
22,138 4,366 2MB
Pages 98 Page size 625 x 786 pts Year 2011
NEW CAMBRIDGE STATISTICAL TABLES D. V. LINDLEY & W. E SCOTT
 
 Second Edition
 
 CAMBRIDGE UNIVERSITY PRESS
 
 CONTENTS PREFACES
 
 page 3
 
 TABLES: 1 The Binomial Distribution Function 2 The Poisson Distribution Function 3 Binomial Coefficients 4 The Normal Distribution Function 5 Percentage Points of the Normal Distribution 6 Logarithms of Factorials 7 The )(2-Distribution Function 8 Percentage Points of the )(2-Distribution 9 The t-Distribution Function 10 Percentage Points of the t-Distribution 11 Percentage Points of Behrens' Distribution 12 Percentage Points of the F-Distribution 13 Percentage Points of the Correlation Coefficient r when p = 0 14 Percentage Points of Spearman's S 15 Percentage Points of Kendall's K 16 The z-Transformation of the Correlation Coefficient 17 The Inverse of the z-Transformation Percentage Points of the Distribution of the Number of Runs 18 19 Upper Percentage Points of the Two-Sample Kolmogorov—Smirnov Distribution 20 Percentage Points of Wilcoxon's Signed-Rank Distribution 21 Percentage Points of the Mann—Whitney Distribution 22A Expected Values of Normal Order Statistics (Normal Scores) 22B Sums of Squares of Normal Scores 23 Upper Percentage Points of the One-Sample Kolmogorov—Smirnov Distribution 24 Upper Percentage Points of Friedman's Distribution 25 Upper Percentage Points of the Kruskal—Wallis Distribution 26 Hypergeometric Probabilities 27 Random Sampling Numbers 28 Random Normal Deviates 29 Bayesian Confidence Limits for a Binomial Parameter 30 Bayesian Confidence Limits for a Poisson Mean Bayesian Confidence Limits for the Square of a Multiple Correlation 31 Coefficient A NOTE ON INTERPOLATION CONSTANTS
 
 4 24 33 34 35 36 37 40 42 45 46 50 56 57 57 58 59 60 62 65 66 68 70 70 71 72 74 78 79 80 88 89 96 96
 
 CONVENTION. To prevent the tables becoming too dense with figures, the convention has been adopted of omitting the leading figure when this does not change too often, only including it at the beginning of a set of five entries, or when it changes. (Table 23 provides an example.)
 
 PREFACE TO THE FIRST EDITION The raison d'etre of this set of tables is the same as that of the set it replaces, the Cambridge Elementary Statistical Tables (Lindley and Miller, 1953), and is described in the first paragraph of their preface. This set of tables is concerned only with the commoner and more familiar and elementary of the many statistical functions and tests of significance now available. It is hoped that the values provided will meet the majority of the needs of many users of statistical methods in scientific research, technology and industry in a compact and handy form, and that the collection will provide a convenient set of tables for the teaching and study of statistics in schools and universities. The concept of what constitutes a familiar or elementary statistical procedure has changed in 30 years and, as a result, many statistical tables not in the earlier set have been included, together with tables of the binomial, hypergeometric and Poisson distributions. A large part of the earlier set of tables consisted of functions of the integers. These are now readily available elsewhere, or can be found using even the simplest of pocket calculators, and have therefore been omitted. The binomial, Poisson, hypergeometric, normal, X2 and t distributions have been fully tabulated so that all values within the ranges of the arguments chosen can be found. Linear, and in some cases quadratic or harmonic, interpolation will sometimes be necessary and a note on this has been provided. Most of the other tables give only the percentage points of distributions, sufficient to carry out significance tests at the usual 5 per cent and i per cent levels, both one- and two-sided, and there are also some io per cent, 2.5 per cent and 0•1 per cent points. Limitation of space has forced the number of levels to be reduced in some cases. Besides distributions, there are tables of binomial coefficients, random sampling numbers, random normal deviates and logarithms of factorials. Each table is accompanied by a brief description of what is tabulated and, where the table is for a specific usage, a description of that is given. With the exception of Table 26, no attempt has been made to provide accounts of other statistical procedures that use the tables or to illustate their use with numerical examples, it being felt that these are more appropriate in an accompanying text or otherwise provided by the teacher. The choice of which tables to include has been influenced by the student's need to follow prescribed syllabuses and to pass the associated examinations. The inclusion of a table does not therefore imply the authors' endorsement of the technique associated with it. This is true of some significance tests, which could be more informatively replaced by robust estimates of the parameter being tested, together with a standard error.
 
 All significance tests are dubious because the interpretation to be placed on the phrase 'significant at 5%' depends on the sample size: it is more indicative of the falsity of the null hypothesis with a small sample than with a large one. In addition, any test of the hypothesis that a parameter takes a specified value is dubious because significance at a prescribed level can generally be achieved by taking a large enough sample (cf. M. H. DeGroot, Probability and Statistics (1975), Addison-Wesley, p. 421). All the values here are exact to the number of places given, except that in Table 14 the values for n > 17 were calculated by an Edgeworth series approximation described in 'Critical values of the coefficient of rank correlation for testing the hypothesis of independence' by G. J. Glasser and R. F. Winter, Biometrika 48 (1961), pp. 444-8. Nearly all the tables have been newly computed for this publication and compared with existing compilations: the exceptions, in which we have used material from other sources, are listed below: Table 14, n = 12 to 16, is taken from 'The null distribution of Spearman's S when n = 13(1)16', by A. Otten, Statistica Neerlandica, 27 (1973), pp. 19-20, by permission of the editor. Table 24, k = 6, n = 5 and 6, is taken from 'Extended tables of the distribution of Friedman's S-statistic in the two-way layout', by Robert E. Odeh, Commun. Statist. — Simula Computa., B6 (I), 29-48 (1977), by permission of Marcel Dekker, Inc., and from Table 39 of The Pocket Book of Statistical Tables, by Robert E. Odeh, Donald B. Owen, Z. W. Birnbaum and Lloyd Fisher, Marcel Dekker (1977), by permission of Marcel Dekker, Inc. Table 25, k = 3, 4, 5, is partly taken from 'Exact probability levels for the Kruskal—Wallis test', by Ronald L. Iman, Dana Quade and Douglas A. Alexander, Selected Tables in Mathematical Statistics, Vol. 3 (1975), by permission of the American Mathematical Society; k = 3 is also partly taken from the MS thesis of Douglas A. Alexander, University of North Carolina at Chapel Hill (1968), by permission of Douglas A. Alexander. We should like to thank the staff of the University Press for their helpful advice and co-operation during the printing of the tables. We should also like to thank the staff of Heriot-Watt University's Computer Centre and Mr Ian Sweeney for help with some computing aspects. 10
 
 January 1984
 
 PREFACE TO THE SECOND EDITION The only change from the first edition is the inclusion of tables of Bayesian confidence intervals for the binomial and Poisson distributions and for the square of a multiple correlation coefficient.
 
 D. V Lindley Periton Lane, Minehead Somerset, TA24 8AQ, U.K.
 
 2
 
 W. F Scott Department of Actuarial Mathematics and Statistics, Heriot-Watt University Riccarton, Edinburgh EHI4 4AS, U.K.
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
 
 n= 2
 
 r =o
 
 1
 
 n= 3 r =o p=
 
 i
 
 P = 0.01 0.9801
 
 0.9999
 
 0 '9997
 
 *9996
 
 0•01 •02
 
 0.9703
 
 '9604
 
 *9412
 
 '9988
 
 '9409 •9216
 
 .9991 '9984
 
 .03 '04
 
 .9127 .8847
 
 '9974 .9953
 
 '02 '03 '04 0'05
 
 0.9025 •8836
 
 0 '9975
 
 0'05
 
 0'8574
 
 •8306
 
 0.9928 •9896
 
 •8044
 
 '9860
 
 '7787 '7536
 
 •9818 '9772
 
 '07
 
 '8649
 
 •9964 '9951
 
 .68
 
 '8464
 
 '993 6
 
 •06 •07 .08
 
 •09
 
 •8281
 
 •9919
 
 '09
 
 0. zo
 
 0•8roo
 
 •I I •I2
 
 '7921
 
 0'10 0'7290 0'9720 ' II '7050 '9664
 
 '7744
 
 '13 •14
 
 '7569 .7396
 
 0.9900 '9879 '9856 '9831 .9804
 
 '12 '13 •x4
 
 •6815 '6585 •6361
 
 0'15
 
 0'7225
 
 •7056
 
 0.6141 .5927
 
 •6889
 
 0.9775 '9744 '9711
 
 0'15
 
 •16 •17
 
 -6724
 
 •9676
 
 '17 •18
 
 •6561
 
 •9639
 
 '19
 
 0'20 •21 '22 '23
 
 o'6400 •6241
 
 0.9600 '9559
 
 0'5120 '4930
 
 '6084 '5929
 
 '9516
 
 '24
 
 '5776
 
 '9471 '9424
 
 0'20 '21 '22 '23
 
 '24
 
 0'25
 
 •5625
 
 0 '9375
 
 •26
 
 '5476 '5329
 
 •9324 •9271
 
 0'25 '26
 
 •5184
 
 •9216
 
 '5041
 
 '9159
 
 0'30
 
 0.4900
 
 0.3430
 
 '4761
 
 0.9100 '9039
 
 0'30
 
 '31
 
 .31
 
 •3285
 
 '32
 
 '4624
 
 '8976
 
 '32
 
 '3144
 
 '33 .34
 
 '4489
 
 •8911 .8844
 
 '33
 
 .3008
 
 '4356
 
 '34
 
 '2875
 
 •66
 
 •18 •19
 
 z
 
 The function tabulated is
 
 0.9999 .9998 .9997 '9995 '9993
 
 0.9990 '9987 .9983 '9603 '9537 '9978 .9467 .9973
 
 0.9393 .9314 '9231 .9145 '9054
 
 0.9966 '9959 .9951 .9942 '9931
 
 0'8960
 
 0'9920
 
 '4390
 
 •8862 •8761 •8656 '8548
 
 .9907 '9894 •9878 •9862
 
 0'4219
 
 0.8438
 
 0 '9844
 
 '8324 '8207
 
 '9824 '9803
 
 •28
 
 '4052 '3890 '3732
 
 '29
 
 '3579
 
 •8087 '7965
 
 '9780 '9756
 
 0.7840 '7713 '7583 .7452 .7318
 
 0 '9730
 
 •x 6
 
 '5718
 
 •5514 '5314
 
 F(r1n, p) = E (n) pt(i_p)n-t
 
 0.9999
 
 Pr {X < r} = F(rIn, p). Note that Pr {X 3 r} = 1 -Pr {X < r= I F(r iln, p). F(nin, p) = I, and the values for p > 0.5 may be -
 
 •27 '28 '29
 
 6.35
 
 •36 '37 '38 .39
 
 0.4225 •4096 .3969 '3844 .3721
 
 '43 •44
 
 0'2746
 
 0.7182
 
 •36
 
 •2621
 
 '7045
 
 •37 .38
 
 •2500
 
 •6966
 
 .9493
 
 .2383
 
 .6765
 
 . 9451
 
 '39
 
 '2270
 
 •662,3
 
 '9407
 
 0.8400 •8319 '3364 •82 36 •8151 '3249 •3136 •8064
 
 0'40
 
 0•2160
 
 •41
 
 '2054
 
 0.6480 .6335
 
 0.9360 .9311
 
 '42
 
 '1951
 
 '6190
 
 '9259
 
 '43 •44
 
 •1852 •1756
 
 •6043
 
 •9205 '9148
 
 6.1664 '1575 '1489
 
 0'5748
 
 •1406 .1327
 
 '5300 '5150
 
 0.3025
 
 0 '7975
 
 0.45
 
 •46
 
 •2916 '2809
 
 •7884 .7791
 
 •46
 
 '7696
 
 •49
 
 .2704 •26or
 
 0'50
 
 0'2500
 
 .48
 
 0.9571 '9533
 
 0'35
 
 •8704 •8631 .8556 .8479
 
 0 '45
 
 .47
 
 '9702 '9672 .9641 •9607
 
 0'8775
 
 040 0.3600 .41 .3481 '42
 
 •27
 
 '7599
 
 '47 '48 '49
 
 0'7500
 
 0'50
 
 •5896
 
 .5599 '5449
 
 0.9089 .9027 .8962 •8894 •8824
 
 F(rIn, p) =
 
 0'5000
 
 0'8750
 
 4
 
 -
 
 F(n r -
 
 -
 
 'In, x
 
 -
 
 p).
 
 The probability of exactly r occurrences, Pr {X = r}, is equal to -
 
 F(r
 
 -
 
 1ln, p ) = (nr) Pr(I
 
 Linear interpolation in p is satisfactory over much of the table but there are places where quadratic interpolation is necessary for high accuracy. When r = o, x or n-1 a direct calculation is to be preferred:
 
 F(o1n, p) = (i - p)n , F(1 In, p) = (1 -p)"-1[1 + (n- 1)p]
 
 F(n- iln, p) = 1 -p".
 
 and
 
 For n > 20 the number of occurrences X is approximately normally distributed with mean np and variance np(1 p); hence, including for continuity, we have -
 
 F(rin, p) * (1)(s)
 
 npand 0(s) is the normal distribution A/np(i p)
 
 where s = r+
 
 -
 
 -
 
 function (see Table 4). The approximation can usually be improved by using the formula
 
 F(rin, p) * 0(s) where y
 
 I -
 
 Y e-is (s2 - x) 6 A/27/
 
 2P
 
 Vnp(i -p)
 
 An alternative approximation for n > zo when p is small and np is of moderate size is to use the Poisson distribution: F(rIn, p) * F(rI#) where # = np and F(r1,a) is the Poisson distribution function (see Table 2). If 1 p is small and n(i p) is of moderate size a similar approximation gives -
 
 F(rin, p) *
 
 -
 
 -
 
 F(n r -
 
 -
 
 11,a)
 
 where u = n(i p). Omitted entries to the left and right of tabulated values are o and I respectively, to four decimal places. -
 
 0'1250
 
 -
 
 found using the result
 
 F(r1n, p)
 
 '4746 '4565
 
 t
 
 t
 
 for r = o, r, n- 1, n < 20 and p 5 O. 5 ; n is sometimes referred to as the index and p as the parameter of the distribution. F(rin, p) is the probability that X, the number of occurrences in n independent trials of an event with probability p of occurrence in each trial, is less than or equal to r; that is,
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n =4 p
 
 = o•ox '02
 
 .03 .04 0.05
 
 7= 0
 
 0.9606 -9224 .8853 •8493
 
 I
 
 I
 
 0•0I '02
 
 0'9510
 
 0'9990
 
 '9039
 
 .8587
 
 '9998
 
 .81 54
 
 .9962 .9915 '9852
 
 0 '9999
 
 -03 •04
 
 0 '9995
 
 0'05
 
 0 '7738
 
 0 '9774
 
 '9992 '9987 •9981 '9973
 
 -o6 •o8
 
 '7339 '6957 '6 591
 
 .9681 '9575 '9456
 
 0.9988 •998o •9969 '9955
 
 0 '9999
 
 .09
 
 '6240
 
 .9326
 
 '9937
 
 '9999 '9998 '9997
 
 0.9963 '9951 '9937 .9921 '9902
 
 0'9999 '9999 '9998 '9997 '9996
 
 0•10 'II
 
 0.5905
 
 0.9185 '9035 -8875 .8708 .8533
 
 0 '9914
 
 0 '9995
 
 .9888 .9857 '982, .9780
 
 '9993 '9991 '9987 '9983
 
 0'9995
 
 (Yr5 •i6
 
 0'4437
 
 0 '9734
 
 0 '9999
 
 '17
 
 0.9978 '9971 .9964 '9955 '9945 0 '9933
 
 0 '9997
 
 '9919 •9903 •9886 •9866
 
 '9996 '9995 '9994 '9992
 
 p
 
 .07 •o8
 
 .7164
 
 '09
 
 •6857
 
 0.9860 •9801 '9733 '9656 '9570
 
 o•io
 
 0.6561
 
 0 '9477
 
 'II •12
 
 •6z74 '5997
 
 •13 '14
 
 .5729 '5470
 
 '9376 '9268 '9153 '9032
 
 0'15
 
 0.5220
 
 •i6
 
 '4979
 
 •17
 
 '4746
 
 0.8905 '8772 .8634
 
 •18 •19
 
 .4521 '4305
 
 '8344
 
 0.9880 .9856 .9829 '9798 .9765
 
 0'20 •21
 
 0.4096
 
 0.8192
 
 0.9728
 
 '3895
 
 '22
 
 •3702 •3515
 
 '8037 .7878 '7715 '7550
 
 •9688 '9644 '9597 '9547
 
 •8491
 
 .23 .24
 
 '3336
 
 0'25
 
 0 '3164
 
 •26
 
 '2999
 
 0.7383 .7213
 
 •27
 
 •2840
 
 *7041
 
 •28 '29
 
 •2687 '2541
 
 •6868 '6693
 
 0.9492 '9434 '9372 •9306 '9237
 
 0'30
 
 0.2401
 
 0.6517
 
 0.9163
 
 '31 '32
 
 -2267 •2138
 
 '6340 '6163
 
 '9085 •9004
 
 '33 '34
 
 •2015 '1897
 
 •5985 •5807
 
 0.35 •36 '37
 
 0.1785 •1678 '1 575
 
 0.5630
 
 •38
 
 '1478
 
 '39
 
 •1385
 
 0'40
 
 0•1296
 
 '41
 
 •1212 •1132 •1056
 
 '42 '43 '44
 
 0'45 -46 '47 '48 •49
 
 o.5o
 
 '5453
 
 .5276 -5100 '4925 0.4752 .4580 '4410 '4241
 
 =
 
 0 '9999
 
 0.8145 •7807 '7481
 
 •o6
 
 3
 
 0 '9994
 
 '9977 '9948 •9909
 
 n =5
 
 7' = 0
 
 2
 
 '07
 
 •12 •x3
 
 '14
 
 '5584 •5277
 
 '4984 '4704
 
 0.9984
 
 0'20
 
 0.3277
 
 0 '7373
 
 •9981 '9977 '9972 .9967
 
 •21
 
 '7167 '6959
 
 .23
 
 '3077 •2887 *2707
 
 '24
 
 .2536
 
 .6539
 
 0.9421 '9341 .9256 '9164 .9067
 
 0 '9961
 
 0'25
 
 0 '2373
 
 0.6328
 
 0.8965
 
 0 '9844
 
 0 '9990
 
 '9954 '9947 '9939 '9929
 
 •26
 
 •2219
 
 •8857
 
 *9819
 
 '27
 
 *2073
 
 •6117 •5907
 
 '5697 '5489
 
 '8743 •8624 '8499
 
 '9792 '9762 '9728
 
 .9988 •9986 '9983 '9979
 
 0•5282 '5077 '4875 '4675 '4478
 
 0•8369 •8234 '8095 '7950 •7801
 
 0.9692 '9653 .9610 '9564 '9514
 
 0 '9976
 
 0.7648 '7491 '7330 '7165 '6997
 
 0.9460 .9402 '9340 '9274 '9204
 
 0 '9947
 
 0.6826 •665, '6475 •6295 •6114
 
 0.9130 •8967 •8879 '8786
 
 0.9898 •9884 •9869 '9853 '9835
 
 0 '5931
 
 0.9815 '9794 '9771 '9745
 
 '22
 
 '6749
 
 0'30
 
 *9908
 
 '31
 
 0•1681 '1564
 
 '32
 
 '1454
 
 •8918 '8829
 
 '9895 •9881 •9866
 
 '33 '34
 
 '1350 -1252
 
 0.8735 -8638 '8536 •8431 .8321
 
 0.9850 -9832 '9813 '9791 '9769
 
 0.35
 
 0.1160
 
 •36 •38
 
 •1074 '0992 •09,6
 
 '39
 
 .0845
 
 0.4284 '4094 '3907 '3724 '3545
 
 0•82.08 •8091 '7970 •7845 '7717
 
 0 '9744
 
 0.40
 
 0.0778
 
 0'3370
 
 '9717 •9689 •9658 •9625
 
 '41 '42 '43 '44
 
 .0715 •o6o2 •0551
 
 '3199 '3033 •2871
 
 0 '9590
 
 0'45
 
 0.0503
 
 '9552 '9512 '9469 '9424
 
 '46 '47 '48 '49
 
 '0459
 
 .0731
 
 '3431
 
 •0677
 
 •3276
 
 0.0625
 
 0.3125
 
 0.6875
 
 0'9999
 
 '3487
 
 0'9919
 
 0.7585 '7450 .7311 '7169 •7023
 
 0 '9999
 
 •i8
 
 '1935
 
 0.3910 '3748 '3588
 
 '9997 '9994
 
 '19
 
 •1804
 
 0.0915 •0850 '0789
 
 4
 
 '3939 '3707
 
 -4182
 
 .28
 
 '4074
 
 3
 
 0.8352 •8165 '7973 '7776 '7576
 
 '9993 '9992 '9990 .9987
 
 '29
 
 '0983
 
 2
 
 '37
 
 -0656
 
 '2714
 
 •9051
 
 '9999 '9999 '9998 '9998
 
 '9971 •9966 - 9961 '9955
 
 '9940 '9931 '9921 '9910
 
 -2272
 
 '5561
 
 •2135 •2002
 
 '5375
 
 0.8688 '8585 '8478 .8365
 
 '5187
 
 '8248
 
 '9718
 
 0•50 0'0313 0'1875 0'9375 See page 4 for explanation of the use of this table.
 
