
'4488 '4855
•1070 .1304
-5058 '5419
'0762 '0957
'5711 .6058
0'2150
0.4926 '5278
0.1935
0-5213
o-155o
0.5769
0.1167
0.6391
'5562
•1807
'6107
'1390
'6710
'5623
'2219 '2512
'5903
'6435 '6752 •7060
•1626 '1873 •2133
•7017 '7312 '7595
0'0000
0.1997
'3433 '3820
0'4572
'4970
12
'2 447 '2752
13 14
•3063 '3382
•5962 '6293
•2814 '3123
'6236 •6560
•2075 '2 354 •2642
0'0000
0.1380
•0004 -0050
.1958 •2463
•00004 -0017
•0338 '0543
0'0000 '0016 '0112 '0260
'1449
3 4
0'0716 '1213 '1683 •2123
0'0921
2
0.0000 •0031 •0160
•2385
'0148
'2929
•0069
•3602
'2541
'0441
•2812
•0281
-3366
-0155
•4040
5 6 7 8 9
0.0768 -ioo8 •1260
0.2942 '3330
0.3219 •3612 '3991 '4359 '4717
0.0441 •0621 •0818 •1030 '1254
0'3780 •4176 '4555 '4921 '5274
0.0268 -0404 'o56o •0732 '0919
0'4452
n= 3o r=0
r
'1933
•2613 •3131
.1522
'3707 '4073
'1792
'4432
0.0644 •0863 '1097 .1342 '1597
10
0.2071
0'4782
0'1862
0.5066
0'1490
'2 357
12
'2649
13 14
'2949 •3254
'5126 '5462 '5793 -6116
'2136 '2 417 •2706 -3002
'5407 '5740 -6065 '6383
'1737 -1994 •2261 '2536
0.5616 '5948 •6270 •6582 •6885
0.1120 '1334 •156o •1797 '2045
0•6236
II
15
0'3566
0•6434
0.3306
0•6694
0.2821
0.7179
0.2304
0.7696
See page 8o for explanation of the use of this table.
87
•4842 -5213 -5568 '5909
-6551 •6854 •7146 '7426
TABLE 30. BAYESIAN CONFIDENCE LIMITS FOR A POISSON MEAN If xi , x2,... , is a random sample of size n from a Poisson distribution (Table 2) of unknown mean kt, and r = xi, then, for an assigned probability C per cent, the pair of entries when divided by n gives a C per cent Bayesian confidence interval for lt. That is, there is C per cent probability that /2 lies between the values given. The intervals are the shortest possible, compatible with the requirement on probability. Example. r = 30, n = 10. With a confidence level of 95 per cent, the Table at r = 30 gives 19.66 and 40.91. On division by n = 10, the required interval is 1.966 to 4-091. The intervals have been calculated using the reference prior with density proportional to 12-1, and the posterior density is such that nit= 1A, (Table 8). The entries can be used for any gamma prior with density
posterior probability density of p
0 (This shape applies only when r > 2. When r 1, the intervals are one-sided.)
When r exceeds 45, C per cent limits for it are given approximately by
exp(-mµ)µs-i ms /(s - 1)!,
r
n
r2 x(P)-
where m and s are non-negative integers, by replacing n with m + n and r with r + s. No limits are available in the where P = z (100 - C) and x(P) is the P percentage point of the normal distribution (Table 5). extreme case r = 0. CONFIDENCE LEVEL PER CENT 90
99
95
99.9
r =1
0.000
2. 303
0.000
2
0.084 0'441 0.937
3'932 5'479 6.946
0-042 0.304 0.713
2.996 4'765 6.40i 7'948
0.000 0.009 0.132 0.393
4'605 6.638 8 '451 10.15
0.176
I'509
1•207 1.758 2-350 2.974 3.623
9'430 10•86 12.26 13-63 14'98
0.749
2-785 3'46 7 4'171
8.355 9.723 11.06 12.37 13.66
11.77 13.33 14-84 16.32 17.77
0.399 0•691 1.040 1.433 I.862
19.83 21.39
13 14
4'893 5.629 6.378 7.138 7.908
4'94 16.20 1 7. 45 18.69 19.91
4'292 4'979 5-681 6.395 7.122
16.30 17.61 18.91 20.19
19.19 20.60 21.98 23-35 24.71
2.323 2-811 3.321 3.852 4.401
22.93 2 4'44 25.92 27.39 28.84
15 i6 17 i8 19
8.686 9'472 10.26 I1.06 1I.87
21'14
22.35 23.55 2 4'75 25-95
20 21 22
12.68 1 3'49 14.31 15.14 15.96
27.14 28.32 29.5o 30.68 31.85
11.66 12 '44 13.22 14.01 14.81
3 4 5 6 7 8 9 10 II 12
23 24
2.129
P172
1.646 2.158 2.702 3.272
0.000 0.001 0.042
6.908 9.233 1 P24 13• II
14.88 16.58 18.22
2146
3.864 4.476 5.104 5'746
7.858
22.73
6'402
26.05
8.603 9'355 10-12 10.89
23.98 25.23 27.69
7.069 7'747 8.434 9.131
27.38 28.7o 30.01 31.32
4'96 5 5'545 6.137 6'741 7'356
30.27 31.69 33.10 34'50 35-88
28.92 30.14 31•35 32.56 33'77
9.835 10.55 1 P27 11.99 12.72
32.61 33'90 35-18 36 - 45 37'72
7.981 8.616 9-259 9910 10.57
37-25 38.62 39'97 4P32 42.66
26'46
88
TABLE 30. BAYESIAN CONFIDENCE LIMITS FOR A POISSON MEAN CONFIDENCE LEVEL PER CENT
90
95
r = 25
16.8o
33.02
15.61
26 27 28
17-63 18 '47 19.31
29
20.15
34.18 35'35 36.50 37-66
16.41 17.22 18•03 18.84
30
2P00 2P85
31 32
33 34
99 34'97 36.16 37'35 38'54 39'73
99.9 38.98 40'24 41'49 42'74 43'98
13'46 14.20 14'95 15.70 16'46
11 . 24 i1.91 12-59 13.27 13.96
44'00 45'32 46'64 47'96 49'27
38.81
19'66
40.91
17.22
45' 22
14.66
50.57
39'96 41. II 42.26 43'40
20. 48 22'13 22'96
42 .09 43'27 44'44 45' 61
17.98 18'75 1 9'52 20'30
46'45 47' 68 48'91 50.14
15.36 16•06 16.78 1 7'49
51.87 53.16 54'45 55'74
26'13
44'54 45' 68
46'78 47'94 49' 11 50.27 51'43
2P08 2186 22.65 2 3'43 24'23
51.36 52'57 53'79 55.00
18.21 18-93 19.66 20.39
57.02 58.30 59'57 6o'84
56.21
21'12
62•10
52'58 53'74 54'89
25'02 25'82 26.62
57'41 58.62 59.82
21.86
22.60 23.35
63'37 64.63 65.88
22.70 2 3'55 2 4'41
21•31
35 36 37 38 39
26.99
46.82
27.86 28'72
47'95 49'09
23.79 24'63 25'46 26.30 2 7'14
50.22 51.35 52'48
27'98 28.83 29.68
2 5'27
40
29'59
41 42
30.46 31'33
43 44
32'20
53•60
30'52
56'04
33.08
54'73
31-37
57.19
2 7'42 28.22
61•02 62'21
24'09 2 4'84
68.38
45
33'95
55'85
32.23
58'34
29'03
63'41
25.59
69.63
67'13
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT For a normal distribution of (k + 1) quantities, let p2 be the square of the true multiple correlation coefficient between the first quantity and the remaining k (sometimes called 'explanatory variables'). p2 is the proportion of the variance of the first quantity that is accounted for by the remaining k. If R2 denotes the square of the corresponding sample multiple correlation coefficient from a random sample of size n (n > k + 1), then, for an assigned probability C per cent, the pair of entries gives a C per cent Bayesian confidence interval for p2. That is, there is C per cent probability that p2 lies between the values given. The entries have been calculated using a reference prior which is uniform over the entire range (0, 1) of p2. The intervals are the shortest possible, compatible with the requirement on probability. When R2 = 1, both the upper and lower limits may be taken to be 1. Interpolation in n and R2 will often be needed. When n is large, C per cent limits for p2are given approximately by R2 ± 2x(P)(1 - R2)(R2I n) 1
posterior probability density of p2
(In some cases this shape does not apply, and the intervals are one-sided.)