 0'5000
 
 0.8125
 
 0.9688
 
 5
 
 '0418 '0380
 
 '0345
 
 0•2562 '2415
 
 •9682 '9625 '9563 '9495
 
 '5747
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n =6
 
 r
 
 = 0
 
 p = 0•01
 
 0.9415
 
 '02
 
 '8858 •8330
 
 .03 •04 0'05
 
 •06 .07 •o8 .09
 
 0•25
 
 •26 .27 -28 •29
 
 n =7
 
 r=o
 
 I
 
 2
 
 3
 
 p = 0•01
 
 0'9321
 
 •o2 -03 .04
 
 •8681 -8080
 
 0'9980 •9921 •9829 •9706
 
 0.9997 '9991 •9980
 
 0.9999
 
 0.9556 •9382 •9187 •8974 •8745
 
 0.9962 '9937 •9903 .9860 •9807
 
 0.9998 '9996 '9993 '9988 •9982
 
 0 '9743
 
 0'9973
 
 '3773 '3479
 
 0.8503 •825o .7988 .7719 '7444
 
 •9669 •9584 '9487 •9380
 
 •9961 '9946 .9928 •9906
 
 •z6
 
 0.3206 •2951
 
 0.7166 •6885
 
 0.9262 .9134 .8995 .8846 •8687
 
 0.9879 .9847 •9811 .9769 •9721
 
 '4702
 
 0•8520 .8343 •8159 '7967 *7769
 
 0'9667 •9606 '9539 '9464 .9383
 
 0'4449
 
 0'7564
 
 0'9294
 
 •4204 •3965 '3734 •3510
 
 '7354 .7139 •6919 •6696
 
 •9198 .9095 .8984 •8866
 
 0'6471
 
 •6243 •6013 •5783 '5553
 
 0.8740 •8606 •8466 •8318 .8163
 
 0.9978 .9962 '9942 .9915 •9882
 
 0.9999 '9998 '9997 '9995 '9992
 
 0'9842 '9794 '9739 .9676 .9605
 
 0.9987 .9982 '9975 -9966 '9955
 
 0'9999 '9999 '9999 '9998 '9997
 
 0:::
 
 '4046
 
 0'8857 .8655 .8444 .8224 '7997
 
 0.3771 .3513 •3269 •3040 •2824
 
 0-7765 .7528 •7287 •7044 .6799
 
 0'9527 .9440 '9345 '9241 .9130
 
 0.9941 .9925 .9906 •9884 .9859
 
 0.9996 '9995 '9993 '9990 '9987
 
 0'15
 
 0'2621 •2431
 
 0'9011 •8885 •8750 •8609 .8461
 
 0•9830 '9798 *9761 .9720 .9674
 
 0 '9984
 
 '2252 '2084 '1927
 
 0'6554 •6308 '6063 •5820 '5578
 
 .9980 '9975 .9969 '9962
 
 0.1780 •1642
 
 0.5339 •5104
 
 •1513 •1393 •1281
 
 '4872 '4420
 
 0.8306 •8144 '7977 .7804 •7626
 
 o•9624 .9569 .9508 '9443 '9372
 
 0'7443 •7256 '7064 .687o •6672
 
 0.7351 -6899 . 6470 -6064 '5679
 
 '4970
 
 •23 .24
 
 5
 
 4
 
 0.9672 '9541 '9392 •9227 *9048
 
 •7828
 
 0.5314
 
 0'20 '21 '22
 
 3
 
 0'9998 '9995 -9988
 
 'II -12 '13 '14
 
 •i6 •17 •18 •19
 
 2
 
 0.9985 '9943 .9875 .9784
 
 010
 
 0'15
 
 I
 
 '4644 '4336
 
 '4644
 
 0'05
 
 •06 .07 •o8 •09
 
 *7514
 
 0.6983 .6485 •6017
 
 .5578 •5168 0:4783 4423 *4087
 
 '12 •13 '14
 
 •17
 
 '2714
 
 '6604
 
 •18 •19
 
 '2493 •2288
 
 .6323 •6044
 
 0'9999 '9999 '9999 '9999 '9998
 
 0'20
 
 0'2097
 
 •2X .22 •23 •24
 
 •1920 '1757 '1605 *1465
 
 0'5767 '5494 •5225 *4960
 
 0'9954 '9944 '9933 .9921 •9907
 
 0.9998 '9997 '9996 '9995 '9994
 
 0.25 •26 •27 •28 .29
 
 0'1335 '1215 '1105
 
 0.9295 •9213 •9125 .9031 •8931
 
 0.9891 .9873 '9852 '9830 •9805
 
 0.9993 '9991 .9989 .9987 .9985
 
 0'30
 
 0'0824
 
 .31 •32 •33 •34
 
 •0745 •0606 .0546
 
 0.3294 '3086 •2887 •2696 .2513
 
 '1003 •0910
 
 0.30 •31 -32 .33 •34
 
 0.1176 .1079 .0905 •0827
 
 0.4202 •3988 '3780 '3578 •3381
 
 0.35 •36 •37 •38 -39
 
 0.0754 •0687 •0625 0568 .0515
 
 0.3191 •3006 •2828 •2657 •2492
 
 0.6471 •6268 -6063 .5857 *5650
 
 0.8826 -8714 .8596 .8473 '8343
 
 0.9777 '9746 '9712 .9675 '9635
 
 0.9982 '9978 '9974 '9970 '9965
 
 0.35 •36 '37 •38 •39
 
 0'0490 •0440 '0394 •0352 -0314
 
 0'2338 '2172 •2013 •1863 '1721
 
 0'5323 '5094 '4866 '4641 '4419
 
 0'8002 .7833 .7659 '7479 •7293
 
 0'40
 
 0-0467
 
 0.8208 '8067 •7920 .7768 •7610
 
 0.9590 •9542 '9490 '9434 '9373
 
 0'0280
 
 0'1586
 
 0'4199
 
 '9952 '9945 '9937 '9927
 
 •41 -42 .43 •44
 
 .0249
 
 '0343 •0308
 
 0.5443 •5236 •5029 .4823 •4618
 
 0'40
 
 '0422 '0381
 
 0'2333 •2181 -2035 •1895 •1762
 
 0'9959
 
 '41 •42 '43 •44
 
 '0195 -0173
 
 .1459 '1340 •1228 •1123
 
 '3983 '3771 '3564 •3362
 
 0'7102 -6906 -6706 •6502 •6294
 
 '46 •47 •48 •49
 
 0.0277 •0248 '0222 0198 •0176
 
 0.1636 .1515 •1401 •1293 •1190
 
 0.4415 '4214 •4015 •3820 '3627
 
 0.7447 •7279 '7107 •6930 *6748
 
 0.9308 •9238 •9163 •9083 '8997
 
 0.9917 •9905 '9892 •9878 *9862
 
 0.45 -46 '47 •48 '49
 
 0'0152 '0134 •0117 •0103 •0090
 
 0'1024 '0932 •o847 •0767 •o693
 
 0'3164 •2973 .2787 •2607 '2433
 
 0'6083 '5869 . 5654 '5437 '5219
 
 0'50
 
 0.0156
 
 0.1094
 
 0'3438
 
 0.6562
 
 0.8906
 
 0.9844
 
 0'50
 
 0.0078
 
 0.0625
 
 0•2266
 
 0•5000
 
 0'45
 
 '0989
 
 '0672
 
 •0221
 
 See page 4 for explanation of the use of this table.
 
 6
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n= 7 p
 
 r=4
 
 5
 
 6
 
 n= 8
 
 r
 
 =o
 
 1
 
 2
 
 3
 
 4
 
 5
 
 = O'OI
 
 p = 0'01
 
 0.9227
 
 0'9973
 
 0 '9999
 
 •02 •03
 
 '02
 
 '8508
 
 '03 •04
 
 '7837
 
 '9897 '9777
 
 '9996 '9987
 
 0'9999
 
 '7214
 
 '9619
 
 .9969
 
 '9998
 
 0.6634 .6096 .5596 •5132 - 4703
 
 0.9428 •9208 .8965 •8702 '8423
 
 0.9942 .9904 '9853 .9789 '9711
 
 0 '9996
 
 .9993 .9987 .9978 '9966
 
 0.9999 .9999 '9997
 
 0.9619 0'9950 '9929 '9513 .9903 .9392 .9871 9257 9109 •9832
 
 0.9996 '9993 .9990 '9985 *9979
 
 0.9999 .9999 '9998
 
 '04
 
 0.05 •66 •o7 •68 '09
 
 cros •o6 '07
 
 6
 
 0.9999 '9999
 
 •38 •09
 
 0.10 'II •I2
 
 0.9998 '9997
 
 'II
 
 0.4305 '3937
 
 '9996
 
 •12
 
 '3596
 
 •X3 •14
 
 '9994 '9991
 
 •13 '14
 
 •3282 •2992
 
 0.8131 '7829 .7520 •7206 •6889
 
 0'15
 
 0.9988 .9983 '9978 -9971 '9963
 
 0.9999 .9999 '9999 .9998 '9997
 
 0'/5
 
 0.2725 .2479 -2252 •2044 .1853
 
 0.6572 •6256 '5943 . 5634 '5330
 
 0.8948 .8774 •8588 '8392 •8185
 
 0'9786
 
 0.9971
 
 0 '9998
 
 .16 '17 .18 '19
 
 '9733 -9672 •9603 .9524
 
 '9962 -9950 '9935 .9917
 
 '9997 .9995 '9993 -9991
 
 0 '9999
 
 0'20
 
 0.9953
 
 '9942
 
 0.9996 '9995
 
 '22 '23
 
 '9928 '9912
 
 '9994
 
 0'20 '21 '22
 
 '24
 
 '9893
 
 .9992 '9989
 
 .23 •24
 
 0'1678 '1517 '1370 '1236 '1113
 
 0.5033 '4743 '4462 '4189 .3925
 
 0'7969
 
 •21
 
 0.9437 '9341 *9235 '9120 .8996
 
 0.9896 .9871 '9842 '9809 '9770
 
 0.9988 '9984 '9979 '9973 .9966
 
 0.9999 '9999 '9998 .9998 .9997
 
 0'25
 
 0.9871 *9847 '981 9 *9787
 
 0•6785 - 6535 .6282 '6027
 
 0.9727 '9678 '9623 .9562 '9495
 
 0'9958 *9948 '9936 '9922 '9906
 
 0.9996 '9995 '9994 .9992 '9990
 
 .26
 
 '27 '28 •29
 
 '9752
 
 •10
 
 •i6 •17 •19
 
 '7745 '7514 '7276 -7033
 
 '0722
 
 0.3671 '3427 . 3193 '2969
 
 •29
 
 •0646
 
 '2756
 
 '5772
 
 0•8862 *8719 •8567 '8466 '8237
 
 0'9998 '9997 '9997 '9996 '9995
 
 0'30
 
 0.0576 .0514
 
 0'2553
 
 •0406 -0360
 
 '2360 •2178 •2006 •1844
 
 0.5518 .5264 •5013 *4764 .4519
 
 0.8059 .7874 •7681 *7481 .7276
 
 0.9420 -9339 '9250 *9154 .9051
 
 0.9887 '9866 .9841 '9813 -9782
 
 0.9987 .9984 •9980 '9976 •9970
 
 0'9910 '9895 '9877 •9858 .9836
 
 0 '9994
 
 0.35 •36 '37 •38 .39
 
 0.0319 -0281 '0248 -0218 -0192
 
 0.1691 '1548 '1414 •1289 '1172
 
 0.4278 '4042 •3811 •3585 '3366
 
 0.7064 '6847 -6626 '6401 '6172
 
 0.8939 '8820 '8693 '8557 •8414
 
 0'9747
 
 0'9964
 
 '9992 '9991 .9989 '9986
 
 '9707 '9664 '9615 '9561
 
 -9957 '9949 '9939 '9928
 
 0.8263 '8105 '7938 '7765 '7584
 
 0.9502 '9437 '9366 •9289 •9206
 
 0.9915 .9900 •9883 '9864 .9843
 
 0'9115 •9018 •8914 -8802 •868z
 
 0'9819 .9792 •9761 .9728 •9690
 
 0.8555
 
 0.9648
 
 0 '9987
 
 0 '9999
 
 0'25
 
 0' IOOI
 
 '9983 '9979 '9974 .9969
 
 '9999 '9999 '9999 .9998
 
 •26
 
 •0899 •0806
 
 '27 •28
 
 •31 •32
 
 0'9712 - 9668 •9620
 
 0'9962 '9954
 
 '33
 
 '9566
 
 '34
 
 '9508
 
 '9935 '9923
 
 0.35 '36 '37 -38 -39
 
 0 '9444
 
 0'40 '41 '42 - 43 '44
 
 0 '9037
 
 0.9812 '9784 '9754 '9721 '9684
 
 0'9984
 
 0'40
 
 '8937 .8831 '8718 '8598
 
 .9981
 
 0.0168 '0147 -0128 '011 1 '0097
 
 0.1064 *0963 •0870 '0784 '0705
 
 0 '3154 .2948
 
 0 '5941 . 5708
 
 '9977 '9973 •9968
 
 '41 '42 '43 •44
 
 ' 2750 '2560 '2376
 
 '5473 '5238 •5004
 
 0'45 '46 '47 .48 '49
 
 0'8471 '8337 '8197 '8049 '7895
 
 0'9643 '9598 '9549 '9496 '9438
 
 0'9963 .9956 '9949 '994' '9932
 
 0'45 •46 '47 •48 '49
 
 0.0084 •0072 -0062 -0053 '0046
 
 0.0632 •0565 •0504 .0448 '0398
 
 0.2201 .2034 '1875 .1724 -1581
 
 0.4770 -4537 '4306 '3854
 
 0.7396 '7202 •7001 '6795 •6584
 
 0•50
 
 0.7734
 
 0'9375
 
 0.9922
 
 0•50
 
 0.0039
 
 0.0352
 
 0.1445
 
 0.3633
 
 0.6367
 
 0'30
 
 '9375 '9299 •9218 .9131
 
 '9945
 
 '31 .32 '33 -34
 
 '0457
 
 '4078
 
 See page 4 for explanation of the use of this table.
 
 7
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
 
 n =8
 
 r= 7
 
 n= 9
 
 r
 
 =o
 
 I
 
 2
 
 0.9966 •9869 •9718
 
 0.9999 '9994 •9980
 
 '9522
 
 '9955
 
 0.9916 •9862 '9791
 
 3
 
 4
 
 5
 
 6
 
 7
 
 P = o•ox
 
 p = O'OI
 
 0.9135
 
 •02 •04
 
 '02 •03 '04
 
 •8337 '7602 *6925
 
 0'05
 
 0'05
 
 •o6
 
 •o6
 
 0.6302 '573 0
 
 .07
 
 '07
 
 '5204
 
 0.9288 •9022 •8729
 
 •o8
 
 •o8
 
 •4722
 
 •8417
 
 '9702
 
 •09
 
 '09
 
 •4279
 
 •8088
 
 '9595
 
 o•xo
 
 o•xo
 
 0.3874
 
 0 '7748
 
 0 '9470
 
 'II •I2
 
 '3504 '3165
 
 '7401
 
 •x3 '14
 
 -x3
 
 '14
 
 •2855 '2573
 
 •6696 •6343
 
 .9328 .9167 .8991 •8798
 
 0.9917 '9883 •9842 '9791 '9731
 
 0.9991 .9986 '9979 '9970 '9959
 
 0 '9999
 
 'II •I2
 
 0'15
 
 0'15
 
 0.2316
 
 0.5995
 
 0.8591
 
 0.9661
 
 •x6 •17 •x8
 
 •2082 •1869 •1676
 
 '5652
 
 •8371
 
 •9580
 
 .19
 
 .19
 
 '1501
 
 •4988 '4670
 
 .8139 .7895 •7643
 
 '9488 '9385 •9270
 
 '9991 .9987 .9983 '9977
 
 0 '9999
 
 '531 5
 
 0.9944 •9925 .9902 .9875 '9842
 
 0 '9994
 
 •x6 •17 •x8
 
 0'20 '21 '22
 
 0'1342
 
 0'4362
 
 0'7382
 
 0'9144
 
 0'9804
 
 0 '9969
 
 0 '9997
 
 '1199 •1069 '0952 'o846
 
 •4066 •3782
 
 '24
 
 0'20 •2I '22 '23 '24
 
 •7115 •6842 •6566 •6287
 
 •9006 •8856 •8696 '8525
 
 -9760 '9709 •9650 .9584
 
 .9960 '9949 '9935 '9919
 
 '9996 '9994 '9992 '9990
 
 0'25 •26 '27
 
 0'25 '26 •27
 
 0.075x
 
 0.3003 •2770 •2548
 
 0.8343 .8151 '7950 '7740 .7522
 
 0.9511 '9429 '9338 •9238 '9130
 
 0.9900 •9878 '9851 •9821 .9787
 
 0.9987 .9983 '9978 '9972 .9965
 
 0 '9999
 
 '0665 '0589
 
 •03
 
 .23
 
 •7049
 
 '3509
 
 •3250
 
 8
 
 0.9999 '9997 0.9994 '9987 '9977 '9963 '9943
 
 0 '9999
 
 '9998 '9997 '9995
 
 '9999 '9998 '9997 '9996
 
 '9999 '9998 '9998
 
 0 '9999
 
 '9999
 
 -28
 
 •0520
 
 •2340
 
 •29
 
 0'9999
 
 '29
 
 '0458
 
 '2144
 
 0.6007 '5727 . 5448 •5171 '4898
 
 0'30
 
 0 '9999
 
 0'30
 
 0'0404
 
 0'1960
 
 0'4628
 
 0'7297
 
 '31
 
 .0355
 
 •4364
 
 '9999
 
 '32
 
 '0311
 
 '1788 •1628
 
 '33 '34
 
 '9999 '9998
 
 .33
 
 '0272
 
 '1478
 
 '4106 •3854
 
 '34
 
 .0238
 
 '1339
 
 •3610
 
 •7065 •6827 .6585 •6338
 
 0.9747 '9702 .9652 '9596 '9533
 
 0 '9996
 
 '9999
 
 0.9012 •8885 '8748 •86oz '8447
 
 0 '9957
 
 '31 .32
 
 '9947 '9936 '9922 .9906
 
 '9994 '9993 '9991 '9989
 
 0 '9999
 
 0'35
 
 0 '9998
 
 0'35
 
 0.0207
 
 .36
 
 '9997
 
 •36
 
 '37 '38
 
 '9996 .9996
 
 •0135
 
 0. 1 zi 1 •1092 •0983 •0882
 
 0.3373 '3144 •2924 '2 713
 
 '39
 
 '9995
 
 •37 -38 .39
 
 •0i8o •0156 '0117
 
 '0790
 
 '2511
 
 0.6089 •5837 •5584 '5331 '5078
 
 0.8283 .8110 '7928 '7738 '7540
 
 0.9464 •9388 .9304 •9213 '9114
 
 0.9888 .9867 .9843 •9816 •9785
 
 0.9986 •9983 '9979 '9974 '9969
 
 0.9999 '9999 '9999 '9998 '9998
 
 0'40
 
 0'9993 '9992 '9990 '9988
 
 0'40
 
 0.0101
 
 0'0705
 
 0'2318
 
 0'4826
 
 '41
 
 •0087
 
 •0628
 
 •2134
 
 '4576
 
 0.7334 -7122 •6903 •6678 '6449
 
 0.9006 •8891 •8767 •8634 '8492
 
 0.9750 •9710 •9666 '9617 '9563
 
 0.9962 '9954 '9945 '9935 '9923
 
 0.9997 '9997 '9996 '9995 '9994
 
 0.6214 '5976 '5735 '5491
 
 0.8342 •8183 '80,5 '7839 •7654
 
 0.9909 '9893 '9875 '9855 '9831
 
 0 '9992
 
 '5246
 
 0.9502 '9436 '9363 •9283 '9196
 
 0.5000
 
 0.7461
 
 0.9102
 
 0'9805
 
 0.9980
 
 •28
 
 '41 '42 '43 •44
 
 '42
 
 '0074
 
 •0558
 
 '1961
 
 .4330
 
 •oo64
 
 '0495
 
 •9986
 
 '43 •44
 
 •0054
 
 '0437
 
 •1796 .1641
 
 •4087 '3848
 
 0'45
 
 0.9983
 
 0.45
 
 0.0046
 
 0.0385
 
 0.1495
 
 '46 '47
 
 •9980
 
 •0039
 
 '0338
 
 '1358
 
 •0033
 
 •0296
 
 •1231
 
 0.3614 '3386 '3164
 
 •0028
 
 '49
 
 '9976 '9972 •9967
 
 •46 '47 '48 '49
 
 '0023
 
 '0259 '0225
 
 'III, •I00I
 
 '2948 '2740
 
 0'50
 
 0.9961
 
 0•50
 
 0'0020
 
 0'0195
 
 0.0898
 
 0.2539
 
 '48
 
 See page 4 for explanation of the use of this table.
 
 8
 
 '9999 '9998 '9997 '9997
 
 '999! •9989 '9986 '9984
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n
 
 p
 
 I0
 
 r =0
 
 1
 
 2
 
 = 0•0i '02 '03
 
 0.9044
 
 0 '9957
 
 0 '9999
 
 '8171
 
 •9838 9655 '9418
 
 '9991 '9972 '9938 0.9885 '9812 '9717 '9599 '9460
 
 0 '9990
 
 0 '9999
 
 '9980 '9964 '9942 •9912
 
 '9998 '9997 '9994 '9990
 
 0 '9999
 
 0.9298 •9116 '8913 •8692 '8455
 
 0'9872 •9822 '9761 •9687 '9600
 
 0 '9984
 
 0 '9999
 
 '9975 •9963 '9947 •9927
 
 '9997 '9996 '9994 '9990
 
 0.8202 '7936
 
 0.9500 '9386
 
 0.9901 .9870
 
 0.9986 .9980
 
 7659
 
 9259
 
 983 2
 
 9973
 
 9997
 
 . 7372
 
 •7078
 
 .9117 •8961
 
 .9787 '9734
 
 .9963 '9951
 
 '9996 '9994
 
 0 '9999
 
 '7374 •6648
 
 -04
 
 3
 
 4
 
 5
 
 6
 
 7
 
 8
 
 9
 
 0 '9999
 
 '9996
 
 •o6 .07 •o8
 
 0.5987 .5386 '4840 '4344
 
 '09
 
 - 3894
 
 0.9139 •8824 .8483 .81z1 '7746
 
 0.10
 
 0.3487 •3118 ' 2785 •2484
 
 0.7361 •6972 '6583 •6196
 
 '2213
 
 '5816
 
 0.15 •16 '17 •18 •19
 
 0.1969 •1749
 
 0 '5443
 
 :1135752 '1374 •12.16
 
 .5080 '4730 '4392 -4068
 
 0'20 •21 •22
 
 0'1074
 
 0'3758
 
 .23 •24
 
 '0733 •0643
 
 0.8791 •8609 '8413 •8206 .7988
 
 0'9672 '9601 .9521 '9431 '9330
 
 0'9936 •9918 .9896 '9870 '9839
 
 0 '9999
 
 *3464 -3185 •2921 .2673
 
 0.6778 '6474 . 6169 •5863 •5558
 
 0 '9991
 
 '0947 •o834
 
 .9988 '9984 '9979 '9973
 
 '9999 *9998 '9998 '9997
 
 0'25
 
 0'0563
 
 0'2440
 
 0.5256
 
 '2222
 
 '4958
 
 '28 '29
 
 '0374 •0326
 
 •2019 .1830
 
 '4665 '4378 '4099
 
 '7274 '7021 •6761
 
 0.9219 .9096 .8963 •8819 •8663
 
 0.9803 .9761 '9713 '9658 '9596
 
 0 '9996
 
 '0492 '0430
 
 0 '7759 . 7521
 
 0 '9965
 
 •26 •27
 
 '9955 '9944 '9930 '9913
 
 '9994 '9993 '9990 '9988
 
 0'6496 •6228
 
 o'8497 •8321
 
 4 0'9894
 
 0 '9984
 
 0 '9999
 
 '9871
 
 '595 6 5684 4
 
 '8133
 
 '7936 '7730
 
 0'9527 '9449 '9363 '9268 •9164
 
 .9815 '9780
 
 •9980 '9975 .9968 '9961
 
 .9998 '9997 '9997 '9996
 
 0.5138 '4868 '4600 '4336 '4077
 
 0.7515 '7292 •7061 •6823 .658o
 
 0.9051 •8928 '8795 •8652 •8500
 
 0.9740 '9695 '9644 '9587 '9523
 
 0'9952 '9941 '9929 '9914 '9897
 
 0 '9995
 
 0.6331 •6078 '5822 '5564 '5304
 
 0.8338 •8166 '7984 '7793 '7593
 
 0'9452 '9374 '9288 '9194 '9092
 
 0'9877 '9854 '9828 '9798 '9764
 
 0'9983 '9979 '9975 '9969 '9963
 
 0 '9999
 
 0.5044 '4784 .4526
 
 0'7384
 
 0.8980 •8859 '8729
 
 '9726 '9683 '9634
 
 0 '9955
 
 0'9997
 
 '9996 '9995 '9994 '9992 0 '9990
 
 0'05
 
 •II •I2
 
 •13 '14
 
 0'30
 
 '1655
 
 0.1493 '1344
 
 0'9999
 
 '9999 0 '9999
 
 '9998
 
 0 '9999
 
 '9999 .9999
 
 '0211
 
 •Iz(36
 
 •0182.
 
 •1o8o
 
 •0157
 
 '0965
 
 0.3828 '3566 '3313 •3070 .2838
 
 0.35 •36 '37 -38 '39
 
 0.0135 •0115 •0098 -0084
 
 0.0860 '0764 '0677 •0598
 
 0.2616 •2405 •2206 '2017
 
 •0071
 
 '0527
 
 '1840
 
 0.40 '41
 
 0.0060 '005! - 0043 •0036 •0030
 
 0.0464 •0406 '0355 •0309
 
 0.1673 '1517 '1372 •1236
 
 '0269
 
 'III!
 
 0.3823 '3575 '3335 •3102 •2877
 
 0'45 •46 '47 -48 '49
 
 0.0025
 
 0.0233
 
 '0021 •0017 •0014 '0012
 
 '0201 '0173 •0148 '0126
 
 0.0996 •0889
 
 0.2660 '2453
 
 '0791 •0702 '0621
 
 '2255 •2067
 
 '4270
 
 '6712
 
 '8590
 
 '9580
 
 •1888
 
 •4018
 
 '6474
 
 '8440
 
 '9520
 
 '9946 '9935 '9923 '9909
 
 0'50
 
 0.0ozo
 
 0.0107
 
 0'0547
 
 O'1719
 
 0'3770
 
 0.6230
 
 0.8281
 
 0 '9453
 
 0 '9893
 
 '31 •32 '33 '34
 
 •42
 
 '43 '44
 
 0
 
 4 85 2
 
 •4
 
 '7168 '6943
 
 See page 4 for explanation of the use of this table.
 