where P = (100 C) and x(P) is the P percentage point of the normal distribution (Table 5). More accurate upper limits are found by harmonic interpolation (see page 96) in the function f (n) = Vh(U (n) R2), where U (n) is the upper limit for sample size n. For the lower limit, L(n), use the function f (n) = L(n)); in each case f (oo) = 2x(P)(1 - R2) f122.
89
-
-
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
k
I
CONFIDENCE LEVEL PER CENT
90
95
n =3 R2 = o•oo
0. 0000
•I 0 '20 •30
'0000 '0000 •0000
'40
99 0.7764 •7882
0.0000 •0000
99'9 0•9000 •9060
0•6838 •6985
0.0000 •0000
0.0000 •0000
'0000
•8004
'0000
'9122
•0000
•0000
•8132
•0000
•0000
•7140 '7305 '7482
'0000
•8269
'0000
•9186 •9253
•0000 •0000
0.9683 -9704 •9725 '9746 •9768
0'50
0.0000
0.7676
0-0000
•6o
-0000
'0000 '0000 •0000
0•8416 •8579
0.0000 •0000
0.9325 -9402
'8764 '8987
•0000 '0000
0.0000 •0000 •0000 •0000 -0000
0'9793 •9817 •9845 -9878 -9919
•70
'0000
•8o
-0391
'7892 '8142 '8810
•90
' 11 55
.9644
0512
•9672
•0000
'9592 •9724
0-95
0.1525
0.9887
0.0767
0.9898
0.0118
0.9905
0.0000
0.9948
R2= woo
0.0000
0'3421
• I0
'0000
0'0000 '0000
0'5671 '6621
0'0000 •0000
0'7152 '7864
•0000
'5938
•0000
•0000
'4481 '5202 '5809
0'4200 '5264
•20 •30
0'0000 '0000 '0000 '0000
'6491
'0000
'40
'0538
.6754
.0170
'7139
•0000
-7163 •7591 •7968
•0000 •0000 •0000
•8238 •8525 -8772
0.50
0.1167
•6o
•1950 '2959 '4328
0•7864 •8466 •8982
•6357
'9413 '9756
0.8347 •8877 •9287 •9608
'90
'3471 '5563
0.0029 •0384 -0931 •1867 .3781
'9847
0.0000 •0000 -0124 -0531 '1720
0.8996 •9206
'70
o•o666 •1310 •2189
'8o
0.7518 -8183 '8770 '9275 '9690
0.95
0.7846
0.9860
0.7259
0.9892
0'5735
0'9936
0'3448
0'9964
n = 25 R2 = woo
0.0000
'9489
n = HI
'9491 '9744 '9909
0-1623
0.0000
0'2058
0'0000
0'2983
0'0000
0'4122
•JO '20 •30
'0000
'3128
'moo
-366o
•4665
•0262 '0817
'4230
'4655
•0000 •0000
'5747 •6512
'40
' 1 544
-5222 •6106
•0090 '0530
•0000 •0000
0'50
0.2439
0.6906
•6o /0
'3507 '4762
•8o
'6232
*90
0.95
'5536
•5622
'0129
'6339
'0000
'7116
•1158
'6464
'0535
'7091
'0090
'7696
'7637
0.1980 •3009
0.7215 -7890
o•1166 •2058
0.7746 -8320
0.0445 •Io81
0.8248 •8719
•8306
•4270
•8500
•3266
'8921
'5807
'9052