 9
 
 '9993 '9991 '9989 '9986
 
 0 '9999
 
 '9999
 
 '9999 '9998 '9998 '9997
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = xx p = 0•01
 
 6
 
 8
 
 I
 
 2
 
 .03 •04
 
 •8007 -7153
 
 0'9948 •9805 .9587
 
 0.9998 •9988 .9963
 
 '6382
 
 '9308
 
 '9917
 
 0.9998 .9993
 
 0.05 •o6
 
 0.5688 •5063 '4501
 
 •o8 '09
 
 .3996 '3544
 
 0.9848 .9752 •963o •9481 '9305
 
 0.9984 '9970 '9947 '9915 .9871
 
 0'9999
 
 '07
 
 0.8981 •8618 •8228 •7819 '7399
 
 0'10
 
 0.3138 *2775
 
 0.6974 '6548
 
 0'9104
 
 '2451 '2161
 
 •1903
 
 .5311
 
 '8985
 
 0.9815 '9744 .9659 '9558 '9440
 
 0.9972 '9958 '9939 •9913 •9881
 
 0.9997 '9995 '9992 .9988 •9982
 
 0 '9999
 
 •5714
 
 •888o •8634 •8368
 
 o•xs •16 .17 -18 •19
 
 0.1673 - 1469 -1288 •1127 .0985
 
 0'4922 '4547 -4189 •3849 -3526
 
 0'7788 '7479 •7161 •6836 •6506
 
 0.9306 '9154 .8987 •8803 •8603
 
 0.9841 '9793 '9734 .9666 -9587
 
 0'9973
 
 0'9997
 
 '9963 '9949 .9932 -9910
 
 '9995 '9993 '9990 .9986
 
 0'20
 
 0.0859 0748 .0650 •0489
 
 0.3221 '2935 •2667 •2418 -2186
 
 0.6174 '5842 '5512 .5186 •4866
 
 0.8389 •8160 '7919 •7667 .7404
 
 0.9496 '9393 '9277 . 9149 •9008
 
 0.9883 '9852 '9814 '9769 '9717
 
 0.9980 '9973 '9965 '9954 '9941
 
 0.9998 '9997 '9995 '9993 '9991
 
 0'25
 
 0'0422
 
 0'1971
 
 0'4552
 
 '1773
 
 -4247
 
 '27
 
 '0314
 
 '1590
 
 '395 1
 
 •28 •29
 
 •0270
 
 - 1423
 
 •3665
 
 0'9657 '9588 - 9510 . 9423
 
 0'9924 '9905 -9881 .9854
 
 '9984 '9979 '9973
 
 '0231
 
 •1270
 
 '3390
 
 '6570 -6281 -5989
 
 0'8854 *8687 '8507 -8315 •8112
 
 0 '9999
 
 '0364
 
 0'7133 .6854
 
 0 '9988
 
 •26
 
 '9326
 
 '9821
 
 '9966
 
 '9998 .9998 '9997 .9996
 
 0.1130 •1003 .0888
 
 0.3127 •2877 . 2639
 
 '0784 '0690
 
 '2413 '2201
 
 0.5696 '5402 .5110 '4821 '4536
 
 0.7897 '7672 '7437 '7193 •6941
 
 0.9218 '9099 .8969 '8829 -8676
 
 0.9784 '9740 .9691 '9634 .9570
 
 0.9957 '9946
 
 '33 '34
 
 0.0198 •0169 -0144 •0122 •0104
 
 0'35
 
 0'0088
 
 0'0606
 
 0'2001
 
 •0074 '0062 -0052 '0044
 
 .0530 •0463 .0403 •0350
 
 •1814 "1640 *1478 •1328
 
 0.4256 *3981 . 3714 '3455 •3204
 
 0.6683 '6419 '6150 '5878 '5603
 
 0.8513 '8339 '8153 '7957 '7751
 
 0 '9499
 
 •36 '37 -38 '39 0.40 41 •42 '43 '44
 
 0.0036 .0030 -0025 •0021 •0017
 
 0.0302 •0261 -0224
 
 0.1189 •./062
 
 0.2963 -2731
 
 0.5328 -5052
 
 0 '7535
 
 2510
 
 '4777
 
 0. 45
 
 46 '47 '48 '49 0'50
 
 '02
 
 •II •I2
 
 •13 •14.
 
 .21 -22 •23 -24
 
 0'30
 
 -31 -32
 
 .
 
 -
 
 r
 
 o
 
 0'8953
 
 -
 
 '0564
 
 '6127
 
 3
 
 5
 
 4
 
 '9997 '9995 '9990 .9983
 
 7
 
 9
 
 0 '9999
 
 .9998
 
 .9999 .9998
 
 0 '9999
 
 '9999 .9998
 
 0 '9999
 
 '9999
 
 0 '9994 0 '9999
 
 '9918 '9899
 
 '9992 '9990 '9987 '9984
 
 '9419 '9330 '9232 '9124
 
 0'9878 '9852 '9823 . 9790 '9751
 
 0.9980 '9974 - 9968 '9961 '9952
 
 0.9998 '9997 - 9996 '9995 '9994
 
 0.9006 -8879 .8740 -8592 - 8432
 
 0.9707 .9657 •9601 '9539 - 9468
 
 0.9941 -9928 *9913 '9896 '9875
 
 0 '9993
 
 .7310 '7076 .6834 .6586
 
 .9991 - 9988 '9986 '9982
 
 0.9999 '9999 '9999 '9999 0.9998 '9998 '9998 .9997 .9996 0'9995
 
 '9933
 
 '9999 '9999 . 9998
 
 '0945
 
 .
 
 '0192
 
 '0838
 
 '2300
 
 '4505
 
 •0164
 
 . 0740
 
 •2100
 
 .4236
 
 0'0014
 
 0'0139
 
 0'0652
 
 0'1911
 
 0'3971
 
 •0011 •0009 •0008 •0006
 
 •0118 .0100 -0084 •007o
 
 -0572 •0501 .0436 •0378
 
 '1734 •1567 .1412 •1267
 
 '3712 '3459 . 3213 '2974
 
 0.6331 .6071 •5807 . 5540 '5271
 
 0•8262 -8081 -7890 •7688 '7477
 
 0.9390 '9304 '9209 .9105 -8991
 
 0.9852 '9825 '9794 .9759 '9718
 
 0.9978 '9973 '9967 .9960 .9951
 
 0.0005
 
 0.0059
 
 0.0327
 
 0'1133
 
 0 '2744
 
 0.5000
 
 0.7256
 
 0.8867
 
 0.9673
 
 0.9941
 
 See page 4 for explanation of the use of this table. I0
 
 xo
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
 
 n = 12
 
 r
 
 p=
 
 (•oi
 
 0•8864
 
 •02 '03 •04
 
 '7847
 
 0.05 •o6
 
 =o
 
 I
 
 •6938 '6127
 
 '9191
 
 0.9998 '9985 '9952 •9893
 
 0'5404
 
 0'8816
 
 0'9804
 
 0 '9978
 
 '4759
 
 '9684 -9532 .9348 '9134
 
 '9957 '9925 -988o .9820
 
 0.8891 •8623 .8333 •8923 -7697
 
 0 '9744 - 9649
 
 0.4435 '4055 •3696 '3359 -3043
 
 0'7358
 
 '47 '49
 
 0'9957
 
 0'9995
 
 0 '9999
 
 0'50
 
 0.9998
 
 .9536 '9403 -9250
 
 '9935 .9905 '9867 •9819
 
 '9991 .9986 '9978 '9967
 
 '9999 '9998 '9997 .9996
 
 0.9078 •8886 •8676 .8448 '8205
 
 0.9761 -9690 •9607 •9511 '9400
 
 0.9954 .9935 .9912 -9884 '9849
 
 0 '9993
 
 0'9999
 
 .7010 •6656 *6298 '5940
 
 '9990
 
 '9999 '9998 '9997
 
 0.2749 -2476 •2224 '1991
 
 0 '5583
 
 0 '7946
 
 •1778
 
 '4222
 
 *6795
 
 0.9806 '9755 '9696 •9626 '9547
 
 0.9961 '9948 '9932 •9911 '9887
 
 0 '9999
 
 -7674 - 7390 •7096
 
 0'9274 '9134 '8979 •8808 '8623
 
 0 '9994
 
 .5232 •4886 -4550
 
 '9992 '9989 '9984 '9979
 
 '9999 '9999 '9998 '9997
 
 0'9456
 
 0 ' 9857
 
 0'9972
 
 0'9996
 
 '9995
 
 0 '9999
 
 :9 9324 504
 
 '9953 '9940 '9924
 
 '9993 '9990 '9987
 
 '9999 '9999 '9998
 
 0'9983 - 9978
 
 0'9998 '9997 .9996 '9995 '9993
 
 0'9999
 
 0.9999 '9999 '9999 -9998 '9998
 
 0.2824
 
 0.6590
 
 •II •I2
 
 '2470
 
 *6133 •5686
 
 -0924
 
 .0798
 
 0'20 '2I '22 '23
 
 0.0687 •0591 '0507
 
 •5252 .4834
 
 '46 '48
 
 '9985
 
 .9979 '9971
 
 .9996
 
 .24
 
 '0434 '0371
 
 0'25
 
 0.0317
 
 0.1584
 
 0'3907
 
 0.6488
 
 0.8424
 
 •26 -27 •28
 
 '0270 •0229
 
 '1406 .1245
 
 '3603
 
 •6176
 
 •8210
 
 •0194
 
 . 1 Ioo
 
 '29
 
 '0164
 
 '0968
 
 '3313 •3037 ' 2 775
 
 .5863 '5548 •5235
 
 '7984 '7746 '7496
 
 '9113 '8974
 
 .• '9733 .9678
 
 0'30
 
 0'0138 'oi 16 '0098
 
 0'0850
 
 0'2528 .2296
 
 0'4925
 
 0.7237 -6968 .6692 •6410 •6124
 
 0.8822 •8657 '8479 •8289 •8087
 
 0.9614 '9542 '9460 '9368 •9266
 
 0 '9905
 
 0.5833 '5541 '5249 '4957 •4668
 
 0.7873 .7648 '7412 -7167 •6913
 
 0'9154
 
 0.9745
 
 .9030 •8894 -8747 '8589
 
 -9696
 
 0'4382
 
 0.6652 •6384
 
 •2078 •1876 •1687
 
 -4619 .4319 '4027 .3742
 
 0.1513 •1352 •1205
 
 0.3467 •3201 .2947
 
 '1069 '0946
 
 *2704
 
 •9682 •0068
 
 '0744 •0650 •0565 •0491
 
 0.0057
 
 0.0424
 
 •0047 •0039 -0032 •0027
 
 '0366 •0315 '0270 '0230
 
 0'0022 •ooi8 •0014 •oolz •0010
 
 0'0196 •0166 '0140 •or 18 •0099
 
 0'0834
 
 '41 •42 '43 '44
 
 '0642 •0560 '0487
 
 •1853
 
 •3825
 
 •1671
 
 •3557
 
 '1502
 
 '3296
 
 '5552
 
 0.45 '46
 
 00008 •0006
 
 0.0083 •oo69
 
 0.0421 •0363
 
 0.1345 •1199
 
 0.3044 •2802
 
 0.5269 •4986
 
 '47 '48 '49
 
 •0005 •0004 •0003
 
 •0057 '0047 •0039
 
 •0312 '0267 '0227
 
 •1066 *0943 '0832
 
 •2570
 
 '4703
 
 -2348
 
 .4423
 
 •2138
 
 0'50
 
 0'0002
 
 0'0032
 
 0'0193
 
 0.0730
 
 0.1938
 
 '31 '32
 
 '33 '34
 
 0.35 •36 '37
 
 •38 '39 0'40
 
 r=x
 
 '9998 '9997
 
 0•10
 
 •18
 
 n = 12
 
 zo
 
 0 '9999
 
 '7052
 
 '19
 
 9
 
 0'9999 '9999 '9999 '9999 '9998
 
 •3225
 
 0.1422 •1234 •1069
 
 8
 
 0'45
 
 •09
 
 •z6 •z7
 
 7
 
 0.9998 .9996 '9991 .9984 '9973
 
 '4186
 
 •1637
 
 6
 
 0'9999
 
 •3677
 
 •1880
 
 '9997 '9990
 
 5
 
 p = 0.44
 
 •o8
 
 •2157
 
 0 '9999
 
 4
 
 0 '9999
 
 •07
 
 0'15
 
 3
 
 0.9938 '9769 '9514
 
 '8405 '7967 .7513
 
 •z3 '14
 
 2
 
 '0733
 
 •2472 0.2253 '2047
 
 '4101
 
 .9882 *9856 '9824 .9787
 
 .9578 '9507
 
 '9915 .9896 .9873
 
 0'9992 '9989 •9986 .9982 '9978
 
 0.8418 .8235
 
 0.9427 .9338
 
 0.9847 -9817
 
 0'9972 •9965
 
 '6111
 
 •8041
 
 '9240
 
 '9782
 
 '9957
 
 '5833
 
 '7836 •7620
 
 '9131 •9012
 
 '9742 '9696
 
 '9947 '9935
 
 0.9997 '9996 .9995 '9993 '9991
 
 0.8883 '8742 •8589 .8425 •8249
 
 0'9644
 
 0.9921
 
 0'9989
 
 '4145
 
 0.7393 .7157 •6911 .6657 '6396
 
 .9585 -9519 '9445 '9362
 
 -9905 •9886 .9863 .9837
 
 .9986 .9983 '9979 '9974
 
 0.3872
 
 0.6128
 
 0.8062
 
 0.9270
 
 0.9807
 
 0.9968
 
 .9641
 
 See page 4 for explanation of the use of this table. II
 
 '9972 '9964 .9955 0 '9944 .9930
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = x3
 
 r=o
 
 i
 
 2
 
 3
 
 4
 
 p = 0.01
 
 0.8775
 
 0'9928
 
 '02
 
 •7690 •6730 •5882
 
 '9730
 
 '9436 •9068
 
 0.9997 •9980 '9938 •9865
 
 0.9999 '9995 •9986
 
 0.9999
 
 •06
 
 0'5133 '4474
 
 .07
 
 '3893
 
 .08
 
 .09
 
 •3383 '2935
 
 0.8646 .8186 .7702 •7206 •6707
 
 0.9755 •9608 '9422 •9201 .8946
 
 0.9969 '9940 .9897 '9837 '9758
 
 0.9997 '9993 .9987 '9976 '9959
 
 0•10
 
 0.2542
 
 0.6213 '5730
 
 0.8661 .8349 •8015 •7663 /296
 
 0.9658 '9536 '9391 •9224 '9033
 
 0.9935 .9903 '9861 •9807 '9740
 
 0'9991
 
 .11
 
 o•8820 .8586 •8333 •8061 '7774
 
 0.9658 '9562 '9449 .9319 .9173
 
 0.9925 .9896 .9861 .9817 .9763
 
 0'9987
 
 0 '9998
 
 •9981 '9973 '9962 '9948
 
 '9997 '9996 '9994 '9991
 
 0.7473 .7161 •6839 '6511 •6178
 
 0.9009 •8827 •8629 ' 8415 •8184
 
 0.9700 •9625 '9538 '9438 '9325
 
 0.9930 '9907 •9880 .9846 .9805
 
 0.9988 .9983 '9976 .9968 '9957
 
 0.9998 '9998 '9996 '9995 '9993
 
 0.5843 •5507 .5174 '4845 .4522
 
 0 '7940
 
 0'9198 •9056 .8901 •8730 .8545
 
 0'9757
 
 0.9944 .9927 .9907 •9882 '9853
 
 0'9990
 
 0'9999
 
 •7681 '7411 '7130 •6840
 
 '9987 '9982 '9976 .9969
 
 '9998 '9997 '9996 '9995
 
 0.4206 •3899 •3602 '3317 .3043
 
 0.6543 .624o '5933 •5624 '5314
 
 0.8346 •8133 -7907 •7669 '7419
 
 0.9376 .9267 •9146
 
 0.9960 '9948 '9935 .9918 •9898
 
 0.9993 '9991 '9988 .9985 •9980
 
 0 '9999
 
 •8865
 
 0.9818 '9777 .9729 '9674 •9610
 
 0'5005 '4699
 
 0'7159
 
 0.8705
 
 0 '9538
 
 0 '9874
 
 '2536 '2302 '2083
 
 '4397 '4101
 
 '6889 •6612
 
 •8532 •8346
 
 '9456 •9365
 
 0.9975 '9968 .9960 '9949 '9937
 
 0.9997 '9995 '9994 '9992 '9990
 
 .03 '04 0'05
 
 •12
 
 •2198 '1898
 
 •13 '14
 
 •1636 '1408
 
 0'15
 
 0.1209
 
 •16 •17 •x8
 
 •1037
 
 •0887 .0758
 
 .2920
 
 •19
 
 •0646
 
 •2616
 
 0.6920 .6537 •6152 '5769 .5389
 
 0'20 '21 '22 '23
 
 0'0550 '0467
 
 0'2336
 
 0'5017
 
 •2080 •1846 •1633
 
 '4653 •43ox .3961 •3636
 
 .0396
 
 •5262 •4814 .4386 0'3983 •3604 •3249
 
 5
 
 6
 
 7
 
 8
 
 9
 
 10
 
 0 '9999
 
 '9999 '9997 '9995
 
 .9985 '9976 '9964 '9947
 
 0'9999
 
 0.9999 '9998 '9997 '9995 '9992
 
 0 '9999
 
 '9999
 
 0 '9999
 
 '9999
 
 •24
 
 '0334 •0282
 
 '1 441
 
 0'25
 
 0.0238
 
 0.1267
 
 •26
 
 •0200
 
 •27 •28 •29
 
 '0167 '0140
 
 •0117
 
 •1 1 11 '0971 '0846 *0735
 
 0•30
 
 '31 •32
 
 0.0097 •oo80 •oo66
 
 o'o637 •0550 .0473
 
 0.2025 •1815 •1621
 
 '33 '34
 
 •0055 •0045
 
 •0406 *0347
 
 .1280
 
 0.35 •36
 
 0'0037
 
 •6327
 
 •8147
 
 '9262
 
 '39
 
 •0025 '0020 •0016
 
 O'1132 *0997 '0875 '0765 •0667
 
 0'2783
 
 '37 •38
 
 0'0296 '0251 '0213 '0179 •0151
 
 •1877
 
 •3812
 
 •6038
 
 '7935
 
 •9149
 
 .9846 •9813 '9775 '9730
 
 0'40
 
 0.0013
 
 o•o126
 
 0.0579
 
 0.1686
 
 0.3530
 
 0.5744
 
 0'9023
 
 0'9679
 
 0'9922
 
 0'9987
 
 '41 '42 '43 '44
 
 •0010 •0008 •0007 •0005
 
 •0105
 
 '0501
 
 •I508
 
 '3258
 
 '5448
 
 •0088
 
 .0431
 
 .2997
 
 '5151
 
 •8886 •8736 .8574 •8400
 
 •9621 '9554 '9480 '9395
 
 .9904 .9883 .9859 .9830
 
 .9983 '9979 '9973 .9967
 
 0.45
 
 •0030
 
 0.3326 •3032 '2755 '2495
 
 .2251
 
 '1443
 
 '9701 .9635 •9560 '9473
 
 '9012
 
 0'9999
 
 '9999
 
 0 '9999
 
 '9999 '9999 '9998 '9997
 
 '0072
 
 '0370
 
 '1344 '1193
 
 '2746
 
 '4854
 
 •oo60
 
 •0316
 
 •1055
 
 ' 2507
 
 '4559
 
 0.7712 '7476 •7230 -6975 .6710
 
 0'0049
 
 0'0269
 
 0'0929
 
 0'2279
 
 0'4268
 
 0•6437
 
 0'8212
 
 •0040
 
 •o228
 
 •0815
 
 •2065
 
 •3981
 
 •6158
 
 '0033 •0026 •0021
 
 '0192 •002 •0135
 
 '0712 •0619 '0536
 
 •1863 •1674
 
 '49
 
 0•0004 •0003 •0003 -0002 •0002
 
 0.9302 '9197 •9082 •8955 •8817
 
 0.9797 '9758 '9713 •9662 •9604
 
 0.9959 '9949 '9937 •9923 .9907
 
 0.50
 
 0.0001
 
 0.0017
 
 0.0'12
 
 0.0461
 
 0.8666
 
 0.9539
 
 0.9888
 
 '46 '47
 
 '48
 
 '3701
 
 •5873
 
 '1498
 
 '3427 •3162.
 
 '5585 .5293
 
 •80'2 •7800 '7576 '7341
 
 0.1334
 
 0.2905
 
 0.5000
 
 0.7095
 
 See page 4 for explanation of the use of this table. 12
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 13
 
 r = II
 
 12
 
 p=
 
 n = i4 p = o•ox
 
 •02
 
 '02
 
 •03 •04
 
 •03 .04
 
 0.05 •06 .07 •o8 •09
 
 0'05
 
 0•10
 
 r=
 
 0
 
 0.8687 '7536 '6528
 
 '5647
 
 I
 
 2
 
 0.9916 .9690 '9355 '8941
 
 o•9997 '9975 '9923 •9833
 
 3
 
 4
 
 5
 
 6
 
 7
 
 0 '9999
 
 '9994 '9981
 
 0.9998
 
 0-4877 •4205
 
 0.8470
 
 0'9699
 
 0 '9958
 
 0 '9996
 
 -o6
 
 '7963
 
 '07
 
 '362o
 
 '7436
 
 .9522 •9302
 
 •9920 .9864
 
 '9990 •9980
 
 •o8 •09
 
 '3112
 
 '9042
 
 '9786
 
 '9965
 
 '2670
 
 •6900 '6368
 
 . 8745
 
 •9685
 
 '9941
 
 '9998 '9996 '9992
 
 o•ro
 
 0•2288 •1956 •1670
 
 '13 •14.
 