'4881
'8824 '9268
'7958
'9485
'7683
'9551
'7046
0'8935
0'9749
0'8778
0.9782
0.8403
'2101
'9121
'9659
•3678 '6116
'9463 '9754
0.9836
0.7821
0.9883
See page 89 for explanation of the use of this table. 90
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
k =2 CONFIDENCE LEVEL PER CENT
90
95
n =4
122 = woo
o-0000
o•6o19
0.0000
•io
•0000
•6179
•20
'0000
•6352
•30 '40
•0000 •0000
•6541 •6751
•0000 •0000 •0000 •0000
0'50
o'0000
0.6986
•6o
•0000
'7255
99
99'9 o•8415 •85o3 •8595 -8694 •8799
0.0000 •0000 •0000 •0000 •0000
0.9369
'7434 •7611
o'0000 •0000 •0000 •0000 •0000
0.7807 •8028 •8284 •8597 •9I00
0.0000 •0000 •0000 •0000 •0000
0.8914 •9040 '9184 '9353 '9572
o•0000 •0000 •0000 •0000 •0000
0.9586 •9636 .9695 •9765 •9848
0.6983 •7123 •7272
'9408 '9448 '9491 '9535
• 0
•0000
'7573
•8o
•0000
•7969
•90
•0614
-9055
o'0000 •0000 •0000 •0000 •oo85
0.95
o•1189
0'9690
0'0540
0'9707
0.0000
0'9720
0'0000
0'9905
122 = woo
0'0000
0'0000 '0000
0'0000
0'5671
0.0000
0.7152
'0000
0'3421 '4101
0'4200
•IO
'4904
'20
'4741
•30
•0000 'am
'40
•0000
'5354 '5953
•0000 •0000 •0000
•5527 -6098 -6641
•0000 •0000 •0000 •0000
•6331 •6857 •7313 •7728
•0000 •0000 •0000 •0000
•7665 •8040 •8352 •8626
0'50
0'0363
0'6854
0.0000
0'7170
•6o
•1122
•7800
-2107
-8o
'9656
'8779 '9321 '9728
0.8118 •8493 •9062 •9523 •9825
o'0000 •0000 •0000 •0105
•90
'3487 '5639
'8557 .9171
0.0000 •0000 '0307 •1014 -2688
0•8877 •9112
• 0
'0557 ' 1351 '2564 '4692
•8073
'0774
'9887
0'95
0.7323
0.9848
0.6562
0.9883
0.4649
0.9929
0.2109
0 '9959
0'0000
0'1623 '2822
0'0000 '0000
0'2058 •3364
0'0000 '0000
0'2983 •4400
0'0000 '0000
0.4122
•3783
•0000 '0242 •0849
'4329 '5334 •6273
•0000 •0000 -0272
•5321 -6079 -6907
•0000 •0000 •0000
0.1667 '2708 •4000 '5589
0.7079
0.0866
0'7628
0'0211
0'8134
•8241
•0786 ' 1772
•8653 •9081
'3352 •5866
'9442 '9746
0.9830
0'7664
0 '9879
it = 10
it = 25 R2 = woo '10 •20
'0000 'moo
•30 '40
.0503 •1225
0'50
0'2130 '3221
•6o
'4938 . 5904
0'6758
•8o
'4514 •6040
'7530 •8234 •8878
•90
'7845
'9465
'7550
'9535
'1742 '2958 •4611 •6865
0.95
0.8873
0 '9739
0•8705
0'9774
o'8298
io
'7794 '8436 -9015
'8774 -9240 -9647
See page 89 for explanation of the use of this table.