 '1 423
 
 0.5846 '5342 '4859 '4401
 
 '1211
 
 •3969
 
 0.8416 •8061 .7685 '7292 •6889
 
 0.9559 •9406 •9226 '9021 •8790
 
 0.9908 .9863 '9804 '9731 '9641
 
 0.9985 '9976 '9962 '9943 '9918
 
 0'9998
 
 'II •I2
 
 0.15 •x6 •x7 •x8 .x9
 
 0'15
 
 o•1o28 •0871 .0736 •0621 •0523
 
 0.3567 •3193 .2848 .2531 - 2242
 
 0.6479 •6068 .5659 .5256
 
 0.8535 •8258 .7962 . 7649
 
 0.9533 '9406 '9259 •9093
 
 0.9885 '9843 '9791 '9727
 
 0'9978 .9968 '9954 '9936
 
 '4862
 
 •7321
 
 '8907
 
 '9651
 
 '9913
 
 0.9997 '9995 '9992 •9988 .9983
 
 0'20 '2I '22 '23 '24
 
 0•20 '21 '22
 
 0'0440
 
 0'1979
 
 0.4481
 
 '0369
 
 •1741
 
 0•6982 '66 34
 
 0.8702 - 8477
 
 '0309
 
 '1527
 
 '4113 '3761
 
 '6281
 
 '8235
 
 -23 •24
 
 •oz58 '0214
 
 '1335
 
 .3426
 
 '5924
 
 '7977
 
 '1163
 
 '3109
 
 •5568
 
 •7703
 
 0.9561 '9457 '9338 '9203 '9051
 
 0.9884 .9848 .9804 '9752 . 9690
 
 0.9976 •99 67 '9955 '9940 '9921
 
 0.25 •26 .27 •28 .29
 
 0'25
 
 0'0178
 
 0•1010
 
 0'2811
 
 0'5213
 
 0'7415
 
 0'8883
 
 0'9617
 
 0'9897
 
 '26
 
 '0148 •0122 '0101 '0083
 
 •o874 '0754 •0556
 
 '2533 ' 2273 •2033 •1812
 
 '4864 '45 21 '4187 •3863
 
 •7116 •6807 •6491 •6168
 
 •8699 '8498 •8282 •8051
 
 '9533 '9437 '9327 '9204
 
 •9868 .9833 '9792 '9743
 
 0.30 '31 •32 '33 '34
 
 0'30
 
 0•oo68 •0055 •0045 .0037
 
 o.o475
 
 0.1608
 
 0.3552
 
 '0404
 
 '1423
 
 '3253
 
 '0343 •0290
 
 •1254 •1101
 
 •2968 •2699
 
 •0030
 
 '0244
 
 '0963
 
 '2444
 
 0.5842 '5514 •5187 .4862 '4542
 
 0.7805 '7546 .7276 •6994 .6703
 
 0.9067 '8916 '8750 '8569 .8374
 
 0.9685 .9619 '9542 '9455 '9357
 
 0.35 •36 '37 '38 '39
 
 0.0024 •0019 •0016 •0012 •0010
 
 0.0205
 
 0'9999
 
 0.35 •36 .37 •38 '39
 
 •0172 •0143 •0119
 
 0.0839 •o729 •0630 .0543
 
 0.2205 •1982 •1774 •1582
 
 0.4227 •3920 .3622 '3334
 
 '0098
 
 '0466
 
 '1405
 
 •3057
 
 0.6405 •6101 '5792 '5481 •5169
 
 0.8164 '7941 •7704 '7455 '7195
 
 0.9247 '9124 •8988 .8838 •8675
 
 0.40 '41 '42 '43 '44
 
 0'9999 '9998 '9998 '9997 '9996
 
 0.40
 
 o-0008 •0006
 
 o.0081 •oo66
 
 0.0398 •0339
 
 0.1243 .1095
 
 0'2793 '2541
 
 0'4859 '4550
 
 -42 •43 •44
 
 '0005
 
 •0054 •0044 '0036
 
 '0287 '0242 •0203
 
 •0961 '0839 '0730
 
 '2303 •2078 •1868
 
 '4246 '3948
 
 •3656
 
 0.6925 •6645 -6357 •6063 '5764
 
 0.8499 •8308 •8104 •7887 •7656
 
 0'45
 
 0 '9995
 
 0.0002 •0002
 
 0.0170
 
 0'5461 .5157
 
 •0001 •0001 '0001
 
 '0142 '0117 '0097 '0079
 
 0.3373 •3100
 
 '9999 '9999
 
 '0023 '0019 •0015 '0012
 
 0.0632 '0545
 
 0'1672
 
 '9993 '9991 '9989 '9986
 
 0.45 '46 '47 '48 •49
 
 0.0029
 
 '46 '47 '48 '49 0'50
 
 0'9983
 
 0 '9999
 
 0'50
 
 0•000I
 
 0'0009
 
 0'0065
 
 •I2 •I3 '14
 
 •16 .17 •18 •19
 
 •27 •28 •29
 
 •31 •32
 
 -33 -34
 
 '9999 '9999
 
 '41
 
 0'9999
 
 '0004
 
 •0003
 
 '0648
 
 3
 
 0 '9999
 
 '9997 '9994 '9991 '9985
 
 0'9999
 
 '9999 '9998
 
 •0468
 
 '1322
 
 '2837
 
 '48 52
 
 •0399 '0339
 
 •1167 •io26
 
 •2585 '2346
 
 '4549 '4249
 
 0.7414 •7160 -6895 •6620 .6337
 
 0'0287
 
 0'0898
 
 0'2120
 
 0.3953
 
 0.6047
 
 •1490
 
 See page 4 for explanation of the use of this table. 1
 
 0 '9999
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION t/ = 14
 
 71 = 15
 
 r= 0
 
 I
 
 2
 
 p = o•ox '02 '03
 
 p = 0.01
 
 o•86oi
 
 r= 8
 
 9
 
 xo
 
 II
 
 12
 
 13
 
 3
 
 .02
 
 '7386
 
 '03
 
 '6333
 
 0.9904 '9647 '9270
 
 '04
 
 .04
 
 .5421
 
 '8809
 
 0.9996 .9970 .9906 '9797
 
 0.05 •06 .07 -438 •09
 
 0.05 -o6 .07 •o8 •09
 
 0.4633 '3953 '3367 •2863
 
 0.8290 '7738 .7168 .6597
 
 0.9638 '9429 •9171 •887o
 
 0.9945 '9896 •9825 .9727
 
 '2430
 
 •6035
 
 •8531
 
 •9601
 
 0•I0 'II •I2 •I3
 
 crro •x x
 
 0'2059
 
 0.5490 '4969 '4476 '4013 .3583
 
 0.8159 /762 '7346 •6916 •6480
 
 0.9444 .9258 •9041 •8796 •8524
 
 0.6042 •5608 •5181
 
 0'8227
 
 '14
 
 0.15 •x 6 '17 •x8 '19
 
 .9999 '9999 .9998 '9997
 
 0'20 •2I •22
 
 0.9996
 
 .23 '24
 
 .9989 '9984
 
 0'25
 
 0'9978
 
 .26 '27 .28 .29
 
 '9971
 
 '9994 '9992
 
 '9962 -9950 '9935
 
 0 '9999
 
 .9999 .9998 '9998 0.9997 .9995 '9993 '9991 .9988
 
 0.9999 '9999 .9999 -9998
 
 •12
 
 '1470
 
 •1238 '1041
 
 0'15
 
 0.0874
 
 •x6 •17 •i 8
 
 •0731 •o611
 
 0.3186 -2821 •2489
 
 '0510 - 0424
 
 '2187
 
 '4766
 
 '7218
 
 •19
 
 '1915
 
 '4365
 
 •6854
 
 0'20 '21 '22
 
 0'0352 •0291 •0241
 
 0'1671
 
 0'3980
 
 0'6482
 
 •1453
 
 .3615
 
 •6105
 
 '1259
 
 '3269
 
 '5726
 
 •23 •24
 
 •0198 •0163
 
 •1087 .0935
 
 '2945 .2642
 
 '5350 '4978
 
 0•25 '26 '27
 
 0'0134 •0109 •0089 •0072 •0059
 
 0'0802 '0685 '0583 '0495
 
 0.2361 '2101 •1863
 
 0'4613 •4258
 
 '0419
 
 •1447
 
 •3914 •3584 .3268
 
 0.0047 •0038
 
 0.0353 •0296
 
 o•,268 •ii07
 
 0.2969 •2686
 
 •28 •29
 
 '9963 '9952
 
 0.9999 '9999 '9999
 
 '31 •32 '33 '34
 
 0 '9757
 
 0 '9940
 
 0 '9989
 
 0'9999
 
 o•35
 
 '9706 '9647 .9580 '9503
 
 '9924 '9905 .9883 '9856
 
 '9986 '9981 .9976 '9969
 
 '9998 '9997 .9997 '9995
 
 •36
 
 0.9417 '9320 '9211 .9090 '8957
 
 0.9825 '9788 '9745
 
 0.9961 '9951 '9939
 
 0'9994
 
 0'9999
 
 '41 '42 '43 '44
 
 *9696
 
 '9924
 
 '9639
 
 '9907
 
 '9992 '9990 '9987 '9983
 
 '9999 '9999 '9999 '9998
 
 0.45 '46 '47 '48 '49
 
 o•88ii •8652 '480 '8293 '8094
 
 0'9574
 
 0.9886 •9861 •9832 '9798 '9759
 
 0.9978 '9973 •9966 .9958 '9947
 
 0 '9997
 
 •9500 '9417 '9323 '9218
 
 0'50
 
 0.7880
 
 0.9102
 
 0.9713
 
 0.9935
 
 0'9991
 
 0.9917 '9895
 
 0'9983
 
 '9869
 
 '9971
 
 '9837 '9800
 
 0.35 .36 '37 .38 '39 040
 
 '9978
 
 0'30
 
 •0031
 
 '0248
 
 '0962
 
 '2420
 
 -0206
 
 •0833
 
 •2171
 
 '0171
 
 '0719
 
 •1940
 
 0.0016 -00I2 .00 I 0 •0008 •0006
 
 0'0142 '0117 '0096
 
 0'0617 •0528 •0450
 
 0'1727 •1531 •I351
 
 •0078 •oo64
 
 •o382 •0322
 
 •1187 •I039
 
 0'0005 '0004 •0003 0002 0002
 
 0'0052 •0042 •0034 '0027 0021
 
 0•0271 •0227 •0189 *0157
 
 -0130
 
 0'0905 '0785 '0678 ' 0583 '0498
 
 0'0001
 
 0'0017 •0013 '0010 '0008
 
 0.0107
 
 0.0424
 
 - 0087
 
 '0071 '0057
 
 *0359 •0303 '0254
 
 '49
 
 •0006
 
 •0046
 
 -0212
 
 0'50
 
 0'0005
 
 0'0037
 
 0.0176
 
 -38
 
 '39 0'40 •41 •42
 
 '43 '44 0.45 '46 '47 •48
 
 0.9999
 
 See page 4 for explanation of the use of this table. 1
 
 4
 
 .1645
 
 •7908 '7571
 
 •0025 .0020
 
 '37
 
 '9997 '9996 '9994 '9993
 
 '9992 '9976
 
 •13 '14
 
 0.9998 '9997 .9995 '9994 '9992
 
 0.30 '31 .32 '33 '34
 
 •1741
 
 0 '9998
 
 •0001 •0001 .000 I
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION Y/
 
 = 15
 
 r= 4
 
 5
 
 6
 
 8
 
 7
 
 9
 
 xo
 
 II
 
 12
 
 13
 
 p = 0. oi '02 '03
 
 0 '9999
 
 '04
 
 '9998
 
 0.05 •36
 
 0'9994
 
 0 '9999
 
 '9986
 
 .07
 
 '9972
 
 '9999 '9997 '9993 '9987
 
 -o8
 
 '9950
 
 .09
 
 •9918
 
 0'10 'II 'I2
 
 0.9873
 
 '13
 
 •9639
 
 '14 0.15 •16
 
 •17 •18
 
 •19 0'20 '21 '22
 
 .23 '24 0.25 •26 '27 •28
 
 .29 0.30
 
 '31 '32 '33 '34
 
 .9522
 
 0.9997 '9994 '9990 '9985 '9976
 
 0.9383
 
 0.9832
 
 0'9999
 
 '9773
 
 0.9964 '9948 -9926 •9898 .9863
 
 0 '9994
 
 •9222 .9039
 
 '9990 .9986 '9979 '9970
 
 '9999 '9998 '9997 '9995
 
 0'9999
 
 0.9819 *9766 .9702 •9626 .9537
 
 0.9958 '9942 •9922 '9896 '9865
 
 0.9992 '9989 '9984 '9977 '9969
 
 0.9999 '9998 '9997 '9996 '9994
 
 0.9434 .9316 -9183 '9035 •8870
 
 0'9827 .9781 '9726 '9662 '9587
 
 0.9958 '9944 •9927 .9906 .9879
 
 0'9992 '9989 .9985 '9979 '9972
 
 0 '9999
 
 '9998 '9998 '9997 '9995
 
 0 '9999
 
 0.8689 •8491 •8278 •8049 •7806
 
 0.9500 '9401 .9289 .9163 •9023
 
 0.9848 •9810 '9764 .9711 '9649
 
 0.9963 .9952 '9938 .9921 '9901
 
 0 '9993
 
 0'9999
 
 -9991 .9988 '9984 '9978
 
 '9999 '9998 '9997 '9996
 
 0.7548 •7278 •6997 '6705 •6405
 
 0.8868 •8698 '8513 '8313 -8098
 
 0.9578 '9496 '9403 .9298 •9180
 
 0.9876 .9846 .9810 •9768 '9719
 
 0.9972 '9963 '9953 '9941 .9925
 
 0 '9995
 
 0'9999
 
 '9994 '9991 .9989 '9985
 
 '9999 '9999 '9998 '9998
 
 0'6098
 
 0.7869 -7626 '7370 .7102 •6824
 
 0.9050 8905 .8746 •8573 .8385
 
 0.9662 '9596 '9521 '9435 '9339
 
 0.9907 .9884 -9857 .9826 '9789
 
 0.9981 '9975 '9968 -9960 '9949
 
 0 '9997
 
 0.8182 7966 '7735
 
 0 '9745
 
 0 '9937
 
 0'9989
 
 0 '9999
 
 3 4 29 30
 
 0.9231 •9110 .8976 •88 7 69 62
 
 '9695 -9637 -9570 '9494
 
 '9921 .9903 •9881 '9855
 
 .9986 .9982 '9977 '9971
 
 '9998 '9998 '9997 '9996
 
 0.6964
 
 0.8491
 
 0.9408
 
 0.9824
 
 0'9963
 
 0'9995
 
 '9735
 
 •8833 •8606 0.8358 '8090 '7805 '7505
 
 '7190 0.6865 •6531 •6190 .5846 '5500
 
 0.5155 '4813 '4477 '41 48 •3829
 
 .9700 '9613 .9510 0.9389 .9252 •9095
 
 •8921 •8728 0.8516 •8287 •8042 .7780 '7505
 
 0.7216 •6916 '6607 •6291 •5968
 
 •38 '39
 
 •2413
 
 '4989 •4665 '4346
 
 0'40
 
 0'2173 '1948
 
 0'4032 '3726
 
 •1739
 
 •36 '37
 
 '9998
 
 0.9978 '9963 '9943 '9916 '9879
 
 '9813
 
 0.3519 •3222 '2938 •2668
 
 0'35
 
 0 '9999
 
 0'5643 '5316
 
 0 '9999
 
 '9999 '9998 '9996
 
 '43 '44
 
 '1546
 
 '3430 '3144
 
 •1367
 
 •2869
 
 •5786 '5470 '5153 '4836
 
 o•45
 
 0•1204
 
 '46
 
 0.2608 '2359
 
 0.4522 '4211
 
 •2125
 
 '3905
 
 '48
 
 •1055 '0920 .o799
 
 .1905
 
 •3606
 
 0.6535 •6238 '5935 •5626
 
 49
 
 0690
 
 '1699
 
 3316
 
 5314
 
 0'50
 
 0.0592
 
 0.1509
 
 0.3036
 
 0.5000
 
 '41 .42
 
 '47
 
 .77
 
 0'9999
 
 '9999
 
 See page 4 for explanation of the use of this table.
 
 15
 
 '9996 '9995 '9993 '9991
 
 0 '9999
 
 '9999
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = i6 P=
 
 1' = 0
 
 I
 
 2
 
 3
 
 4
 
 •or
 
 0•8515
 
 0'9891
 
 •02
 
 '7238
 
 •9601
 
 •03 '04
 
 •6143
 
 -9182 '8673
 
 0.9995 .9963 '9887 '9758
 
 0.9998 *9989 '9968
 
 0 '9999
 
 .5204
 
 5
 
 6
 
 0.9999 '9999 *9997
 
 7
 
 8
 
 9
 
 10
 
 '9997
 
 •07
 
 '3131
 
 •o8
 
 •2634
 
 0.81(38 .7511 .6902 '6299
 
 •09
 
 '221 I
 
 '5711
 
 0.9571 .9327 '9031 •8689 •8306
 
 0.10
 
 43.1853
 
 0.7892 '7455 -7001 '6539 •6074
 
 0.9316 '9093 •8838 .8552 '8237
 
 0.9830 '9752 •9652 .9529 '9382
 
 0.9967 '9947 •9918 •9880 -9829
 
 0'9999
 
 '1 550
 
 0.5147 '4614 •4115 .3653 -3227
 
 0 '9995
 
 •xx •x2 •13 •14
 
 '9991 .9985 .9976 '9962
 
 '9999 .9998 .9996 '9993
 
 0'5614 *5162 .4723 '4302 .3899
 
 0.9209
 
 0 '9765
 
 0 '9944
 
 •9012 '8789 '8542 •8273
 
 '9920 •9888 '9847 '9796
 
 0'9989 '9984 '9976 '9964 '9949
 
 0 '9998
 
 '7540 '7164 '6777 '6381
 
 '9685
 
 '19
 
 0'2839 *2487 .2170 •1885 -1632
 
 0'7899
 
 •0614 .0507 •0418 .0343
 
 0'20 •21 '22
 
 0'0281 '0230 '0188
 
 0'1407 '1209 '1035
 
 0'3518 '3161
 
 0'5981
 
 0'7982 .7673
 
 o'9183 •9008
 
 '7348
 
 •8812
 
 •23
 
 .0153
 
 .0883
 
 .2517
 
 '24
 
 '0124
 
 '0750
 
 '2232
 
 *4797 •4417
 
 '7009 •6659
 
 '8595 *8359
 
 '9979 '9970 '9959 '9944
 
 .9996 *9994 '9992 '9988
 
 0 '9999
 
 •5186
 
 0'9930 '9905 '9873 '9834 '9786
 
 0 '9998
 
 '2827
 
 0. 9733 -9658 •9568 '9464 '9343
 
 0 '9985
 
 •5582
 
 0'25
 
 0'0100
 
 0'0635
 
 0'1971
 
 0'4050
 
 .0535 -0450
 
 '0052 '0042
 
 '0377 '0314
 
 '1733 '1518 .1323
 
 '3697 •3360 •3041
 
 '1149
 
 '2740
 
 0.8103 '7831 '7542 '7239 .6923
 
 0'9204 '9049 '8875 •8683 '8474
 
 0.9729 •9660 '9580 *9486 '9379
 
 0.9925 '9902 '9873 '9837 '9794
 
 0 '9997
 
 •0081 •0065
 
 o•63o2 '5940 '5575 •5212 '4853
 
 0'9984
 
 •26
 
 '9977 '9969 '9959 '9945
 
 •9996 '9994 *9992 .9989
 
 0.0033 •oo26
 
 o.o261 •0216
 
 0.0994 •0856
 
 0 '2459
 
 '0021
 
 •0178
 
 '0734
 
 '33 '34
 
 •0016
 
 •0146
 
 •0626
 
 '3819 '3496
 
 0.8247 •8003 '7743 . 7469
 
 '001 3
 
 '0120
 
 '0533
 
 '1525
 
 '3 187
 
 '5241
 
 '7181
 
 0'9256 •9119 '8965 '8795 '8609
 
 0 '9984
 
 '32
 
 0.6598 *6264 •5926 '5584
 
 0 '9929
 
 •2196 '1953 •1730
 
 0 '4499 .4154
 
 0 '9743
 
 •31
 
 •9683 •9612 '9530 '9436
 
 '9908 .9883 .9852 '9815
 
 '9979 .9972 .9963 '9952
 
 0.35 •36
 
 0.00 10 •0008
 
 0'0451
 
 '37
 
 -0006
 
 0-1339 •1170 . 10 1 8 •0881
 
 0.4900 •4562 .4230
 
 0.6881 •6572 '62 54
 
 '3906
 
 •5930
 
 '3592
 
 •5602
 
 0.8406 •8187 '7952 .7702 '7438
 
 0.9329 •9209 '9074 -8924 '8758
 
 0.9771 .9720 '9659 '9589 '9509
 
 0'9938
 
 -0380 •0319 •0266
 
 0.05 •o6
 
 0.4401
 
 0.15 •16 .17 •18
 
 •27 -28 •29 0.30
 
 .3716
 
 •1293 .1077 •0895
 
 0.0743
 
 0'9930
 
 •9868 .9779 '9658 .9504
 
 0'9991 .9981 -9962 . 9932 '9889
 
 0'9999 .9998 '9995 '9990 *9981
 
 '9588 '9473 '9338
 
 0'9999
 
 '9999
 
 '9997 '9996 '9993 '9990
 
 0 '9999
 
 '9999 '9998
 
 '9999 '9999 .9998
 
 •38
 
 .0005
 
 0.0098 •0079 •0064 -0052
 
 '39
 
 '0004
 
 '0041
 
 '0222
 
 '0759
 
 o'2892 •2613 '2351 •2105 '1877
 
 0.40
 
 0.0003
 
 0.0033
 
 '41 •42
 
 '0002
 
 '0026 '0021
 
 o'o183 •0151 •0101 •oo82
 
 0.0651 .0556 '0473 •0400 •0336
 
 0.1666 . 1471 '1293 •1131 •o985
 
 o'3288 '2997 •2720 . 2457 •2208
 
 0.5272 '4942 •4613 .4289 '3971
 
 0'7161 •6872 .6572 '6264 '5949
 
 0.8577 •8381 •8168 '7940 .7698
 
 0.9417 -9313 '9195 '9064 '8919
 
 0.9809 .9766 .9716 .9658 .9591
 
 o'o281 '0234 •0194 - 0160 •0131
 
 0.0853 '0735 •0630 '0537 •0456
 
 0.1976 '1759 '1559 '1374 •1205
 
 0.3660 '3359 •3068 '2790 '2524
 
 0.5629 '5306 •4981 '4657 '4335
 
 0.7441 •7171 •6889 '6595 '6293
 
 0'8759 •8584 *8393 •8,86 *7964
 
 0 '9514
 
 0'0106
 
 0'0384
 
 0'1051
 
 0'2272
 
 0'4018
 
 0.5982
 
 0.7728
 
 0 '8949
 
 '43 '44
 
 •0002 •000i
 
 •0016
 
 '0001
 
 '0013
 
 0.0001 •0001
 
 0.00,0 -oo08 •0006
 
 '0124
 
 •48
 
 •0005
 
 '49
 
 •0003
 
 0•0066 •0053 •0042 •0034 •0027
 
 0•50
 
 0'0003
 
 0'0021
 
 0'45
 
 '46 '47
 
 See page 4 for explanation of the use of this table. 16
 
 '9921 '9900 '9875 '9845
 
 .9426 '9326 '9214 .9089
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 16
 
 7= 11
 
 12
 
 13
 
 14
 
 n = 17 p=
 
 P = o•ox '02 •03 '04
 
 7= 0
 
 0.0I '02
 
 0.8429 '7093
 
 .03 '04
 
 '5958
 
 I
 
 2
 
 0 '9877
 
 0.9994 '9956 •9866 '9714
 
 '4996
 
 '9554 •9091 .8535
 
 0.4181 '3493
 
 0.7922 .7283
 
 '07
 
 '2912
 
 •o8 •09
 
 •2423
 
 •6638 '6005
 
 '2012
 
 '5396
 
 0.4818 - 4277
 
 3
 
 4
 
 5
 
 0 '9997
 
 •9986 •9960
 
 0.9999 '9996
 
 •8073
 
 0.9912 .9836 '9727 '9581 '9397
 
 0.9988 '9974 '9949 •9911 '9855
 
 0.9999 '9997 '9993 '9985 '9973
 
 0.9174 .8913 •8617 •8290
 
 0.9779 '9679 '9554 .9402
 
 0.9953 .9925 •9886
 
 0.9497 .9218 •8882
 
 0.05 'o6 '07 •o8 •og
 
 0'05
 
 0•I0 •II - 12 •I3
 
 0•10 'II •12
 
 0.1668
 
 .0937 .0770
 
 .3318
 
 '14
 
 '13 '14
 
 0.7618 '7142 •6655 •6164
 
 '2901
 
 '5676
 
 '7935
 
 '9222
 
 0.15 •x6 •x.7 •x8 •19
 
 0.15 •16 •17 •18 •19
 
 0.0631 •0516 •0421 .0343 •0278
 
 0'2525
 
 0'5198
 
 0'7556
 
 0'9013
 
 •2187 •1887 •1621 -1387
 
 '4734 •4289 •3867 '3468
 
 •7159 '6749 '6331 •5909
 
 '8776 .8513 •8225 '7913
 
 0.9681 '9577 '9452 '9305 '9136
 
 0'20 •2I '22
 
 0•20 '21 '22
 
 0'0225 •0182
 
 0'1182 •1004
 
 0'3096
 
 0'5489 •5073
 
 0'7582
 
 0.8943
 
 '2751
 
 '0146
 
 •0849
 
 '2433
 
 '4667
 
 '7234 •6872
 
 '8727 •8490
 
 '23 '24
 
 •23
 
 •0118 '0094
 
 •0715 •0600
 
 •2141
 
 '4272
 
 •6500
 
 '8230
 
 '24
 
 •1877
 
 •3893
 
 '6121
 
 '7951
 
 0.0075 .0060
 
 0.0501 •0417
 
 0.1637 '1422
 
 0.3530
 
 0'5739
 
 '3186
 
 •0047
 
 '0346 •oz86 '0235
 
 '1229
 
 •Io58
 
 •2863 •2560
 
 '5357 '4977 -4604
 
 0.7653 '7339 .7011 •6671
 
 *0907
 
 '2279
 
 '4240
 
 -6323
 
 0'0193 '0157 '0128 '0104 •0083
 
 0'0774 '0657 •0556 '0468 '0392
 
 0'2019 -1781 •1563 '1366 •1188
 
 0'3887
 
 0'5968
 
 '3547
 
 .5610
 
 •2622
 
 '4895 '4542
 
 0'25 •26
 
 .27 '28
 
 -29
 
 •o6
 
 0'25
 
 0.9999 '9999 '9999 '9998
 
 •26
 
 0'30
 
 0'0023
 
 •0018
 
 0'0007 •0005
 
 0'0067
 
 0'0327
 
 0'1028
 
 0'2348
 
 0'4197
 
 •0054
 
 •0272
 
 •0885
 
 •0004
 
 •0043 •0034
 
 '0225 •0185
 
 -3861 '3535
 
 -1640
 
 •0027
 
 •0151
 
 •0759 -0648 '0550
 
 •2094 .1858 ' 1441
 
 •3222 '2923
 
 0'0021
 
 0'0123
 
 0'0464
 
 0•12,60
 
 •0016 •0013
 
 •0100 •oo8o
 
 •0390 •0326
 
 •1096 •0949
 
 '0010
 
 '0065
 
 •0271
 
 - 0817
 
 '2121 '1887
 
 •0008
 
 •0052
 
 •0224
 
 •0699
 
 •1670
 
 0.0041 •0032 •0025 •0020
 
 0.0184 •0151 '0123 •0099
 
 0.0596 •0505 '0425 •0356
 
 0'1471 •iz88 'I 122 •0972
 
 •0015
 
 •oo8o
 
 -0296
 
 -0838
 
 0'0012
 
 0.0064
 
 0'0245
 
 0.0717
 
 0'9999
 
 '9999 '9999
 
 0.35 .36 '37 -38 '39
 
 0'9987
 
 0 '9998
 
 0'35
 
 '9983 '9977 '9970 '9962
 
 '9997 '9996 '9995 '9993
 
 '36
 
 0•40
 
 0.9951 '9938
 
 '9999
 
 '37 •38 '39
 
 0 '9991
 
 0 '9999
 
 0'40
 
 .9988
 
 '41 '42 '43 '44
 
 0'9999
 
 - 0038
 
 •0014 •0011 •0009
 
 '0003 '0002 0'0002 '0001
 
 '9922
 
 '9984
 
 '9902 '9879
 
 '9979 '9973
 
 .9998 .9998 '9997 '9996
 
 0.45 '46 '47 '48 '49
 
 0.9851 '981 7 '9778 '9732 .9678
 
 0.9965 '9956 '9945 '9931 .9914
 
 0.9994 '9993 '9990 '9987 '9984
 
 0.9999 '9999 '9999 '9999 '9998
 
 0.45
 
 0'0006
 
 '46 '47 '48 '49
 
 •0004 •0003
 
 0•50
 
 0'9616
 
 0.9894
 
 0.9979
 
 0 '9997
 
 0•50
 
 O'COOI
 
 '41 '42 '43 '44
 
 *9834 '9766
 
 '0030
 
 '31 •32 '33 '34
 
 '31 .32 '33 '34
 
 '3777
 
 '27 '28 •29
 
 0.9997 '9996 '9995 '9993 '9990
 
 0'30
 
 '1379 '11 3 8
 
 *8497
 
 •0001 •000x •000x
 
 •0002 •0002
 
 See page 4 for explanation of the use of this table.
 