91
'9338 •9629
'5525 •6341 •6983 '7532
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
k =3 CONFIDENCE LEVEL PER CENT
90
99
95
n =5 R2 = woo
o•0000
0•5358
•IO
•0000
'5532
0.0000 •0000
0•6316 •6477
99'9
o•0000 •000o
0.7846 •7962
o-0000 •0000
•20
•0000
•5721
'0000
'6652
'0000
•8085
'0000
'30
•000o
'40
•0000
'5931 •6166
•0000 •0000
•6842 •7053
•0000 •0000
•8217 •836o
•0000 •0000
0'50
0.0000
0.6433
•0000
0•0000 •0000
0.7289
•6o •70
'0000
•0000 '0000
'7874 '8262
0.0000 •0000 •0000
0•8517 -8691 •8890
0.0000 •000o •0000
•0000
'9125
0•900o -9061 •9126 •9196 •9266 0 '9344
•8o
'0000
'6743 •7114 '7582
'0000
•9634
•90
•oun
•8337
•0000
•8787
•0000
-9426
•0000
•9770
0'95
0 '0951
0'9446
0.0362
0•9470
0.0000
0•9630
0.0000
0.9858
n = 15 R2 = woo
0.0000
0.0000 •0000
0.3123 •3892
O•0000 •0000
0 4377 •5186
0.5784
•0000
'0000
•6522
•20
•0000
•30
- 0000
0'2505 •3204 •3930 '4662
o•0000
•I0
'40
-0000
'5395
•0000 -0000 •0000
•4630 '5340 •6026
•0000 -0000 -0000
•5879 •6498 •707o
•0000 •0000 •0000
'7093 '7576 •8002
0'50
0.0648
0.6565
•1562
'7522
'70
'2779
•8o
'4409
'3635 -602!
0.7602 •8230 •8901 '9381
0•0000 -0000 .0045 •0628
•6656
0•6885 -7820 -8548 '9138 •9620
0.0000 •0153 -0823 '2093
•90
•8309 '8976 '9539
0.0231 '0973 •2053
0.8388
•6o
'4537
'9739
'2546
'9830
0'95
0'8139
0.9783
0.7720
0.9823
0.6638
0.9882
0.4879
0.9926
R2 = o•oo •IO
0.0000
0.1623
0.0000
0.2058
o•0000
0.2983
•2580
'0000
•3123
'0000
•20
•0000
•3514
•30
'0190
'40
•0890
'4556 '5667
•0000 -0000 '0533
'4075 '4941 •6038
•000o •0000 •0033
'4175 •5103 '5895 -6631
o•0000 •0000 -0000 •0000 •0000
0.4122
•0000
0'50
0.1797
0'6592
0-1333
'2909
'7412
'2382
.70
'4242
0.7484 '8152 •8719
0.0014 '0491 •1421
'5827
'90
'7719
'9444
'3704 '5349 '7402
0.0562 '1407 -2623
'8o
.8155 '8830
0.6924 •7688 -8367
0'7947
•6o
'8974 '9517
'4314 •6664
'9209 '9634
'2995 '5586
'9037 '9419 '9737
0.95
0.8804
0'9729
0.8621
0.9766
0.8179
0.9824
0'7484
0'9875
'7558
*9430 •9529
'8745 •9117 •9561
n = 25
See page 89 for explanation of the use of this table.
92
'5330 •6166 -6841 .7421
'8572
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
k= 4 CONFIDENCE LEVEL PER CENT
90
95
n =6
99
99'9
R2 = woo
o-0000
o. 482o
o•0000
0•5751
0.0000
0.7317
•10
•5928
•0000
-6121
•0000 •0000
'7458 '7609
•30
•0000
-0000
'7771
•0000
6334 •6571
•0000
'40
•5011 •5203 •5427 •5681
- 0000
'20
'0000 •0000
•0000
•7948
•0000 •0000
0•50
0.0000
0.5971
•6312
0.0000 •0000
0.8143 •8360
0.0000 •0000
0.9092
•0000
0.0000 •0000
0•6839
•6o •70
'0000
•0000
.9346
•8o
•0000
'6724 •7249
•90
'0000
0.95
•0000
0.0000 •0000 •0000
o•86io •8696 •8786 •888o •8982
•9212
•0000
•7147 •7512
•8610
•0000
'7993
-0000 -0000
•7964 •8581
•0000 •0000
•8907 •9287
•0000 •0000
'9499 •9689
0.0731
0.9167
o•o186
o•9199
0•0000
0'9543
0-0000
0.9810
R2 = woo
0.0000
0'4377
'0000
•30
•0000
'4343
-000o
•3732 •4377 -5047
'40
•0000
'5061
•0000
'5731
•0000 •0000 •0000 •0000
•5032 -5661 •6264 •6846
o-0000 •0000 •0000 •0000 •0000
0.5784
'20
0.0000 •0000 •0000
0.0000
•0000
0.2505 •3050 '3669
0.3123
•10
0.50 •6o
0-0110
0.5916 .7160
0.0000
0•6424
0.0000
0'7406
0.0000
o•8258
.0959
'0442
'7438
•0000
• 0
'2130
'8117
'1409
*8363
•8o
'3792
•2952
.9055
'0347 •1384
•90
'6200
•8882 .9505
'7947 -8689 •9306
'5463
'9592
'3770
'9719
•0000 •0000 •0218 •1662
-8641 -9001 -9461 •9813
0.95
0.7850
0.9769
0'7345
0.9812
0.6035
0'9874
0'3957
0.9921
R2 = woo
o•0000
0.1623
0.0000
0'2058
0'0000
0.2983
0.0000
0'4122
•IO '20
'0000
•2399 •3263
-2937 •3835
•30
'0000
'4148
•0000
•4709
'40
•0552
•5367
•0229
•5720
•0000 •0000 -0000 •0000
'3993 •4892 •5702 •6438
-0000 •0000 •0000 -0000
•5170
•0000
•0000 •0000
0•50
0.1441
0.0985 •2030
0.0273
0.7289
0.0000
0.7838
•2570
/0
'3942
0.640o •7282 •8068
0.6741
-60
'7570 •8290 •8930
•8049 •8657 .9175 -9620
-0223 -1059 •2606 •5271
'8456 -8985
'9498
-1054 •2259 •3985 '6436
0 '9757
0.8043
0.9818
0.7278
0.9871
n = 15 6394 •6927 •7408
7849
n=25
•8o
•5591
'90
'7578
'8779 '9422
'3379 .5082 .7235
0•95
o'8726
0.9719
o'8527
See page 89 for explanation of the use of this table.
93
'5993 •6690 •7297
'9393 '9727
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
k=5 CONFIDENCE LEVEL PER CENT 90
n=7 R2 =o-oo
99
95
o•0000
0 '4377
•20
'0000 '0000
•30
•0000
'40
•0000
'4563 '4771 '5011 •5269
0'50
o-0000
0.5576
-6o
•0000
'70
•0000
-8o
•0000
•90
0.0000 •0000 -0000 '0000 '0000
0.5271
99'9
'5459 •5665 '5895 '6151
0.0000 •0000 •0000 •0000 '0000
0.6838 •6998
•0000
o'6444 -6783 '7188 •7695 •8392
0.0000 •0000 •0000 •0000 •0000
0'7795
'5940 '6384 '6955 '7774
0.0000 •0000 '0000 •000o •0000
0-95
0.0509
0•8858
0.0000
0•8898
n = 20 R2 = woo
0.0000
0.1969
•10
'0000
•20 •30
'0000
'2525 '3190
'40
•0000
'3943 '4755
0.0000 •0000 •0000 •0000 •0000
0'50
0.0445
0'5933
-6o
' 1 433
•70
•2783
-8o
'4557
•7074 -7986 '8758
•90
'6874
0•95
0.0000 -0000 •0000 •0000 •0000
0.8222 •8327
•8052 '8347 •8700 •9154
0.0000 •0000 •0000 •0000 •0000
0•8837 •8991 •9164 -9362 •9606
0.0000
0.9460
0.0000
0.9761
0.2482 •3115 •3824 •4584 •5368
0.0000 '0000 '0000 -0000 •0000
0.3550 '4276 '5011
0.0000 '0000 '0000 -0000 •0000
0.4821
0.6230
'7791 '8620 '9199
0.0000 •0000 •0063 '0897
0.790o -8374 •8867
'8931 '9514
0-0000 •0104 '0896 '2432 '5121
0.7072
'9427
0.0079 .0879 •2101 '3864 •6351
'9647
'3376
'9416 '9757
0.8310
0'9726
0'7986
0.9769
0.7165
0.9835
0.5824
0.9889
R2= woo
0'0000
'20 •30 •4°
•woo
0'1757 '2576 •3486
'0000