 17
 
 '3222 •2913
 
 '5251
 
 0.2639 '2372
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION 7Z=17
 
 r=6
 
 7
 
 8
 
 0.9999 '9998 '9996 '9993 .9989
 
 0'9999
 
 0.9997 '9995 '9992 .9988 -9982
 
 9
 
 xo
 
 II
 
 12
 
 13
 
 14
 
 15
 
 p = o•ox '02 '03 '04
 
 0.05 •o6 .07 •o8
 
 0 '9999
 
 '9998
 
 .09
 
 '9996
 
 0'10
 
 0.9992
 
 •II •12 •13
 
 '9986
 
 .9963
 
 '14
 
 '9944
 
 0'15
 
 0.9917
 
 •16
 
 -9882
 
 •17 •x8 •19
 
 .9837 .9709
 
 0.9983 '9973 '9961 '9943 .9920
 
 0'20 '21 •22
 
 0.9623
 
 0.9891
 
 0 '9974
 
 0 '9995
 
 0 '9999
 
 '9853
 
 .23 •24
 
 '9521 •9402 '9264 •9106
 
 •9680
 
 .9963 '9949 '9930 .9906
 
 '9993 •9989 '9984 '9978
 
 '9999 '9998 '9997 '9996
 
 0 '9999
 
 0•25
 
 0.8929
 
 0.9598
 
 0.9876
 
 0 '9999
 
 •8732
 
 •9501
 
 .9839
 
 •8515
 
 '9389
 
 •28
 
 •8279
 
 •9261
 
 '9794 '9739
 
 •29
 
 •8024
 
 •9116
 
 •9674
 
 0.9969 '9958 '9943 .9925 .9902
 
 0 '9994
 
 •26 .27
 
 '9991 '9987 •9982 '9976
 
 '9998 '9998 '9997 '9995
 
 0 '9999
 
 0'30
 
 0.7752
 
 0 '9993
 
 0'9999
 
 •32
 
 '7162
 
 '8 574
 
 '33 '34
 
 •6847 •6521
 
 •8358
 
 .9508 '9405 •9288
 
 •8123
 
 '9155
 
 0'9873 .9838 '9796 '9746 •9686
 
 0 '9968
 
 '7464
 
 0.8954 .8773
 
 0 '9597
 
 '31
 
 '9957 '9943 .9926 •9905
 
 '9991 .9987 .9983 '9977
 
 '9998 '9998 '9997 '9996
 
 0 '9999
 
 0.35 .36
 
 0.6188 .5848
 
 0.9617 '9536 '9443 '9336 •9216
 
 0.9880 . 9849 •9811 •9766 '9714
 
 0.9970 •9960 '9949 '9934 .9916
 
 0 '9999
 
 •5505
 
 0.9006 '8841 .8659 .8459 •8243
 
 0 '9994
 
 '37
 
 0•7872 •76o5 '7324 •7029 •6722
 
 '9992 .9989 .9985 .9981
 
 '9999 '9998 '9998 '9997
 
 0.6405 •6080 '5750 '5415 •5079
 
 0.801 x .7762 '7498 .7220 •6928
 
 o•9o81 •8930 . 8764 .8581 •8382
 
 o.9652 •9580 '9497 '9403 '9295
 
 0.9894 .9867 .9835 '9797 '9752
 
 0 '9975
 
 0 '9995
 
 0'9999
 
 .9967 '9958 '9946 '9931
 
 '9994 '9992 .9989 .9986
 
 '9999 '9999 '9998 '9998
 
 0 '4743
 
 '49
 
 •1878
 
 .3448
 
 0.6626 •6313 '5992 .5665 '5333
 
 0.8166 '7934 •7686 '7423 '7145
 
 0.9174 .9038 •8888 •8721 .8538
 
 0.9699 .9637 •9566 '9483 .9389
 
 0.9914 .9892 •9866 .9835 '9798
 
 0.9981 '9976 .9969 .9960 '9950
 
 0 '9997
 
 '48
 
 0.2902 •2623 .2359 •2110
 
 0.50
 
 o•1662
 
 0.3145
 
 0.5000
 
 0.6855
 
 0.8338
 
 0.9283
 
 0.9755
 
 0.9936
 
 0.9988
 
 '9977
 
 -978o
 
 •38
 
 •5161
 
 '39
 
 '4818
 
 0'40
 
 0.4478
 
 '41 '42
 
 '4144 .3818 '3501 •3195
 
 '43 '44 0'45
 
 '46
 
 '47
 
 •9806 '9749
 
 '4410 '4082
 
 •3761
 
 '9999 '9998
 
 0 '9999
 
 '9999 '9998 '9997
 
 See page 4 for explanation of the use of this table. 18
 
 '9996 '9995 '9993 '9991
 
 0 '9999
 
 '9999 '9999
 
 0'9999
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 18
 
 r=0
 
 x
 
 2
 
 3
 
 4
 
 5
 
 p = c•in •02 .03 .04
 
 0•8345
 
 0.9862
 
 '6951
 
 •9505
 
 -578o '4796
 
 •8997 •8393
 
 0.9993 •9948 '9843 .9667
 
 0.9996 .9982 '9950
 
 0.9998 '9994
 
 0 '9999
 
 0.05
 
 0.3972
 
 0.7735
 
 •o6
 
 •3283
 
 .7055
 
 0.9419 •9102 .8725 .8298 .7832
 
 0.9891 '9799 '9667 '9494 .9277
 
 0-9985 .9966 '9933 '9884 .9814
 
 0.9998 '9995 '9990 '9979 .9962
 
 0 '9999
 
 '9997 '9994
 
 0 '9999
 
 0.9018 .8718 •8382 •8014 .7618
 
 0.9718 '9595 '9442 '9257 .9041
 
 0.9936 .9898 .9846 '9778 •9690
 
 0.9988 '9979 .9966 '9946 .9919
 
 0.9998 '9997 '9994 '9989 •9983
 
 6
 
 7
 
 8
 
 9
 
 xo
 
 •07
 
 •2708
 
 •6378
 
 •o8
 
 '2229
 
 •5719
 
 •09
 
 •1831
 
 .5091
 
 0•10 'II
 
 0.1501
 
 0.4503
 
 •12
 
 •1227 •I002
 
 •395 8 •3460
 
 •13
 
 •0815
 
 •14
 
 •o66z
 
 •3008 •26oz
 
 0.7338 .6827 •6310 '5794 •5287
 
 0.15
 
 0.0536
 
 '17 •i8 •19
 
 .0349 -0225
 
 0.4797 '4327 •3881 •3462 •3073
 
 0.7202 '6771 -6331 •5888 '5446
 
 0.8794 -8518 •8213 •7884 '7533
 
 0.9581 '9449 '9292 •9111 •8903
 
 0.9882 '9833 '9771 .9694 •9600
 
 0.9973 '9959 '9940 '9914 •988o
 
 0 '9999
 
 '0434
 
 0.2241 '1920 '1638 •1391 •1176
 
 0 '9995
 
 •x6
 
 '9992 •9987 •9980 '9971
 
 '9999 '9998 '9996 '9994
 
 0'20 '21 •22
 
 0'0180 •0144 '0114 '0091 '0072
 
 0'0991 '0831 '0694 '0577 '0478
 
 0'2713 •2384
 
 0'5010 '45 86
 
 0'7164 '6780
 
 0'8671 •8414
 
 0'9487
 
 0.9991
 
 0 '9998
 
 -2084 .1813
 
 '4175 •3782
 
 •1570
 
 .3409
 
 •6387 '5988 '5586
 
 •8134 •7832 •7512
 
 0.9837 '9783 '9717 '9637 '9542
 
 0'9957
 
 '9355 •9201 -9026 •8829
 
 '9940 '9917 '9888 .9852
 
 '9986 '9980 '9972 •9961
 
 '9997 '9996 '9994 '9991
 
 0.25
 
 0'0056
 
 •26 •27 •28 •29
 
 0.0044
 
 0.0395 •0324
 
 0.1353 •1161
 
 0.3057 •2728
 
 0.5187 '4792
 
 0.7175 •6824
 
 0.8610 -837o
 
 0.9431 '9301
 
 •0035
 
 '0265
 
 '0991
 
 '2422
 
 '4406
 
 •6462
 
 •8109
 
 '9153
 
 •oo27 •0021
 
 •0216
 
 •0842
 
 •2140
 
 •4032
 
 •6093
 
 '0712
 
 •1881
 
 •3671
 
 •5719
 
 .8986 •8800
 
 0-9946 .9927 •9903 .9873
 
 '0176
 
 '7829 '7531
 
 0.9807 '9751 -9684 '9605 •9512
 
 0.9988 '9982 '9975 '9966 '9954
 
 0.30 '31 •32
 
 0.0016 •0013 •0010
 
 0.0142 •0114 •0092
 
 o.o600 •0502 •0419
 
 0.1646 '1432
 
 0.3327 '2999
 
 0.5344 '4971
 
 0'7217 •6889
 
 0.8593 •8367
 
 0.9404 •9280
 
 0 '9939
 
 '0073
 
 '0348
 
 '4602 •4241
 
 •6550 •6203
 
 .91 39
 
 •0007 -0006
 
 •2691 '2402
 
 •8122
 
 •33 '34
 
 '1241 '1069
 
 •0058
 
 •0287
 
 .0917
 
 •2134
 
 '3889
 
 •5849
 
 •7859 '7579
 
 •8981 •8804
 
 0.9790 '9736 .9671 '9595 -9506
 
 0.35
 
 0'0004
 
 0.3550
 
 0.5491
 
 '0665
 
 •1659
 
 '3224
 
 . 5 1 33
 
 •0561
 
 •1451
 
 •2914
 
 '4776
 
 •0002
 
 0'0236 •0193 '0157 '0127
 
 0.1886
 
 -0003 •0002
 
 0'0046 '0036 '0028 •0022
 
 0.0783
 
 •36
 
 •0472
 
 •1263
 
 '2621
 
 .4424
 
 '39
 
 •0001
 
 •0017
 
 •0103
 
 '0394
 
 •1093
 
 - 2345
 
 '4079
 
 0.7283 .6973 •6651 •6319 '5979
 
 0.8609 .8396 •8165 '7916 •7650
 
 0.9403 •9286 .9153 •9003 .8837
 
 40.9788 '9736 .9675 •9603 '95 20
 
 0.40
 
 0.0001
 
 0.0013
 
 0.0082
 
 •0001 •0001
 
 •0010 '0008
 
 '0066
 
 •0052 •0041
 
 0.0328 •0271 -0223 •0182
 
 0.0942 •0807 •0687 •0582
 
 0.2088 '1849 •1628 •1427
 
 0.3743 •3418 '3105 •2807
 
 0.5634 '5287 '4938 '4592
 
 0.7368 .7072 •6764 '6444
 
 '0032
 
 '0148
 
 '0490
 
 •1243
 
 •2524
 
 •423 0
 
 '6115
 
 0.8653 •8451 •8232 '7996 '7742
 
 0 '9424
 
 '41
 
 0'2258 '2009
 
 0-3915
 
 •1778 -1564
 
 .3272 '2968
 
 0.5778 '5438 '5094 '4751
 
 •1368
 
 '2678
 
 .4409
 
 0.7473 .7188 •6890 -6579 •6258
 
 0.8720 •8530 •8323 •8098 •7856
 
 0.1189
 
 0.2403
 
 0.4073
 
 0.5927
 
 0.7597
 
 •23 -24
 
 '37 •38
 
 '42
 
 •oz81
 
 '43 '44
 
 •0006 •0004
 
 0'45
 
 0'0003
 
 '49
 
 0•0120 •0096 '0077 •0061 '0048
 
 0.1077
 
 •0002 •0002 •0001 •0001
 
 0.0025 '0019 '0015 •0011 '0009
 
 0.0411
 
 '46
 
 '0342 •0283 '0233 •0190
 
 '0928 •0795 '0676 '0572
 
 0.50
 
 0.0001
 
 0.0007
 
 0.0038
 
 0.0154
 
 0.0481
 
 '47
 
 '48
 
 •3588
 
 See page 4 for explanation of the use of this table.
 
 19
 
 0'9999
 
 '9998 '9997
 
 '9836
 
 0 '9999
 
 '9999
 
 •9920 •9896 .9867 •9831
 
 -9314 •9189 .9049 '8893
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION
 
 n= ig
 
 r
 
 P = o•ox
 
 P= o•oz
 
 '02 '03
 
 '02
 
 •03 •04
 
 •5606
 
 •8900
 
 •4604
 
 0'05 •o6 •07 •08
 
 ' 20 5 1
 
 '5440
 
 '8092
 
 •09
 
 '1666
 
 '4798
 
 .7585
 
 •1() •II •12
 
 0.1351
 
 0'4203
 
 0'7054
 
 •1092
 
 '3658
 
 '6512
 
 •0881
 
 '0709
 
 •3165 '2723
 
 -5968 .5432
 
 '0569
 
 *2331
 
 •4911
 
 0'0456 -0364 -0290 •0230 •0182
 
 0•1985 -1682 •1419 •1191 -0996
 
 0'4413
 
 0'20 '21 '22 '23 •24
 
 0.0144
 
 o'o829 -0687
 
 0.2369 •2058
 
 0'25
 
 n = 18
 
 r = II
 
 12
 
 13
 
 14
 
 xs
 
 x6
 
 '04 0'05
 
 'o6 .07 •o8 •09 0'10 •I I •I2 •I3 'I4
 
 •13 '14
 
 0.15
 
 0'15
 
 •16 •x7 •x8
 
 •x6 •x7 •x8 •19
 
 •19 0'20 '21 '22
 
 0 '9999
 
 '23 '24
 
 '9999 '9998
 
 0'25
 
 0 '9998 '9997
 
 •26 '27 •28 .29
 
 '9995 -9993 *9990
 
 0-9999 '9999 '9999 '9998
 
 =
 
 I
 
 2
 
 0.8262
 
 0•9847
 
 '6812
 
 '9454 '8249
 
 0'9991 '9939 -9817 *96 I 6
 
 0 '3774
 
 0 '7547
 
 0 '9335
 
 •3086
 
 -6829 •6i2x
 
 .8979 •8561
 
 0
 
 '2519
 
 '0113
 
 .3941 '3500 -3090 -2713
 
 '0089
 
 •0566
 
 •I 778
 
 '0070
 
 *0465
 
 *1529
 
 '0054
 
 '0381
 
 •I 308
 
 0.0042 •0033
 
 0.0310 •0251 '0203 '0163
 
 •0667
 
 '29
 
 '0025 *00 I 9 •0015
 
 o•iii3 '0943 .0795
 
 •0131
 
 '0557
 
 •26 '27
 
 -28
 
 0.9986 .998o '9973 '9964 '9953
 
 0 '9997
 
 0'30
 
 0'0011
 
 0'0104
 
 0'0462
 
 .31 '32 '33 '34
 
 '9996 '9995 '9992 '9989
 
 0'9999
 
 •3 I
 
 '0009
 
 '0083
 
 '9999 '9999 '9998
 
 •32 •33 '34
 
 -0007
 
 •0065
 
 •0382 •0314
 
 '0005
 
 •0051
 
 '0257
 
 '0004
 
 •0040
 
 '0209
 
 0'35
 
 0 '9938
 
 •36 •37 .38 '39
 
 .9920 .9898 -9870 '9837
 
 0'9986 •9981 '9974 .9966 '9956
 
 o•9997 '9996 '9995 '9993 '9990
 
 0.40 '41 '42 '43 '44
 
 0 '9797
 
 '9750 '9693 •9628 '9551
 
 0'9942 '9926 '9906 •9882 -9853
 
 0.45 '46 '47 '48 '49
 
 0.9463 .9362 '9247 •9117 '8972
 
 0'50
 
 o•8811
 
 0'30
 
 0.35
 
 0'0003
 
 0'0031
 
 0'0170
 
 0'9999
 
 •36
 
 •0002
 
 '9999 '9999 '9998
 
 •37 •38 -39
 
 •0002
 
 '0024 '0019
 
 ' 0137 '0110
 
 '0001
 
 •0014
 
 '0087
 
 •000x
 
 '0011
 
 '0069
 
 0 '9987
 
 0'9998
 
 0'40
 
 o•000i
 
 '9983 -9978 '9971 .9962
 
 '9997 '9996 '9994 '9993
 
 0.0008 •0006 •0005 •0004 •0003
 
 0•0055 '0043 •0033
 
 '9999 '9999
 
 '41 '42 '43 '44
 
 0.9817 '9775 .9725 •9666 '9598
 
 0 '9951
 
 0'9990 '9987 .9983 '9977 '9971
 
 0 '9999
 
 0'45
 
 0'0002
 
 '9937 '9921 '9900 '9875
 
 '9998 '9997 '9996 '9995
 
 •000x •0001
 
 0.0015 •0012
 
 0 '9999
 
 '46 '47 48 '49
 
 0.9519
 
 0.9846
 
 0'9962
 
 0 '9993
 
 0 '9999
 
 0•50
 
 0 '9999
 
 See page 4 for explanation of the use of this table. 20
 
 '0026 '0020
 
 '0009
 
 '000!
 
 '0007
 
 '0001
 
 •0005 0'0004
 
 TABLE I. THE BINOMIAL DISTRIBUTION FUNCTION =1
 
 9
 
 r=
 
 3
 
 4
 
 5
 
 6
 
 8
 
 7
 
 10
 
 9
 
 II
 
 12
 
 13
 
 p = 0'01 '02 •03 •04
 
 0 '9995
 
 -9978 *9939
 
 0.9998 '9993
 
 0'05
 
 •o6
 
 0.9868 '9757
 
 0.9980 '9956
 
 •07
 
 '9602
 
 '9915
 
 •98
 
 .09
 
 .9398 '9147
 
 -9853 *9765
 
 o•io
 
 0•885o
 
 •II •I2
 
 '8510 '8133
 
 0.9648 '9498
 
 .13
 
 -7725
 
 .14
 
 -7292
 
 o•15 •16 •17
 
 0.6841 •638o .5915
 
 '18 -19
 
 '5451 '4995
 
 0'20 '21 '22
 
 0.4551
 
 .23 -24
 
 .3329
 
 0 '9999
 
 0.9998 '9994 .9986 .9971 '9949
 
 0 '9999
 
 .9998 .9996 *9991
 
 0.9999 '9999
 
 -9096 .8842
 
 0'9914 •9865 -9798 •9710 '9599
 
 0.9983 '9970 '9952 '9924 .9887
 
 0.9997 '9995 '9991 '9984 '9974
 
 0.8556 •8238 -7893 '7524 *7136
 
 0.9463 .9300 .9109 '8890 -8643
 
 0'9837 .9772 -9690 '9589 '9468
 
 0 '9959
 
 0.8369 .8071
 
 0.9324 .9157
 
 0.9767 '9693
 
 '7749 - 7408 .7050
 
 •8966
 
 -9604
 
 '2968
 
 0.6733 .6319 '5900 -5480 .5064
 
 '8752 '8513
 
 '9497 '9371
 
 0.25
 
 0.2631
 
 0.4654
 
 0.6678
 
 0•8251
 
 0.9225
 
 -26 •27 -28 •29
 
 '2320 '2035
 
 '4256
 
 '6295
 
 '7968
 
 '9059
 
 -5907
 
 .7664
 
 .1776
 
 -3871 . 3502
 
 '5516
 
 •1542
 
 '3152
 
 •5125
 
 0.30
 
 0.1332
 
 •32
 
 .1144 •0978
 
 '33 '34
 
 '0831 '0703
 
 0'2822 . 2514 '2227 ' 1963
 
 0'4739
 
 •31
 
 0.35
 
 '4123 '3715
 
 .9315
 
 '4359 '3990
 
 .9939 .9911 '9874 .9827
 
 0 '9999
 
 '9998 '9997 '9995
 
 0 '9999
 
 0.9992 .9986 '9979 '9968 '9953
 
 0.9999 -9998 '9996 '9993 '9990
 
 0 '9933
 
 0-9984 '9977 *9966
 
 '9907 '9873 '9831 '9778
 
 '9953
 
 '9934
 
 0 '9999
 
 '9999 '9998 0 '9997
 
 '9995 '9993 '9989 '9984
 
 0'9999
 
 '9997
 
 0 '9999
 
 0'9977
 
 0.9995
 
 0 '9999
 
 '9968 .9956 '9940 '9920
 
 '9993 .9990 '9985 '9980
 
 '9999 .9998 '9997 '9996
 
 0 '9999
 
 '9999 . 9998
 
 '7343
 
 .8871 .8662
 
 0.9713 -9634 .9541 .9432
 
 0.9911 .9881 -9844 '9798
 
 •7005
 
 '8432
 
 '9306
 
 '9742
 
 0.6655 '6295 '5927 '5555 -5182
 
 0.8180 '7909 •7619 '7312 •6990
 
 0.9161 '8997 -8814 '8611 •8388
 
 0 '9674
 
 0-9895 •9863 .9824 '9777 '9720
 
 0.9972 .9962 '9949 '9932 '9911
 
 0 '9994
 
 0 '9999
 
 '9595 •9501 '9392 •9267
 
 .9991 '9988 '9983 '9977
 
 -9998 -9998 '9997 '9995
 
 0.6656 •6310 '5957 '5599 *5238
 
 0.8145 .7884 '7605 '7309 '6998
 
 0.9125 .8965 .8787 '8590 '8374
 
 0.9653 '9574 .9482 '9375 '9253
 
 0.9886 '9854 '9815 '9769 '9713
 
 0.9969 '9959 '9946 '9930 '9909
 
 0 '9993
 
 0.9884 '9854 -9817 '9773 •9720
 
 0.9969 •9960 9948 '993 3 '9914
 
 .1720
 
 '3634 .3293
 
 0.0591 •0495
 
 0- I 500 •1301
 
 0.2968 -2661
 
 '39
 
 •0412 '0341 •0281
 
 •1122 '0962 •0821
 
 '2373 '2105 •1857
 
 0.4812 '4446 '4087 •3739 •3403
 
 0'40
 
 0'0230
 
 0'0696
 
 0'1629
 
 0'3081
 
 -0587 -0492 •0410 •0340
 
 •1421 - 1233 •1063 - 0912
 
 '2774 •2485 •2213 •1961
 
 0.6675 *6340 '5997 .5647 - 5294
 
 0.8139 •7886 •7615 .7328 •7026
 
 0.9648
 
 '0187 - 0151
 
 0.4878 .4520 -4168 •3824 .3491
 
 0'9115
 
 'V
 
 •896o -8787 .8596 -8387
 
 '9571 '9482 '9379 •9262
 
 0.0777 •0658 •0554 •0463
 
 0.1727 .15 r 2 -1316 •1138
 
 0.3169 •2862 -2570 •2294
 
 •0978
 
 '2036
 
 0.6710 '6383 - 6046 '5701 - 5352
 
 0.8159 '7913 - 7649 -7369 .7072
 
 0'9129
 
 '0385
 
 0.4940 '4587 •4238 •3895 '3561
 
 '8979 - 8813 -8628 .8425
 
 0.9658 '9585 •9500 .9403 . 9291
 
 0.9891 -9863 •9829 .9788 '9739
 
 0'0318
 
 0.0835
 
 0.1796
 
 0.3238
 
 0.5000
 
 0.6762
 
 0.8204
 
 0.9165
 
 0.9682
 
 .36 '37
 
 •38
 
 - 42
 
 '43 '44
 
 '0122
 
 0.45
 
 0.0280 •0229 •0186
 
 •49
 
 0'0077 •006r '0048 '0037 •0029
 
 0'50
 
 0'0022
 
 0'0096
 
 •46 '47
 
 '48
 
 '0097
 
 -0150 '0121
 
 See page 4 for explanation of the use of this table. 21
 
 '9991 .9987 '9983 '9977
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n = 19 P
 
 r = 14
 
 15
 
 16
 
 n = 20
 
 r
 
 = 0
 
 I
 
 2
 
 0.9990 '9929 '9790 .9561
 
 O• 0 I •02 '03 '04
 
 p = 0•0i
 
 0.8179
 
 •02
 
 '6676
 
 .03
 
 '5438
 
 0.9831 •9401 •8802
 
 •04
 
 '4420
 
 '8103
 
 0'05
 
 0'05
 
 •o6 -07 •o8 •09
 
 •o6 •07
 
 0.3585 •290I
 
 0.7358 •6605
 
 '2342
 
 •5869
 
 •o8
 
 •1887
 
 •09
 
 •1516
 
 •5169 •4516
 
 &If) •I I •12 •X3
 
 0•10 •I I '12
 
 0'1216 '0972 '0776
 
 0.3917
 
 •13
 
 •0617
 
 •2461
 
 •14
 
 '14
 
 •0490
 
 &IS
 
 0'15
 
 •x6 •x7 •/8 •19
 
 •16 •17 •x8 •19
 
 0'20 '21 '22 '23 •24
 
 0'20 '21 '22
 
 •23 -24
 
 0•25 '26 '27 '28 '29
 
 0'25 •26
 
 •0014
 
 •0123
 
 •0526
 
 '29
 
 •0011
 
 '0097
 
 0'30
 
 0'30
 
 .31
 
 '31 '32
 
 o•0008 .0006 •0004
 
 '33 '34
 
 •0003
 
 '32 '33 '34
 
 '9999
 
 .36 '37 '38 '39
 
 0.9999 .9998 '9998 '9997 '9995
 
 0.40 'V
 
 0-35
 
 4
 
 5
 
 6
 
 0 '9994
 
 '9973 .9926
 
 0 '9997
 
 '9990
 
 0 '9999
 
 0.9245 •885o •8390 .7879 '7334
 
 0.9841 '9710 '9529 •9294 -9007
 
 0.9974 '9944 '9893 .9817 .9710
 
 0.9997 '9991 •9981 .9962 '9932
 
 0.6769 •6198
 
 '2084
 
 •5080 '4550
 
 0.8670 •8290 .7873 '7427 .6959
 
 0.9568 '9390 .9173 •8917 •8625
 
 0.9887 .9825 '9740 -9630 '9493
 
 0.9976 '9959 '9933 .9897 .9847
 
 0.0388
 
 0.1756
 
 0-4049
 
 0.6477
 
 -0306
 
 •1471
 
 •3580
 
 '5990
 
 •0241
 
 •1227
 
 '3146
 
 •5504
 
 •o189 -0148
 
 •1018
 
 •2748
 
 •5026
 
 '0841
 
 '2386
 
 •4561
 
 0.8298 '7941 '7557 •7151 .6729
 
 0.9327 .9130 .8902 -8644 .8357
 
 0.9781 -9696 '9591 '9463 '9311
 
 0'0115 •0090 •0069
 
 0'0692 '0566 •0461
 
 0'2061 •1770 •1512
 
 04114
 
 •0054
 
 .0374
 
 •1284
 
 -2915
 
 0.6296 •5858 '5420 .4986
 
 0.8042 •7703 '7343 •6965
 
 '0041
 
 '0302
 
 '1085
 
 '2569
 
 '4561
 
 '6573
 
 0.9133 -8929 .8699 '8443 •8162
 
 0'0032 '0024 •0018
 
 0'0243 •0195 •0155
 
 0'0913 '0763 •o635
 
 0'2252
 
 0'4148
 
 0'6172
 
 0•7858
 
 '0433
 
 •1962 •1700 •1466 •1256
 
 •3752 '3375 •3019 •2,685
 
 .5765 '5357 '4952 '4553
 
 '7533 •7190 •6831 •6460
 
 0.0076 •oo6o •0047
 
 0.0355 •0289 •0235
 
 0.1071 •0908 •0765
 
 0.2375 •2089 •1827
 
 0.4164 •3787 .3426
 
 0.6080 -5695 •5307
 
 '0036 '0028
 
 '0189
 
 •3083
 
 '4921
 
 •0152
 
 '0642 '0535
 
 '1589
 
 '0002
 
 -1374
 
 .2758
 
 '4540
 
 0.35
 
 0'0002
 
 0'0021
 
 0'0121
 
 0.0444
 
 •0001
 
 •0016
 
 -0096
 
 -0366
 
 0.1182 •101 z
 
 0'2454
 
 •36
 
 0.4166 •3803
 
 •27 •28
 
 0 '9999
 
 3
 
 '3376 •2891
 
 •5631
 
 -3690 '3289
 
 •2171
 
 0'9999
 
 '9997 '9994 .9987
 
 '37
 
 •000 I
 
 •0012
 
 •0076
 
 '0300
 
 '0859
 
 •1 9 10
 
 . 3453
 
 •38
 
 •0001
 
 •0009
 
 •oo6o
 
 •0245
 
 •0726
 
 •1671
 
 0 '9999
 
 '39
 
 •0001
 
 '0007
 
 •0047
 
 •0198
 
 '0610
 
 '1453
 
 •3118 •2800
 
 0 '9994
 
 0'9999
 
 0'40
 
 0'0005
 
 0'0036
 
 0.1256
 
 '41
 
 •0004 •0003
 
 -0028 -0021
 
 •0423 '0349
 
 1079
 
 '43 '44
 
 '9999 '9998 '9997 '9996
 
 o•o16o -0128
 
 0.0510
 
 '9991 '9988 '9984 '9979
 
 0 '9999
 
 0.45
 
 0.9972
 
 0'9995
 
 '46 '47 '48 '49
 
 '9964
 
 '9954 '9940 '9924
 
 '9993 '9990 '9987 '9983
 
 0.50
 
 0.9904
 
 0'9978
 
 0 '9996
 
 . 42
 
 42
 
 '0783
 
 •oo63
 
 .0286 •0233
 
 •0660
 
 0.2500 2220 21925 1959 -1719 •1499
 
 0.0009
 
 0.0049
 
 0.0189
 
 0.0553
 
 0.1299
 
 '0007 '0005
 
 '0152 •0121 •0096 '0076
 
 '0461 •0381 •0313 '0255
 
 •I I I 9 '0958 'o688
 
 0.0059
 
 0.0207
 
 0.0577
 
 •0102
 
 .0080
 
 '44
 
 '0002 0002
 
 0012
 
 0 '9999
 
 0'45
 
 0.000!
 
 '9999 '9999 '9998 '9997
 
 '46
 
 •0001
 
 '47
 
 •000I
 
 43
 
 '49
 
 •0004 •0003
 
 '0038 •0029 •0023 . 0017
 
 0'50
 
 0.0002
 
 0.0013
 
 •48
 
 See page 4 for explanation of the use of this table. 22
 
 .0922
 
 •0814
 
 TABLE 1. THE BINOMIAL DISTRIBUTION FUNCTION n - 20 p=
 
 r = 7
 
 8
 
 9
 
 I0
 
 I1
 
 0.9999 '9999 .9998 '9996
 
 0 '9999
 
 12
 
 13
 
 14
 
 15
 
 16
 
 0.01 '02 •03 '04
 
 0.05 •o6 .07 •o8 '09
 
 0.9999 '9998
 
 0. 10 •II •I2
 
 0.9996
 
 •13 •14
 
 '9976 .9962
 
 0' 15
 
 0.9941
 
 .16 '17 •18 '19
 
 .9912
 
 '9992 '9986
 
 0.9999 .9999 .9998 *9995 '9992
 
 0 '9999
 
 '9999
 
 '9759
 
 0'9987 .9979 '9967 .9951 '9929
 
 0'9998 .9996 '9993 -9989 '9983
 
 0'20 •2I
 
 0.9679
 
 0.9900
 
 0 '9974
 
 •9862
 
 '22
 
 '23 •24
 
 *9464 '9325 •9165
 
 '9814 '9754 -9680
 
 •9962 *9946 *9925 '9897
 
 0.9994 '9991 '9987 •9981 '9972
 
 0 '9999
 
 '9581
 
 '9998 '9997 .9996 '9994
 
 0.9999 '9999
 
 0'25 '26
 
 0.8982 '8775
 
 .27 •28 -29
 
 '8 545 •8293 '8018
 
 0.9591 '9485 '9360
 
 0.9861 '9817 .9762 '9695 •9615
 
 0.9961 '9945 .9926 .9900 •9868
 
 0.9991 '9986 .9981 .9973 •9962
 
 0.9998 '9997 *9996 '9994 '9991
 
 0'9999
 
 0'30
 
 0.7723 -7409
 
 0.8867 •866o
 
 0'9987
 
 0 '9997
 
 •6732 •6376
 
 -8182 •7913
 
 '9909 -9881 '9846
 
 -9982 '9975 •9966 '9955
 
 '9996 '9994 '9992 '9989
 
 0 '9999
 
 '8432
 
 0.9829 .9780 *9721 '9650 .9566
 
 0 '9949 .9931
 
 '7078
 
 0.9520 .9409 '9281 .9134 •8968
 
 0.35 '36 -37 •38 '39
 
 0•6oio '5639 .5265 -4892 '4522
 
 0.7624 '7317 '6995 •6659 '6312
 
 o•8782 '8576 '8350 •8103 '7837
 
 0.9468 '9355 '9225 •9077 '8910
 
 0.9804 '9753 '9692 •9619 '9534
 
 0.9940 '9921 '9898 •9868 *9833
 
 0.9985 '9979 '9972 .9963 '9951
 
 0 '9997
 
 '9996 '9994 '9991 '9988
 
 0'9999
 
 0.40 '41 '42 '43 '44
 
 0.4159 '3804 '3461 '31 32 '2817
 
 0.5956 '5594 '5229 '4864 •4501
 
 0 '7553
 
 0'8725 .852o '8295 •8o5i •7788
 
 0 '9435
 
 0'9984
 
 0'9997
 
 '9321 '9190 •9042 •8877
 
 0'9790 .9738 .9676 •9603 '9518
 
 0 '9935
 
 '7252 '6936 '6606 •6264
 
 •9916 '9893 •9864 •9828
 
 '9978 '9971 .9962 '9950
 
 '9996 '9994 .9992 '9989
 
 0 '9999
 
 0.45 '46 '47 48 '49
 
 0.2520 '2241 '1 980 '1739 '1518
 
 0.4143 *3793 •3454 '3127 •2814
 
 0.5914 '5557 '5196 '4834 '4475
 
 0.7507 *7209 •6896 •6568 *6229
 
 0.8692 . 8489 -8266 •8o23 •7762
 
 0'9420 - 9306 '9177 •9031 •8867
 
 0'9786 '9735 .9674 '9603 '9520
 
 0 '9936
 
 0 '9985
 
 0 '9997
 
 '9917 '9895 •9867 '9834
 
 '9980 '9973 '9965 '9954
 
 '9996 '9995 '9993 *9990
 
 0 '9999
 
 0'50
 
 0'1316
 
 0.2517
 
 0.4119
 
 o'5881
 
 0.7483
 
 0.8684
 
 0.9423
 
 0 '9793
 
 0 '9941
 
 0'9987
 
 0 '9998
 
 .31 .32 '33 '34
 
 '9873 -9823
 
 '9216
 
 •9052
 
 '9999 '9998
 
 '9999 '9999 '9998
 
 See page 4 for explanation of the use of this table. 23
 
 '9999 '9998 '9998
 
 '9999 .9999 '9998
 
 '9999 '9999 '9999
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION r=
 
 0
 
 I
 
 3
 
 4
 
 5
 
 6 The function tabulated is
 
 0'00 '02 •04
 
 1'0000 0'9802
 
 •06 •o8
 
 0.9418 0•9231
 
 .9992 -9983 •9970
 
 0.10
 
 0.9048
 
 0 '9953
 
 •12
 
 '8869
 
 •14 •x6 •x8
 
 '8694 •8521 .8353
 
 '9934 '9911 •9885 .9856
 
 0'20 '22
 
 0.8187
 
 0.9825
 
 '8025
 
 '9791
 
 •24
 
 •7866
 
 0.9608
 
 2
 
 0'9998
 
 F(r
 
 for r = o, I, 2, ... and ft < 2o. If R is a random variable with a Poisson distribution with mean it, F(r1/1) is the r; that is, probability that R
 
 0 '9999
 
 0.9998 '9997 '9996 '9994 '9992
 
 r} = F(rl,u).
 
 Pr {R Note that Pr {R r} =
 
 =I
 
 '26
 
 '7711
 
 '28
 
 .7558
 
 '9754 .9715 '9674
 
 0'30
 
 0.7408
 
 0.9631
 
 •32 '34 .36 -38
 
 '7261
 
 *9585
 
 '7118 .6977 .6839
 
 '9538 '9488 '9437
 
 0.9989 .9985 .9981 -9976 '9970
 
 0'9999
 
 0.9964 .9957 '9949 '9940 '9931
 
 0 '9997
 
 '9999 '9999 '9998 '9998
 
 -
 
 F(r
 
 F(r1/1)- Ffr -
 
 -
 
 r - I} ilp).
 
 =
 
 r!
 
 Linear interpolation in is is satisfactory over much of the table, but there are places where quadratic inter-
 
 .9997 '9996 '9995 '9994
 
 polation is necessary for high accuracy. Even quadratic interpolation may be unsatisfactory when r = o or I and
 
 a direct calculation is to be preferred: F(olp) = e1 and
 
 F(il#) =
 
 0.6703 .6570 '6440 '6313 •6188
 
 0'9384 .9330 '9274 •9217 •9158
 
 0.9921 •9910 •9898 .9885 '9871
 
 0.9992 '9991 '9989 '9987 '9985
 
 0.9999 '9999 '9999 '9999 '9999
 
 0'50
 
 '52
 
 o•6o65 '5945
 
 '54
 
 '5827
 
 -56
 
 .5712
 
 -58
 
 '5599
 
 0.9098 '9037 '8974 •8911 '8846
 
 0.9856 '9841 '9824 *9807 '9788
 
 0.9982 '9980 '9977 '9974 '9970
 
 0.9998 '9998 .9998 '9997 '9997
 
 o•6o •62 .64 -66 -68
 
 0.5488
 
 0.8781 '8715 '8648
 
 0.9769 '9749 '9727
 
 -8580 .851r
 
 •9705
 
 0-9966 .9962 '9958 '9953 '9948
 
 0.9996 .9995 '9995 '9994 '9993
 
 0•70 •72
 
 0.4966
 
 •9682
 
 Pr {R
 
 equal to
 
 0.40 .42 '44 '46 '48
 
 '5273 •5169 •5o66
 
 -
 
 The probability of exactly r occurrences, Pr {R = r}, is
 
 +p). R is approximately normally distributed with mean it and variance p; hence, including 4 for For # >
 
 .5379
 
 li:
 
 =t
 
 20,
 
 continuity, we have F(rlis)
 
 Co(s)
 
 where s = (r+4 p)Alp and 0(s) is the normal distribution function (see Table 4). The approximation can usually be improved by using the formula -
 
 F(rip)
 
 0:10(s) -
 
 I 2rt
 
 e-"I
 
 (s2 - I) (s5 -7s2 +6s)1
 
 6,/,7
 
 72#
 
 For certain values of r and > 20 use may be made of the following relation between the Poisson and X2distributions : F(rlit) = I -F2(r+i) (210
 
 0'9999
 
 where Fv(x) is the x2-distribution function (see Table 7). Omitted entries to the left and right of tabulated values
 
 '9999 '9999
 
 are o and I respectively, to four decimal places.
 
 '74
 
 '4771
 
 .76 •78
 
 .4677
 
 .4584
 
 0•8442 •8372 •83o2 '8231 .8160
 
 o•8o - 82 .84
 
 0.4493 '4404 .4317
 
 o•8o88 •8o16 '7943
 
 0.9526 '9497 '9467
 
 -86 -88
 
 .4232 -4148
 
 .7871
 
 .9436
 
 '7798
 
 '9404
 
 0•90
 
 0.4066
 
 '92
 
 '3985
 
 0.7725 '7652
 
 0-9371 '9338
 
 '94
 
 '3906
 
 '7578
 
 '9304
 
 '96
 
 '3829
 
 '98
 
 '3753
 
 '7505 '7431
 
 roo
 
 0.3679
 
 0-7358
 
 '4868
 
 j•
 
 0'9659 0'9942 0'9992 0 '9999 '9634 '9991 '9999 '9937 -9608 .9930 '9990 '9999 '9582 '9924 '9989 '9999 '9998 '9917 '9554 '9987 0.9909 '9901 '9893 '9884 '9875
 
 0.9986 '9984 '9983 '9981 '9979
 
 0.9998 .9998 '9998 '9997 '9997
 
 0'9977 '9974 '9972 '9969 .9966
 
 0'9997
 
 '9269 . 9233
 
 0-9865 '9855 '9845 '9834 .9822
 
 0.9197
 
 0.9810
 
 0.9963
 
 0'9994
 
 '9996 '9996 '9995 '9995
 
 0'9999
 
 '9999 '9999 0 '9999
 
 24
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION ii
 
 r
 
 =
 
 0
 
 I
 
 2
 
 3
 
 4
 
 5
 
 6
 
 0.9197 '9103 '9004 •8901 '8795
 
 0.9810 '9778 '9743 •9704 .9662
 
 0.9963 '9955 '9946 .9935 '9923
 
 0 '9994
 
 0'9999
 
 '9992 '9990 .9988 '9985
 
 '9999 '9999 .9998 *9997
 
 0.9617 .9569 '9518 '9463 '9405
 
 0'9909 .9893 .9876 '9857 '9837
 
 0'9982 '9978 '9973 '9968 '9962
 
 0 '9997
 
 •6092 '59 x 8 '5747
 
 0.8685 •8571 •8454 '8335 '8213
 
 '9996 '9995 '9994 '9992
 
 0.9999 '9999 '9999 '9999
 
 0 '9955
 
 0'9991 .9989 '9987 *9984 '9981
 
 0 '9998
 
 '9948 '9940 '9930 '9920
 
 8
 
 7
 
 9
 
 10
 
 II
 
 I t.
 
 r = 12
 
 3'40
 
 0'9999
 
 '45
 
 '9999
 
 3.50
 
 0-9999
 
 1.00 '05 •xo •15
 
 0.3679 '3499 -3329 •3166
 
 0.7358 *7174 •6990 •6808
 
 '20
 
 '3012
 
 '6626
 
 1.25 -30 '35 '40 '45
 
 o'2865
 
 0.6446
 
 '2725 .2592
 
 '6268
 
 1.50 '55 •60 •65 •70
 
 0.2231 •2422 •2019 •1920 •1827
 
 0.5578
 
 0.8088
 
 '5412
 
 '7962
 
 0 '9344 '9279
 
 •5249
 
 *7834 .7704 . 7572
 
 '9212 *9141 •9068
 
 0.9814 '9790 '9763 '9735 '9704
 
 1.75 -8o .85 '90 '95
 
 0.1738 •1653 -1572 '1496 '1423
 
 0 '4779
 
 0'7440 •7306 .7172 '7037 •6902
 
 0.8992 -8913 .883 x '8747 •866o
 
 0.9671 *9636 '9599 '9559 •9517
 
 0.9909 *9896 '9883 '9868 '9852
 
 0.9978 '9974 '9970 '9966 .9960
 
 0 '9995
 
 0 '9999
 
 •4628 .4481 '4337 •4197
 
 '9994 '9993 '9992 .9991
 
 '9999 '9999 '9998 .9998
 
 2'00
 
 0.1353 •1287 •1225 •1165 •x 108
 
 0.4060 •3926 '3796 .3669 .3546
 
 0.6767 •6631 •6496 •6361 •6227
 
 0.8571 •848o •8386 *8291 •8194
 
 0 '9473
 
 0'9989 '9987 '9985 '9983 '9980
 
 0'9998
 
 •9427 '9379 *9328 '9275
 
 0'9834 - 9816 '9796 '9774 '9751
 
 0'9955
 
 •05 •10 •15 •20
 
 '9997 '9997 '9996 '9995
 
 0 '9999
 
 2'25
 
 0'1054
 
 0.61293 '5960 •5828 '5697 .5567
 
 0.8094 '7993 •7891 '7787 •7682
 
 0.9220 '9162 •9103 '9041 •8978
 
 0.9726 •9700 '9673 '9643 •9612
 
 0.9916 •9906 *9896 '9884
 
 0 '9994
 
 0 '9999
 
 •1003 '0954 '0907 •0863
 
 0.3425 *3309 '3195 '3084 -2977
 
 0'9977
 
 •30 '35 '40 •45
 
 '9974 '9971 '9967
 
 '9872
 
 '9962
 
 '9994 '9993 '9991 '9990
 
 '9999 .9998 .9998 .9998
 
 2'50
 
 o.o821 '0781 •0743 .0707 •0672
 
 o•z873 '2772 .2674 '2579 '2487
 
 0'5438 '5311 .5184 '5060 '4936
 
 0.7576 '7468 . 7360 •7251 .7141
 
 o'8912 '8844 '8774 '8703 •8629
 
 0.9580 '9546 '9510 '9472 '9433
 
 0.9858 '9844 '9828 •9812 '9794
 
 0.9958 '9952 '9947 .9940 '9934
 
 0.9989 '9987 *9985 .9983 '9981
 
 0'9997
 
 2.75 •8o •85 .90 '95
 
 0.0639 •0608 •o578
 
 0.2397 -2311 •2227
 
 0.4815 •4695 '4576
 
 0.7030
 
 '2146
 
 '4460
 
 •6696
 
 '0523
 
 '2067
 
 '4345
 
 '6584
 
 0'9392 '9349 '9304 '9258 '9210
 
 0'9776 '9756 '9735 '9713 '9689
 
 0.9927 '9919 '9910 .9901 '9891
 
 0.9978 '9976 '9973 .9969 '9966
 
 0 '9994
 
 '0550
 
 0.8554 '8477 •8398 •8318 '8236
 
 '9993 '9992 '9991 '9990
 
 0'9999 '9998 '9998 '9998 '9997
 
 3'00
 
 0.1991 •1918 •1847 . 1778 '1712
 
 0.4232 •4121 •4012 -3904 '3799
 
 0.6472 •6360 •6248 '6137 '6025
 
 o'8153 •8o68 '7982 . 7895 •7806
 
 0.9161 •9110 '9057 '9002 .8946
 
 0.9665 •9639 '9612 '9584 '9554
 
 0.9881 '9870 '9858 '9845 '9832
 
 0.9962 '9958 '9953 '9948 '9943
 
 0.9989 '9988 '9986 '9984 '9982
 
 0'9997 '9997 '9996 '9996 '9995
 
 0'9999
 
 .15 •20
 
 0.0498 .0474 •0450 '0429 •0408
 
 3.25 '30 '35 '40 '45
 
 0.0388 -0369 '035 1 '0334 '0317
 
 0.1648 •1586 •1526 '1468 '1413
 
 0.3696 '3594 '3495 '3397 '3302
 
 0.5914 '5803 '5693 '5584 '5475
 
 0.7717 •7626 '7534 '7442 '7349
 
 0.8888 '8829 '8768 '8705 '8642
 
 0.9523 '9490 '9457 '9421 '9385
 
 0.9817 •9802
 
 0 '9937
 
 '9786 '9769 '9751
 
 0.9980 '9978 '9976 '9973 '9970
 
 0 '9994 '9994 '9993 '9992 '9991
 
 0 '9999
 
 .9931 '9924 '9917 '9909
 
 3'50
 
 0.0302
 
 0.1359
 
 0.3208
 
 0.5366
 
 0.7254
 
 0.8576
 
 0 '9347
 
 0 '9733
 
 0'9901
 
 0'9967
 
 0.9990
 
 0 '9997
 
 '55 •6o .65 .70
 
 '05 •10
 
 '2466 '2346
 
 •5089
 
 .4932
 
 .6919
 
 •68o8
 
 '9948 '9941 '9934 '9925
 
 .9998 '9997 '9997 '9996
 
 0 '9999
 
 '9999
 
 See page 24 for explanation of the use of this table.
 