•0610
*5157
0'0000 '0000 •0000 •0000 '0291
0.0000 '0000 -0000 •0000 •0000
0•0000 •0000 •0000 •0000 •0000
0.3596
•0000
0'1381 '2092 •2955 '3879
0.257o
-JO
0'50
0'1556
0.1115 .2230 •3627
0'0391 '1288
-8o *90
'7721
'9373
'5339 '7430
'8835 '9448
'2594 '4370 '6758
0'7098 '7876 '8520 '9079 '9570
0'0000 .0399 •1424 '3124 '5785
0.7598
'2735 '4139 '5788
o•6210 .7119
0. 6543
•6o
0.95
0.8812
0.9694
0.8647
0'9731
0.8251
0.9792
0.7642
0.9847
•IO
n=
'0000
'7378 '8236
'7174 •7361 •7567
'5718 •6409
'8443 •8566 •8696
'5557 '6222 •6830 •7387
30
/0
'7939 •8687
'4408 •5503
'7399 .8155
'3543 '4481 '5354 -6154
See page 89 for explanation of the use of this table.
94
'4649 '5540 •6314 '6994
•8310 -8858 .9304 •9681
TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
k= 6 CONFIDENCE LEVEL PER CENT
90
99
95
n =8
99'9
R2= woo
0.0000
0'4005
0.0000
0'4861
0'0000
0'6406
0'0000
0'7845
•0
'0000
•20
•0000
•0000 •0000
-5056 •5271
•0000 •0000
•6584 •6776
'0000 '0000
'5511 •5783
'0000
'6986
•7972 •8114 •8258
•0000
•7216
•0000 •0000 •0000 •0000
0.6094 •6457 •6896
0 '7473
o•0000 -0000 -0000 -0000 •0000
0•8586
•7763 •81oo •8504 •9027
•30
'0000
'40
-0000
'4193 '4404 '4642 '4916
0'50
0'0000
0.5234
0.0000
•6o
•0000
• 0
•0000
•8o
-0000
'5614 '6083 '6692
'0000 '0000 '0000
•90
•0000
'7575
•0000
•82I7
o•0000 •0000 •0000 •0000 '0000
0095
0.0278
0'8520
0'0000
o'8778
0'0000
0'9381
0'0000
0'9713
n= 20 R2 = o•oo
0-0000
o.1969
0'0000 •0000
0.0000
0.4821
•0000
0'2482 •3018
03550
•0
0'0000 •0000
'4173
•0000
-0000 -0000 •0000
'4835 •5517 •6206
•0000 •0000 '0000 •0000
•5462 •6o8o •6691 •7238 0.7769 •8269
'7449
'8415
'8774 •8984 •9227 •9524
•20
'0000
•30
'0000
•2436 •30I3 •3698
'40
-0000
'4477
•0000
•3644 '4350 •5114
0•50
0.0034 '0947
0'5358
•676o
0.0000 •0451
0.5914 •7045
o-0000 •0000
0•6887
-6o • 0
•2257
•7821
•1568
•8079
.0469
'8444
•80
'4084
'8674
090
'6556
'9393
'3334 '5967
'8857 '9486
' 1834 '4584
'9137 .9627
0.0000 •0000 •0000 '0446 •2671
0095
0'8123
0'9711
0'7748
0'9757
0.6797
0.9827
0'5243
0.9884
n = 30 R2 = o•oo
o-0000
O.1381
'0000 '0000
0.1757 •2459 •3297
0.0000 -0000 •0000
0.2570 •3420
•20 •30
'1984 '2764 '3658
0'0000 •0000 '0000 '0000
•4200
'0000
'40
•0327
'4839
•0047
•5151
•0000
o•0000 •0000 -0000 •0000 '0000
0.3596
•0
0•50
0.0155 .0972 •2269 •4086
0•0000 •0172 •1094
0.7506 •8183 •8806
'2785 '5525
'9277 -9670
0'7481
0.9843
•0000
•0000
0.1239
0.6022
o•o809
0.6357
•6o
'2430
'6993
/0
'3872
•8o
'5581
'7855 •8637
•90
'7600
'9350
' 1913 '3339 '5107 '7289
'7284 •8080 '8791 .9428
0.95
0 '8747
0.9683
0-8569
0'9722
'7550
'4305 '5175 '5998 0.6881
'6569
'7773 '8459 •9045 '9556
o•8142
0.9786
See page 89 for explanation of the use of this table.