 25
 
 '9999 '9999 '9999
 
 '9997 '9996 '9996 '9995
 
 0.9999 0'9999 '9999 '9999 '9999 '9999
 
 0 '9999
 
 '9999
 
 '9999 '9999 '9999 '9999
 
 '9998 '9998 '9998 '9997
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION IL
 
 r
 
 = 0
 
 /
 
 2
 
 3
 
 4
 
 5
 
 6
 
 7
 
 8
 
 9
 
 10
 
 0.3208 •3117
 
 0.5366 •5259
 
 0.7254 •7160
 
 0'8576 •8509
 
 0 '9347
 
 0 '9733
 
 •9308
 
 .9713
 
 0'9901 .9893
 
 0.9967 •9963
 
 0.9990 -9989
 
 3.50 .55 •6o .65 •7o
 
 0'0302
 
 0'1359
 
 •0287 •0273 •0260 •0247
 
 •1307 •1257
 
 •3027
 
 •5152
 
 '7064
 
 '8441
 
 '9267
 
 '9692
 
 '9883
 
 '9960
 
 '9987
 
 •1209 •ii62
 
 '2940 •2854
 
 •5046 '4942
 
 .6969 .6872
 
 .8372 •8301
 
 .9225 •9182
 
 .9670 •9648
 
 .9873 •9863
 
 '9956 '9952
 
 •9986 '9984
 
 3'75 •8o
 
 0 ' 0235
 
 0'2771 '2689 '2609 '2531
 
 0'4838
 
 0.6775 •6678 •6581 •6484 .6386
 
 0•8229 •8156 •8o81 •8006 .7929
 
 0.9I37 .9091 '9044 .8995 .8945
 
 0.9624 '9599 '9573 '9546 .9518
 
 0.9852 '9840 •9828 -9815 -9801
 
 0'9947
 
 '9942 '9937 '9931 .9925
 
 0.9983 •9981 '9979 '9977 '9974
 
 0•7851 '7773 •7693 •7613 '7531
 
 0.8893 .8841 .8786 •8731 .8675
 
 0'9489 '9458 '9427 '9394 .9361
 
 0'9786 '9771 '9755 '9738 '9721
 
 0.9919 .9912 .9905 .9897 .9889
 
 0.9972 .9969 .9966 .9963 '9959
 
 0.8617 .8558
 
 0.9702 .9683 •9663 .9642 .9620
 
 0.9880 .9871 •9861 .9851 .9840
 
 0.9956 '9952 '9948 '9943 '9938
 
 •85
 
 •0213
 
 •90 .95
 
 '0202
 
 0•I I17 •1074 •1032 •0992
 
 .0193
 
 .0953
 
 - 2455
 
 4'00
 
 o.o183 - 0174 •o166 •0158
 
 0.0916 •42880 - o845 •0812
 
 0.2381 •2309 •2238 •2169
 
 0'4335
 
 •05 •zo •15 '20
 
 '0150
 
 '0780
 
 •2102
 
 .3954
 
 o•6288 •6191 •6093 '5996 .5898
 
 4'25 •30 •35 '40 '45
 
 0 '0143 '0136
 
 0 '0749
 
 0.2037 •1974
 
 0.3862 '3772
 
 0.5801 '5704
 
 0'7449
 
 •1912 •1851
 
 '3682
 
 •5608
 
 •7283
 
 '8498
 
 .3594
 
 •0117
 
 '0663 '0636
 
 •1793
 
 '3508
 
 '5512 '5416
 
 •7199 .7114
 
 •8436 '8374
 
 0.9326 •9290 '9253 -9214 '9175
 
 4'50 •55 •6o •65 .70
 
 0.01 11 •0'06 .0 1 0 1 •0096 •0091
 
 o.o6 i 1 •0586 -0563 '0540 -o51/3
 
 0.1736 -1680 •i626 '1574 .1523
 
 0.3423 '3339 •3257 •3176 •3097
 
 0.5321 •5226 .5132 .5039 '4946
 
 0.7029 .6944 •6858 •6771 •6684
 
 0.831! •8246 •8180 •8114 •8o46
 
 0.9134 .9092 '9049 -9005 •896o
 
 0'9597
 
 0'9829 .9817 .9805 '9792 '9778
 
 0 '9933
 
 '9574 '9549 '9524 '9497
 
 4'75 •8o -85 -90 -95
 
 0•0087 •008z •0078 •0074
 
 0.0497 '0477 '0458 '0439
 
 0.1473 '1425 •1379 '1333
 
 0.3019 '2942 •2867 .2793
 
 0.4854 '4763 •4672 '4582
 
 '0071
 
 '0421
 
 •1289
 
 •2721
 
 '4493
 
 0'6597 •6510 •6423 '6335 .6247
 
 0.7978 •7908 -7838 .7767 .7695
 
 0-8914 •8867 •8818 -8769 .8718
 
 0.9470 '9442 '9413 .9382 '9351
 
 0.9764 '9749 '9733 .9717 •9699
 
 0.9903 .9896 •9888 •9880 .9872
 
 5.00 •05 •zo •z5
 
 0•oo67
 
 0.0404
 
 •0064
 
 '0388
 
 •oo61 •0058
 
 •0372 -0357
 
 0.1247 •1205 •1165 -1126
 
 0.2650 •2581 .2513 '2446
 
 0.4405 '4318 '4231 .4146
 
 0.616o •6072 '5984 '5897
 
 0.7622 '7548 '7474 •7399
 
 '20
 
 '0055
 
 '0342
 
 •I088
 
 '2381
 
 '4061
 
 '5809
 
 •7324
 
 0.8666 •8614 •856o -8505 '8449
 
 0.9319 •9286 .9252 •9217 •9181
 
 0.9682 •9663 . 9644 •9624 •9603
 
 0.9863 . 9854 '9844 '9834 •9823
 
 5'25
 
 0'0052
 
 0'0328
 
 0'1051
 
 0'2317
 
 0.3978
 
 0'5722
 
 0'7248
 
 •30 '35 •40 '45
 
 '0050
 
 •0314 •0302 •0289 -0277
 
 -ior6 •0981 . 0948 •0915
 
 -2254 •2193 -2133 - 2074
 
 '3895 . 3814 •3733 '3654
 
 •5635 '5548 '5461 '5375
 
 '7171 '7094 •7017 •6939
 
 0.8392 -8335 •8276 •8217 -8156
 
 0'9144 •9106 .9067 •9027 •8986
 
 0.9582 .9559 .9536 .9512 .9488
 
 0.9812 •9800 •9788 '9775 .9761
 
 5'50 .55 •6o •65
 
 0'0041
 
 0'0266 '0255
 
 0'0884 '0853
 
 0'2017 '1961
 
 •70
 
 '0033
 
 •1906 -1853 •z 800
 
 0.6860 •6782 '6703 '6623 '6544
 
 0.8095 •8033 '7970 •7906 '7841
 
 -89o1 '8857 •8812 •8766
 
 0.9462 '9436 '9409 •9381 .9352
 
 0.9747
 
 •0824 '0795 •0768
 
 0.5289 '5204 .5119 '5034 .4950
 
 0 '8944
 
 •0244 •0234 -0224
 
 0. 3575 '3498 '3422 '3346 .3272
 
 5'75 •8o •85 •90 •95
 
 0.0°32
 
 0.0215
 
 0'0741
 
 0'1749
 
 0.3199
 
 0.4866
 
 •0030 •0029
 
 '0206
 
 '0715
 
 •1700
 
 •3127
 
 •4783
 
 •0197
 
 '0027
 
 '0189
 
 •0026
 
 •0181
 
 •0690 •o666 -0642
 
 •1651 •1604 •1557
 
 •3056 •2987 .2918
 
 '4701 '4619 '4537
 
 0.6464 •6384 •6304 •6224 . 6143
 
 0.7776 •7710 •7644 '7576 -7508
 
 0.8719 •8672 •8623 .8574 •8524
 
 0.9322 •9292 •9260 •9228 '9195
 
 0.9669 •9651 •9633 •9614 '9594
 
 6•oo
 
 0.0025
 
 0.0174
 
 o.o620
 
 0.1512
 
 0.2851
 
 0'4457
 
 0.6063
 
 0.7440
 
 0.8472
 
 0.9161
 
 0 '9574
 
 •0224
 
 •0129 '0123
 
 '0047 •0045 '0043
 
 •0039 •0037 •0035
 
 .0719 -0691
 
 '41735 '4633
 
 '4532 '4433
 
 '4238 .4142 '4047
 
 '7367
 
 See page 24 for explanation of the use of this table.
 
 26
 
 -9928 .9922 •9916 •9910
 
 '9733 .9718 •9702 •9686
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION = II
 
 12
 
 3.50 '55 '6o •65 .70
 
 0.9997 '9997 '9996 '9996 '9995
 
 0 '9999
 
 3'75 •8o •85 •90 '95
 
 0 '9995
 
 '9994 '9993 '9993 '9992
 
 4'00
 
 0.9991 '9990 '9989 -9988 '9986
 
 4'25 .30 '35 '40 '45 4•50 '55 -6o .65 .70
 
 0.9976 '9974 '9971 '9969
 
 4.75 '8o '85
 
 0 '9963
 
 x3
 
 x4
 
 x5
 
 x6
 
 17
 
 = 0
 
 I
 
 2
 
 6'0 'I '2
 
 0'0025
 
 0'0174
 
 0'0620
 
 '0022
 
 '0159
 
 '0577
 
 '0020
 
 '0146
 
 '0536
 
 •3 •4
 
 •0018
 
 '0134
 
 •0017
 
 '0123
 
 •0498 '0463
 
 0 '9999
 
 6'5
 
 0'0015
 
 0'0113
 
 0'0430
 
 '9998 '9998 '9998 '9998
 
 '0014
 
 '0103
 
 '0400
 
 •0012
 
 '0095
 
 '0371
 
 '9999 '9999
 
 •6 •7 •8 '9
 
 0 '9997
 
 0'9999
 
 '9997 '9997 '9996 '9996
 
 '9999 '9999 '9999 '9999
 
 0 '9985
 
 0 '9995
 
 0 '9999
 
 '9983
 
 '9995 '9994 '9993 '9993
 
 '9998 '9998 '9998 '9998
 
 0.9992 '9991 '9990 .9989 '9988
 
 '9999 '9999 '9999 '9999
 
 0'9999
 
 '0011
 
 '0087
 
 '0344
 
 •oolo
 
 •oo8o
 
 •0320
 
 7.0
 
 0'0009
 
 0'0073
 
 0'0296
 
 'I
 
 •0008
 
 •0067
 
 •0275
 
 '2
 
 '0007
 
 '0061
 
 '0255
 
 •3 •4
 
 '0007
 
 '0056
 
 '0236
 
 •0006
 
 •0051
 
 •0219
 
 0.0006
 
 0.0047
 
 0.0203
 
 '0005
 
 •0043
 
 '0188
 
 '0005
 
 '0039
 
 •0174
 
 '9999 '9999
 
 7.5 •6 .7 •8 •9
 
 '0004
 
 '0036
 
 •0004
 
 •0033
 
 •0161 •0149
 
 0'9997
 
 0 '9999
 
 8•o
 
 0'0003
 
 0'0030
 
 0'0138
 
 '9997 '9997 '9997 '9996
 
 '9999 '9999 '9999 '9999
 
 •I '2
 
 '0003
 
 •0028
 
 •0127
 
 '0003
 
 •0025
 
 '0118
 
 •3 .4
 
 '0002
 
 '0023
 
 '0109
 
 '0002
 
 '0021
 
 '0100
 
 0.9987 '9986 .9984 .9983 '9981
 
 0.9996 '9995 '9995 '9994 '9994
 
 0-9999 '9999 '9998 '9998 '9998
 
 8'5
 
 0'0002
 
 0'0019
 
 '0002
 
 •0018
 
 0.0093 •0086
 
 '0002
 
 '0016
 
 '0079
 
 '0002
 
 '0015
 
 '0073
 
 '9999
 
 •6 .7 •8 •9
 
 '000I
 
 '0014
 
 •0068
 
 0.9993 '9992 '9992 '9991 '9990
 
 0.9998 '9997 '9997 '9997 '9997
 
 0 '9999
 
 9.0
 
 o-000i
 
 0'0012
 
 o.0062
 
 '9999 '9999 '9999 '9999
 
 'I
 
 '0001
 
 '0011
 
 '0058
 
 '2
 
 '0001
 
 '0010
 
 '9932 '9927
 
 0.9980 '9978 '9976 '9974 .9972
 
 '3 '4
 
 '000!
 
 '0009
 
 ' 00 53 '0049
 
 '000!
 
 '0009
 
 '0045
 
 5.25 •30 '35 '40 '45
 
 0'9922
 
 0'9970
 
 0•9989
 
 0'9996
 
 0'0042
 
 '9988 '9987 '9986 '9984
 
 '9996 '9995 '9995 '9995
 
 '000I
 
 '0007
 
 '0038
 
 '0001
 
 '0007
 
 '0035
 
 •000r •0001
 
 -0006
 
 •0033
 
 '9999
 
 9'5 •6 '7 •8 •9
 
 0'0008
 
 '9967 '9964 .9962 '9959
 
 0'9999 '9999 '9999 '9998 '9998
 
 o'000z
 
 '9916 '9910 '9904 '9897
 
 '0005
 
 '0030
 
 5•50 '55 •6o -65
 
 0.9955 '9952 '9949 '9945 '9941
 
 0 '9983
 
 0 '9994
 
 0 '9998
 
 0 '9999
 
 I0•0
 
 0'0005
 
 0'0028
 
 -9982 '9980 '9979 '9977
 
 '9993 '9993 '9992 '9991
 
 '9998 '9998 '9997 '9997
 
 '9999 '9999 '9999 '9999
 
 '0005
 
 '0026
 
 '2
 
 '0004
 
 '0023
 
 '3 '4
 
 •0004
 
 '0022
 
 '70
 
 0.9890 '9883 '9875 .9867 '9859
 
 '0003
 
 '0020
 
 5.75 •8o .85
 
 0.9850 '9841 '9831
 
 0 '9937
 
 0.9975 '9973 '9971 '9969 '9966
 
 0.9991 '9990 '9989 '9988 '9987
 
 0 '9997
 
 0 '9999
 
 '9996 '9996 '9996 '9995
 
 '9999 '9999 '9999 '9998
 
 0.0003 -0003 •0003
 
 0 '9999
 
 10.5 •6 .7 .8 .9
 
 •0002
 
 0.0018 •0017 •0016 •0014 •0013
 
 0'9964
 
 0 '9986
 
 0 '9995
 
 0'9998
 
 0'9999
 
 I I•0
 
 0'0002
 
 0'0012
 
 .05 •IO
 
 '15 •20
 
 '90
 
 '95 5'00
 
 '05 •10 '15 '20
 
 '9982 .9980 '9978
 
 '9966
 
 '9960 '9957 '9953 '9949 0.9945 '9941 '9937
 
 '90
 
 '9821
 
 '95
 
 '9810
 
 '9932 '9927 '9922 '9917
 
 6•oo
 
 0.9799
 
 0.9912
 
 0 '9999
 
 0 '9999
 
 0'9999
 
 See page 24 for explanation of the use of this table.
 
 27
 
 '0002
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION IL
 
 r= 3
 
 4
 
 5
 
 6
 
 8
 
 7
 
 9
 
 10
 
 II
 
 12
 
 13
 
 0.9964 '9958 '9952 '9945 '9937
 
 0 '4457
 
 0.6063
 
 0 '7440
 
 0•8472
 
 0.9161
 
 0 '9574
 
 0 '9799
 
 '4298
 
 •5902
 
 '7301
 
 '8367
 
 '9090
 
 '9531
 
 '4141 .3988
 
 . 5742
 
 .3 •4
 
 '1342 .1264 .1189
 
 0'2851 '2719 '2592 -2469 '235 1
 
 •3837
 
 '5423
 
 •7160 .7017 •6873
 
 •82.59 .8148 •8033
 
 •9016 •8939 •8858
 
 •9486 •9437 .9386
 
 '9776 '9750 .9723 .9693
 
 0.9912 .9900 •9887 .9873 '9857
 
 6.5
 
 0•1118
 
 0.2237
 
 0.3690
 
 •6 .7 •8 •9
 
 •1052 •0988 •9928
 
 •2127 •2022
 
 '3547 •3406
 
 -0871
 
 •1920 •1823
 
 •3270 •3137
 
 0.5265 •5108 '4953 '4799 '4647
 
 0.6728 •6581 •6433 •6285 .6136
 
 0.7916 '7796 .7673 '7548 .7420
 
 0.8774 •8686 .8596 •8502 •8405
 
 0.9332 '9274 '9214 •9151 •9084
 
 0.9661 .9627 '9591 '9552 •9510
 
 0.9840 •9821 •9801 '9779 '9755
 
 0.9929 -9920 .9909 .9898 -9885
 
 7.0
 
 0•0818 •o767
 
 0'1730 •1641
 
 0 '5987
 
 '0719
 
 .3 .4
 
 .9674 •0632
 
 '1555 .1473
 
 ' 1395
 
 '4349 •4204 •4060 '3920
 
 •5838 •5689 '5541 '5393
 
 0.7291 -716o •7027 .6892 '6757
 
 0.8305 •82o2 •8096 '7988 .7877
 
 0.9015 .8942 •8867 •8788 '8707
 
 0 '9467
 
 •2
 
 0.3007 •2881 .2759 •2640 .2526
 
 0 '4497
 
 •1
 
 0.9730 .9703 .9673 •9642 •9609
 
 0.9872 .9857 '9841 •9824 •9805
 
 7'5 •6 .7 •8
 
 0'1321
 
 0. 2414
 
 •2307
 
 •1181
 
 o.66zo •6482 .6343 •62o4 •6o65
 
 0.7764 .7649 '7531 '7411 •7290
 
 0•8622 .8535 .8445 •8352 •8257
 
 0.9208 '9148 .9085 •9020 •8952
 
 0'9573
 
 •1249
 
 '9
 
 0'0591 .0554 •0518 •9485 '0453
 
 '9536 '9496 '9454 '9409
 
 0.9784 •9762 '9739 '9714 •9687
 
 8.43
 
 0'5925
 
 0.7166
 
 0'8159
 
 'I
 
 .5786 .5647 •5507 '5369
 
 -7041 '6915 •6788 -6659
 
 •8058 '7955 •7850 '7743
 
 0.8881 •8807 .8731 •8652 .8571
 
 0.9362 •9313 •9261 •9207 .9150
 
 0.9658 •9628 '9595 -9561 '9524
 
 0.5231 •5094 '4958 •4823 .4689
 
 0.6530 •6400 •6269 .6137 •6006
 
 0.7634 •7522 '7409 -7294 •7178
 
 0.8487 -8400 -8311 •82.20 •8126
 
 0.9091 •9029 .8965 •8898 •8829
 
 0.9486 '9445 '9403 '9358 •93"
 
 6•o
 
 0'1512
 
 •I
 
 *1425
 
 '2
 
 •5582
 
 -2203
 
 0.3782 •3646 '3514
 
 •1117
 
 •2103
 
 •3384
 
 •1055
 
 •2006
 
 '3257
 
 0.5246 •5100 '4956 •4812 '4670
 
 0.0424
 
 0'0996
 
 •0396
 
 *0940
 
 O'1912 '1822
 
 01134 •3013
 
 0'4530 '4391
 
 '4254 •4119 '3987
 
 .9420 '9371 '9319 •9265
 
 -2
 
 •0370
 
 •o887
 
 •1736
 
 -2896
 
 -3 '4
 
 .0346 '0323
 
 •9837
 
 •1653
 
 •2781
 
 '0789
 
 •1573
 
 •2670
 
 8.5 •6 -7 •8 •9
 
 0'0301 •9281 •oz62 •9244 •9228
 
 0'0744 •0701
 
 0'1496 •1422
 
 0'2562 '2457
 
 •0660
 
 -1352
 
 .2355
 
 •9621 •9584
 
 •1284
 
 '2256
 
 0.3856 •3728 •3602 •3478
 
 •1210
 
 •2160
 
 '3357
 
 TO
 
 0'0212
 
 0.0550
 
 0'1157
 
 .0517
 
 '2
 
 •0108 •0184
 
 '0486
 
 •1098 •1041
 
 •3 •4
 
 •0172 •0160
 
 '0456 .0429
 
 '0986 •0935
 
 o.2o68 •1978 •1892 •1808 •1727
 
 0.3239 •3123 •3010 •2900 '2792
 
 0 '4557
 
 •I
 
 '4426 '4296 •4168 '4042
 
 0.5874 '5742 •5611 '5479 '5349
 
 0.7060 .6941 -682o .6699 -6576
 
 0.8030 '7932 -7832 '7730 •7626
 
 0.8758 •8684 •8607 •8529 '8448
 
 0.9261 •9210 •9156 '9100 •9042
 
 9.5 •6 •7
 
 0 . 0149 -0138 '0129
 
 0.0403
 
 0'0885
 
 0'1649
 
 0:22 : 26 2844 5 898 5 7
 
 0'3918
 
 0'5218
 
 0'6453
 
 0'7520
 
 •0378
 
 •0120
 
 .0333
 
 '1574 •1502 •1433
 
 •2388
 
 •3796 •3676 '3558
 
 •5089
 
 8
 
 •0338 .0793 .0750
 
 •9
 
 -0111
 
 - 0312
 
 •07 10
 
 •1
 
 .6329 •6205 .6080 '5955
 
 .7412 -7303 •7193 •7081
 
 0.8364 •8279 •8191 •81o, •8009
 
 0.8981 •8919 •8853 •8786 -8716
 
 10•0
 
 0.0103
 
 •I
 
 0'0293 •0274
 
 0'0671 •0634
 
 '2
 
 •0096 '0089
 
 •3 •4
 
 •0083 •0077
 
 '0257 •0241
 
 0.5830 .5705 '5580 '5456 '5331
 
 0.6968 '6853 .6738 •6622 -6505
 
 0.7916 -7820 •7722 •7623 .7522
 
 0.8645 •8571 '8494 •8416 •8336
 
 10'5
 
 •6 •7 •8 •9
 
 0.6387 •6269 •6150
 
 0.7420 •7316 -7210
 
 0.8253 •8169 •8083
 
 11*0
 
 '0355
 
 366
 
 0.1301
 
 '3442
 
 '4960
 
 •4832 '4705
 
 0'2202 '2113
 
 0'3328 '3217
 
 0 '4579
 
 '1240
 
 '0599
 
 -xi8o
 
 •2027
 
 •0566
 
 •1123
 
 •1944
 
 •0225
 
 '0534
 
 •1069
 
 •1863
 
 •3108 •3001 .2896
 
 '4332 •4210 '4090
 
 0.0071 -9966 •0062 -0057 •0053
 
 0'0211
 
 0'0504
 
 0.1016
 
 0'1785
 
 0 . 2794
 
 0'3971
 
 •0197
 
 .0475
 
 •0966
 
 •1710
 
 •0185 •0173 '0162
 
 '0448 '0423 •0398
 
 '0918 '0872 •o82.8
 
 •1636 '1566
 
 •2694 '2597
 
 '3854 •3739
 
 0.5207 •5084 '4961
 
 '2502
 
 '3626
 
 •4840
 
 •6031
 
 '7104
 
 '7995
 
 '1498
 
 .2410
 
 •3515
 
 '4719
 
 '5912
 
 .6996
 
 '7905
 
 0.0049
 
 0'0151
 
 0'0375
 
 0.0786
 
 0'1432
 
 0'2320
 
 0.3405
 
 0 '4599
 
 0 '5793
 
 0.6887
 
 0.7813
 
 '4455
 
 See page 24 for explanation of the use of this table. 28
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION
 