95
'8737 '9341 '9742
'4531 '5389 •6169 •6871
A NOTE ON INTERPOLATION Part of the tabulation of a function f(x) at intervals h of x is in the form given in the first two columns of the figure :
For x = 0.034, p = (0.034-0.03)/0.01 = 0.4 and the linear interpolate is
xo J o x, 4 x, f,
0 '9790 + 0.4
Ai
The additional term for the quadratic interpolate is
A", A;1
—0.25 x 0.4 x o•6 x ( — 0'0090 — 0'0087) = 0'001i
A°
x, f, where ft = f(x) and x,„ = x,H-h. Interpolation of f(x) at values of x other than those tabulated uses the differences in the last three columns, where each entry is the value in the column immediately to the left and below minus the value to the left and above : thus, Ail =f 2 —fi and A; = These are usually written in units of the last place of decimals in f(x). Linear interpolation between x1 and x2 approximates f(x) by +PAil with p = (x—x1)/h. This simple rule uses only the values within the lines of the figure and is often adequate. Quadratic interpolation between x1and x2 approximates f(x) by +pA',4 -1p(i—p) (A';+
and is not negligible, the quadratic interpolate being 0-9709. This is exact, as is expected since A;1 at 3 is well below 6o. The quadratic method uses fo ana f, (needed for A; and A;) and so fails if either is unavailable, for example at the ends of the range of x or when the interval of tabulation h changes. Modified quadratic forms between xl and x2 are
+pevil
20,
Example. The F-distribution, P = to, v1 = i (Table 2(a), page 5o), interpolation in v2, now x.
0'9929
'03
'9790
—
F(P)
0
2'706
120
1/120
2•748
6o 2/12 0
2.791
40 3/120
2.835
43
+3 —8 7
—316 ' 05
'9245
CONSTANTS e = 2.71828
18285
It = 3'141 59 26536
T1E
=
0
44
h--,±0)/(th) =
—90
-9561
I /v2
Notice that the values of v2 chosen for tabulation are such that the intervals of i/v2 are constsnt, here The differences show that linear interpolation will be adequate. For •5 and the linear interv2 = 8o, p = ( polate is 2.748 + o.5 x 0.043 = 2•77o with the possibility of an error of I in the last place.
139
—229 -04
v2
oo
42
r = 2 (Table t,
page 22), interpolation in p, now x.
(f, missing),
Ocassionally, harmonic interpolation is advisable. To do this the argument x is replaced by i/x and then linear (or quadratic) interpolation performed.
2.
Example. The binomial distribution, n =
—p) A;
f1 +0,4-1p(i —p) A; (fo missing).
This is generally adequate provided Ail is less than 6o in units of the last place of decimals in the tabulation. Notice that the quadratic interpolate consists of the addition of an extra term to the linear one, so that a rough assessment of it will indicate whether the linear form is adequate. The maximum possible value of ip(t —p) is when p =
0•02
x ( — 0-0229) = 0-9698.
0-39894 22804
logio e = 043429 44819 loge Io = 2.30258 50930 10g,
2n = 0.91893 85332
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, no Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521484855 © Cambridge University Press 1984 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1984 Eighth printing 1994 Second edition 1995 Thirteenth printing 2009 Printed in the United Kingdom at the University Press, Cambridge A catalogue record for this publication is available from the British Library ISBN 978-0-521-48485-5 paperback