 6•o 'I
 
 r = 14
 
 15
 
 i6
 
 17
 
 0.9986 '9984
 
 0.9995 '9994 '9993 '9992 '9990
 
 0.9998 '9998 '9997 '9997 '9996
 
 0.9999 '9999 '9999 '9999 '9999
 
 0.9996 -9995 '9994 '9993 '9992
 
 0.9998 -9998 '9998 '9997 '9997
 
 0.9999 .9999 '9999 '9999 '9999
 
 i8
 
 19
 
 20
 
 21
 
 22
 
 23
 
 24
 
 '2
 
 '9981
 
 '3 '4
 
 '9978 '9974
 
 6'5 .6 '7 '8 '9
 
 0.9970 '9966 '9961 '9956 '9950
 
 0 '9988
 
 7.0 'I
 
 0'9943 '9935 '9927 '9918 '9908
 
 0'9976 '9972 '9969 '9964 '9959
 
 0 '9990
 
 0-9996 '9996 '9995 '9994 '9993
 
 0 '9999
 
 '9989 '9987 '9985 '9983
 
 '9998 '9998 '9998 '9997
 
 0 '9999
 
 7'5 •6 '7 .8 '9
 
 0 '9897
 
 0 '9954
 
 '9948 '9941 '9934 '9926
 
 0'9980 '9978 '9974 '9971 '9967
 
 0'9992 '9991 '9989 '9988 '9986
 
 0'9997 '9996 '9996 '9995 '9994
 
 0 '9999
 
 '9886 '9873 '9859 '9844
 
 8•o 'I
 
 0'9918 '9908 '9898 '9887 '9875
 
 0'9963 '9958 '9953 '9947 '9941
 
 0'9984 .9982 '9979 '9977 '9973
 
 0'9993 '9992 '9991 '9990 '9989
 
 0 '9997
 
 0 '9999
 
 '3 '4
 
 0.9827 '9810 '9791 '9771 '9749
 
 '9997 '9997 '9996 '9995
 
 '9999 '9999 '9998 '9998
 
 8'5
 
 0 '9726
 
 0 '9934 .9926
 
 0'9987 '9985 '9983 '9981 '9978
 
 0'9995 '9994 '9993 '9992 '9991
 
 0'9998 '9998 '9997 '9997 '9996
 
 0 '9999
 
 -9701 '9675 '9647 '9617
 
 0.9862 '9848 '9832 '9816 '9798
 
 0 '9970
 
 '6 '7 .8 '9
 
 '9999 '9999 '9999 '9998
 
 0'9999
 
 9.0 -1 -2 '3 '4
 
 0.9585 '9552 '9517 '9480 '9441
 
 0*9780 '9760 '9738 '9715 '9691
 
 0.9889 '9878 '9865 '9852 '9838
 
 0 '9947 - 9941
 
 0'9976 '9973 '9969 '9966 '9962
 
 0'9989
 
 0'9996 '9995 '9994 '9993 '9992
 
 0'9998
 
 0 '9999
 
 '9988 '9986 '9985 '9983
 
 '9998 '9998 '9997 '9997
 
 '9999 '9999 '9999 '9999
 
 9'5 .6 '7 .8 '9
 
 0'9400 .9357 '9312 '9265 '9216
 
 0.9665 '9638 '9609 '9579 '9546
 
 0'9823 '9806 '9789 '9770 '9751
 
 0'9911 '9902 '9892 .9881 '9870
 
 0 '9957
 
 0'9980 '9978 '9975 '9972 '9969
 
 0.9991 '9990 '9989 '9987 '9986
 
 0 '9996
 
 0'9999
 
 '9952 '9947 .9941 '9935
 
 '9996 '9995 '9995 '9994
 
 '9998 '9998 '9998 '9997
 
 0'9999 .9999 '9999 '9999 '9999
 
 IWO
 
 0 '9513
 
 0'9857 '9844 '9830 -9815 '9799
 
 0 '9965
 
 '9921 '9913 '9904 '9895
 
 '9962 '9957 '9953 '9948
 
 0.9984 .9982 '9980 '9978 '9975
 
 0 '9993
 
 '9477 '9440 '9400 '9359
 
 0'9730 '9707 •9684 •9658 '9632
 
 0 '9928
 
 '3 '4
 
 0.9165 '9112 '9057 '9000 '8940
 
 '9992 '9991 '9990 '9989
 
 0'9997 '9997 '9996 '9996 '9995
 
 0'9999 '9999 '9998 '9998 '9998
 
 10.5 •6 '7 •8 '9
 
 0.8879 •8815 .8750 •8682 '8612
 
 0'9317 '9272 '9225 '91 77 '9126
 
 0'9604 '9574 '9543 '9511 '9477
 
 0'9781 '9763 '9744 '9723 '9701
 
 0.9885 '9874 '9863 '9850 '9837
 
 0.9942 '9936 '9930 '9923 '9915
 
 0'9972 '9969 '9966 .9962 '9958
 
 0 '9987
 
 0 '9994
 
 '9994 '9993 '9992 '9991
 
 0'9998 '9997 '9997 '9996 '9996
 
 0 '9999
 
 '9986 '9984 '9982 '9980
 
 i•o
 
 0.8540
 
 0'9074
 
 0 '9441
 
 0'9678
 
 0'9823
 
 0 '9907
 
 0 '9953
 
 0 '9977
 
 0'9990
 
 0'9995
 
 0'9998
 
 '2
 
 '3 '4
 
 '2
 
 I
 
 '2
 
 -9986 '9984 '9982 '9979
 
 '9918 '9909 -9899
 
 '9966 '9962 '9957 '9952
 
 '9934 '9927 - 9919
 
 r = 25 101
 
 '8 '9
 
 0.9999 '9999 '9999 0 '9999
 
 '9999 '9999 '9999
 
 '9999 '9998 '9998 '9998
 
 0'9999
 
 '9999 '9999
 
 0 '9999
 
 '9999
 
 See page 24 for explanation of the use of this table. 29
 
 0 '9999
 
 '9999 '9999 '9999
 
 '9999 '9999 '9998 '9998
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION P,
 
 r =
 
 2
 
 3
 
 4
 
 5
 
 6
 
 7
 
 8
 
 9
 
 xo
 
 II
 
 12
 
 11•0
 
 0'0012
 
 0'0049
 
 0.0151
 
 0'0375
 
 0'0786
 
 0'1432
 
 0'2320
 
 0.3405
 
 0 '4599
 
 0'5793
 
 '2
 
 '0010
 
 '0042
 
 •0132
 
 '0333
 
 -0708
 
 '4
 
 •0009
 
 •0036
 
 •0115
 
 •0295
 
 •0636
 
 •6
 
 •0007
 
 •0261 '0230
 
 -0571 •0512
 
 '3192 •2987 .2791 '2603
 
 '5554 •5316 •5080
 
 •0006
 
 •oioo •oo87
 
 -2147 •1984 •1830 •1686
 
 '4362 -4131 .3905
 
 •8
 
 -0031 •0027
 
 -1307 •1192 •1085 '0986
 
 '3685
 
 '4847
 
 0.6887 •6666 •6442 •6216 '5988
 
 12'0
 
 0'0005
 
 0'0023
 
 0'0458
 
 0'0895
 
 0'1550
 
 0 '2424
 
 •0004 '0004
 
 '0020
 
 0'0076 •oo66
 
 0'0203
 
 '2 •4
 
 -0017
 
 •0057
 
 •0179 •0158
 
 •0014
 
 •0050
 
 •0139
 
 •8
 
 •0003 '0003
 
 •081x '0734 •0664
 
 '1424 .1305
 
 •6
 
 '04ro •0366 •0326
 
 •0012
 
 •0043
 
 '0122
 
 •0291
 
 *0599
 
 •2254 •2092 •1939 •1794
 
 0'3472 '3266 •3067 .2876 '2693
 
 0.4616 '4389 •4167 '3950 '3738
 
 0.5760 '5531 '5303 .5077 '4853
 
 13•0
 
 0.0002
 
 0•00I I
 
 0'0259
 
 0'0540
 
 0.2517
 
 0'3532
 
 0'4631
 
 '0009
 
 •0094
 
 '0230
 
 •0487
 
 0'0998 •0910
 
 0. 1658
 
 •0002 •000z
 
 0'0037 •0032
 
 0'0107
 
 '2 •4
 
 ' 1530
 
 . 2349
 
 •0008
 
 •0028
 
 -0083
 
 •0204
 
 •6
 
 •0001
 
 •0007
 
 -0024
 
 '0072
 
 •0,8i
 
 •000i
 
 •0006
 
 •oo2i
 
 •0063
 
 •ox6i
 
 •0828 .0753 •o684
 
 •1410 •1297 '1192
 
 -2189 .2037 •1893
 
 '4413 '4199 .3989
 
 .8
 
 •0438 '0393 .0353
 
 '3332 •3139
 
 14.0
 
 0.0001
 
 0'0005
 
 0'0018
 
 0'0055
 
 0'0142
 
 0'0316
 
 0•062I
 
 0.1094
 
 0'1757
 
 0'2600
 
 0•3585
 
 '2
 
 •0001 •0001
 
 '0004
 
 •0048
 
 .0126
 
 •0283
 
 '0003
 
 '0016 •0013
 
 •0111
 
 •0253
 
 •0003
 
 -0012
 
 •0098
 
 •0226
 
 •1003 -0918 •0839
 
 •1628 •1507
 
 •0001
 
 '1392
 
 •2435 •2277 •2127
 
 '3391 •3203 •3021
 
 •0002
 
 •0010
 
 '0042 •0037 •0032
 
 -0562 •0509 •0460
 
 •0087
 
 •0202
 
 •0415
 
 '0766
 
 •1285
 
 ' 1984
 
 •2845
 
 15'0
 
 0'0002
 
 0'0009
 
 0'0028
 
 0'0076
 
 0'0180
 
 0'0374
 
 '2
 
 •0002 •0002
 
 •0007
 
 •0024
 
 •0067
 
 •0160
 
 '0337
 
 0.0699 •40636
 
 •0006
 
 •0021
 
 •0059
 
 '0143
 
 .0005
 
 .0018
 
 -0052
 
 •0127
 
 '0304 •0273
 
 '0579
 
 •0001
 
 •8
 
 •0001
 
 •0005
 
 •0016
 
 •0046
 
 •0113
 
 - 0245
 
 •0478
 
 0.1185 •1091 •1003 •0921 -0845
 
 0.1848 -1718 •1596 •1481 •1372
 
 0.2676 - 2514 '2358 '2209 •2067
 
 16•o
 
 0.000i
 
 0.0004
 
 0'0014
 
 0'0220
 
 .0089
 
 .0197
 
 '4 •6
 
 •0001
 
 •0003
 
 '0012 •0010
 
 .0079
 
 0176
 
 0355
 
 0'0774 .0708 .0647
 
 0.1931
 
 '0003
 
 0'0433 .0392
 
 o.1270
 
 *0001
 
 0'0040 *0035
 
 0•0I 00
 
 *2
 
 '1174 .1084
 
 568: :116
 
 •000I
 
 '4 •6 •8
 
 '4 -6
 
 •0003
 
 •0009
 
 .8
 
 0002
 
 -0008
 
 170
 
 0'0002
 
 0'0007
 
 '2
 
 '0002
 
 .0006
 
 '4 •6
 
 •0001
 
 '1195 •1093
 
 .0526
 
 '2952 '2773
 
 '3784
 
 •I8o2
 
 '0070
 
 •0158
 
 •0321
 
 •oo6I
 
 •0141
 
 •0290
 
 •0591 .0539
 
 •0920
 
 '1454
 
 0•0021
 
 0'0054
 
 0'0126
 
 0.0261
 
 0•0491
 
 0'0847
 
 0'1350
 
 •0018
 
 '0048
 
 '0112
 
 •0235
 
 •0447
 
 •0778
 
 •1252
 
 '0005
 
 •00'6
 
 -0042
 
 -0I00
 
 -0212
 
 •0406
 
 •0714
 
 •I 160
 
 •0004
 
 •0014
 
 •0037
 
 •0004
 
 •0012
 
 •0033
 
 •0089 -0079
 
 •0191 •0171
 
 •0369 .0335
 
 •0655 •0600
 
 •1074
 
 -8
 
 •000! •0007
 
 18•o
 
 0'0001
 
 0'0003
 
 0'0010
 
 0'0029
 
 0'0071
 
 0'0154
 
 •2
 
 •0001 •0001
 
 •0033 '0002
 
 '0009 -0008
 
 •0025
 
 '0063
 
 '0138
 
 0'0304 '0275
 
 0.0549 •0502
 
 0.0917 '0846
 
 '0022
 
 •0056
 
 '0124
 
 '0002
 
 '0007
 
 *0020
 
 '01 1 1
 
 '0458 '0418
 
 '0002
 
 -0006
 
 •0017
 
 '0049 - 0044
 
 ' 0249 '0225
 
 '0779
 
 •0001
 
 •0099
 
 -0203
 
 •0381
 
 •0659
 
 0.0039 •0034
 
 o'oo89 •0079
 
 0.0183 -0165
 
 0.0347 •0315
 
 0.0606 •0556
 
 '4 •6
 
 r =
 
 .:0000002:4 71
 
 .0999
 
 '0993
 
 '0717
 
 X X•0
 
 0'0002
 
 '2
 
 •0002
 
 '4 •6
 
 •000I
 
 0'0002
 
 0'0005
 
 0'0015
 
 •00ox
 
 •8
 
 •0001
 
 -0005 •0004
 
 •0013
 
 '4 .6
 
 •0001 •0007
 
 •0012
 
 '0030
 
 •0071
 
 •0149
 
 •0287
 
 •0509
 
 •0001
 
 '0003
 
 •0010
 
 •0027
 
 '0063
 
 -0260
 
 •0467
 
 -8
 
 12'0
 
 0.0001
 
 •0001
 
 •0003
 
 •0009
 
 •0024
 
 •0056
 
 •0134 •0120
 
 '0236
 
 '0427
 
 '2
 
 '0001
 
 '4
 
 •0001
 
 0• 0 00 I
 
 0•000 3
 
 0.0008
 
 0•0021
 
 0 ' 00 50
 
 0.0108
 
 0 ' 02 I 4
 
 0•0 3 9 0
 
 .8 19•0 '2
 
 20'0
 
 See page 24 for explanation of the use of this table.
 
 30
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION ti,
 
 Y = 13
 
 14
 
 15
 
 i6
 
 17
 
 i8
 
 19
 
 zo
 
 21
 
 22
 
 23
 
 XII)
 
 0.7813
 
 •7025
 
 0.9074 .8963 •8845 *8719 .8585
 
 0.9441 .9364 •9280 '9190 .9092
 
 0.9678 •9628 '9572 '9511 '9444
 
 0.9823 '9792 '9757 .9718 '9674
 
 0'9907 '9889 '9868 '9845 '9818
 
 0'9977 '9972 '9966 '0958 '9950
 
 0'9990 '9987 '9984 .9980 '9975
 
 0'9995
 
 -7624 '7430 •7230
 
 0.8540 . 8391 •8234 '8069 .7898
 
 0'9953
 
 •2
 
 12•0 '2
 
 0'6815
 
 0.7720
 
 '4 •6 '8
 
 '6387
 
 *7347 '7153 '6954
 
 •8875 '8755 •8629 '8495
 
 0'9370 .9290 '9204 •9111 '9011
 
 0'9626 .9572 '9513 - 9448 '9378
 
 0'9787 *9753 '9715 .9672 '9625
 
 0.9884 '9863 '9840 .9813 '9783
 
 0.9939
 
 '7536
 
 0'8444 •8296 '8140 *7978 *7810
 
 0'8987
 
 •6603
 
 .9927 '9914 .9898 '9880
 
 0•9970 .9963 '9955 '9946 '9936
 
 0.9985 .9982 '9978 '9973 '9967
 
 13'0
 
 0.5730 *5511
 
 0.6751 '6546 '6338 •6128 .5916
 
 0.7636 *7456 .7272 •7083 •6890
 
 0.8355 •8208 .8054 *7895 .7730
 
 0.8905 '8791 .8671 '8545 . 8411
 
 0.9302 '9219 .9130 '9035 '8934
 
 0 '9573
 
 '9516 '9454 *9387 '9314
 
 0'9750 '9713 '9671 '9626 '9576
 
 0.9859 '9836 •9810 '9780 *9748
 
 0.9924 '9910 •9894 '9876 .9856
 
 0.9960 '9952 '9943 '9933 .9921
 
 0.5704 '5492 '5281 '5071
 
 0'6694 '6494 •6293 '6090
 
 0 '7559
 
 •4863
 
 •5886
 
 '7384 '7204 •7020 •6832
 
 0.8272 •8126 '7975 •7818 . 7656
 
 0.8826 •8712 . 8592 •8466 '8333
 
 0.9235 .9150 •9060 •8963 •8861
 
 0.9521 •9461 .9396 '9326 •9251
 
 0.9712 •9671 '9627 '9579 '9526
 
 0.9833 •9807 '9779 '9747 .9711
 
 0.9907 •9891 '9873 '9853 .9831
 
 0.4657 '4453 '4253
 
 0.5681 '5476 .5272
 
 0.6641 '6448 .6253
 
 0.7489 '7317 '7141
 
 0.8195 •8051 .7901
 
 0.9170 .9084 .8992 '8894 •8791
 
 0.9469 .9407 .9340 •9268 *9190
 
 0.9673 '9630 *9583 .9532 '9477
 
 0.9805 '9777 '9746 .9712 '9674
 
 '4 •6 •8
 
 .2 '4 •6 -8
 
 •6169
 
 *5950
 
 '5292
 
 .5074 .4858
 
 14.0
 
 0.4644
 
 '2
 
 '4434
 
 '4 •6 •8
 
 '4227 •4024 •3826
 
 15.0 .2
 
 0.3632
 
 '9943 .9932 '9918 '9902
 
 '9994 *9992 .9991 '9988
 
 •4056
 
 •5069
 
 •6056
 
 •6962
 
 '7747
 
 •3864
 
 '4867
 
 '5858
 
 '6779
 
 '7587
 
 0.8752 •8638 .8517 •8391 •8260
 
 0.2745
 
 0'3675 '3492
 
 0.5660 .5461 •5263 •5067 '4871
 
 0.6593 •6406 •6216 •6025 '5833
 
 0'7423 '7255 •7084 •6908 •6730
 
 0.8122 '7980 . 7833 •7681 •7524
 
 0.8682 •8567 .8447 •8321 •8191
 
 0.9108 •9020 '8927 •8828 .8724
 
 0.9418 '9353 '9284 •9210 .9131
 
 0'9633
 
 '25 85
 
 0 '5640
 
 *5448 •5256 •5065 '4875
 
 0.6550 '6367 •6182 '5996 •5810
 
 0.7363 '7199 •7031 '6859 •6685
 
 0.8055 '7914 •7769 .7619 •7465
 
 0.8615 •85oo •838o -8255 -8126
 
 0.9047 •8958 •8864 '8765 •866o
 
 0.9367 •9301 •9230 '9154 '9074
 
 '4 •6 -8
 
 '3444 '3260 -3083 •2911
 
 16 0
 
 '2
 
 •6 •8
 
 •2285 •2144
 
 '2971
 
 0.4667 '4470 .4276 •4085 •3898
 
 17•0
 
 0.2009
 
 0.2808
 
 0.3715
 
 '2
 
 '1880
 
 '2651
 
 '3535
 
 '4 .6 •8
 
 '1758 .1641 •1531
 
 2500 ' 2354 . 2215
 
 •3361 '3191 '3026
 
 0.4677 '4486 .4297 '4112 '3929
 
 18.0
 
 0.2081 .1953 •183o '1714 '1603
 
 0.2867 •2712 .2563 '2419 *2281
 
 0.3751 .3576 '3405 .3239 *3077
 
 0.4686 .4500 '4317 .4136 '3958
 
 0.5622 '5435 *5249 '5063 .4878
 
 0.6509 '6331 •6151 '5970 .5788
 
 0.7307 '7146 •6981 '6814 .6644
 
 0'7991 .7852 •7709 •7561 •7410
 
 0.8551 .8436 •8317 •8193 •8065
 
 0.8989 *8899 '8804 '8704 •8600
 
 0.1497 '1397
 
 0'3784 '3613 •3446 '3283 '3124
 
 0'4695 *4514 '4335 •4158 '3985
 
 0'5606 *5424 '5242 •5061 '4881
 
 0'6472 '6298 •6122 *5946 •5769
 
 0.7255 '7097 '6935 '6772 '660 5
 
 0.7931 '7794 '7653 '7507 '7358
 
 0.8490 '8376 '8257 '8134 •8007
 
 0.2970
 
 0.3814
 
 0.4703
 
 0'5591
 
 0'6437
 
 0.7206
 
 0 '7875
 
 '4
 
 13 2432 '33 •3139
 
 4
 
 0.1426 .1327 '1233
 
 .6 •8
 
 •1145 •xo62
 
 10'0
 
 0.0984
 
 '2
 
 '0911
 
 '4 .6 •8
 
 •0842 .0778 •0717
 
 -1213
 
 0'2148 '2021 •1899 .1782
 
 •1128
 
 -1671
 
 0'2920 '2768 •2621 ' 2479 •2342
 
 20.0
 
 0.0661
 
 0.1049
 
 0.1565
 
 0.2211
 
 '2
 
 -1303
 
 See page 24 for explanation of the use of this table.
 
 31
 
 '9588 '9539 •9486 .9429
 
 TABLE 2. THE POISSON DISTRIBUTION FUNCTION
 
 ii.
 
 r = 24
 
 25
 
 mo
 
 0.9998
 
 0 '9999
 
 '2
 
 '9997
 
 '4 '6 '8
 
 '9997 '9996 '9995
 
 '9999 '9999 '9998 '9998
 
 36
 
 37
 
 38
 
 39
 
 fl•
 
 1= 35
 
 IT2
 
 '4 '6 '8
 
 0.9999 '9999 '9999 '9999
 
 x8.0
 
 0.9999
 
 '2
 
 '9999
 
 0 '9999
 
 '4 '6 .8
 
 '9998 '9998 '9997
 
 0.9999 '9999 '9999 '9999 '9999
 
 '9999 '9999
 
 19•0
 
 .2 '4 .6 .8
 
 0.9997 '9996 '9995 '9994 '9993
 
 0.9998 '9998 '9998 '9997 '9996
 
 0.9999 '9999 '9999 '9999 '9998
 
 0 '9999
 
 20'0
 
 0'9992
 
 0'9996
 
 0.9998
 
 0'9999
 
 0'9999
 
 30
 
 31
 
 32
 
 33
 
 34
 
 26
 
 27
 
 0 '9999
 
 '9999
 
 12'0 *2
 
 0.9993
 
 0 '9997
 
 0'9999
 
 '9991
 
 '4 .6 '8
 
 '9989 .9987 '9984
 
 '9996 '9995 '9994 '9992
 
 '9998 '9998 '9997 '9996
 
 13'0
 
 0.9980 '9976 '9971 .9965 '9958
 
 0.9990 '9988 .9985 .9982 '9978
 
 0'9995
 
 '9994 '9993 '9991 '9989
 
 0.9998 '9997 '9997 '9996 '9995
 
 0 '9999
 
 .2 '4 .6 .8 14.0 .2 '4 '6 .8
 
 0.9950 '9941 '9930 .9918 '9904
 
 0 '9974
 
 0 '9987
 
 0 '9994
 
 0 '9997
 
 0 '9999
 
 0 '9999
 
 •9969 '9963 '9956 '9947
 
 '9984 •9981 '9977 '9972
 
 '9992 '9990 '9988 •9986
 
 '9996 '9995 '9994 .9993
 
 '9998 '9998 '9997 '9997
 
 '9999 '9999 '9999 '9998
 
 15.0
 
 0.9888
 
 0.9996 '9995 '9994 '9992 '9991
 
 '9998 '9997 '9996 '9995
 
 '9999 '9999 '9998 '9998
 
 0 '9999
 
 '9851 •9829 •9804
 
 0.9991 '9990 .9987 .9985 '9982
 
 0'9999
 
 '4 .6 -8
 
 0.9983 '9979 '9975 '9971 '9965
 
 0 '9998
 
 '9871
 
 0.9938 .9928 .9915 •9902 '9886
 
 0'9967
 
 '2
 
 16•o
 
 0 '9777 '9747
 
 0'9989 '9986 '9984 '9981 '9977
 
 '9993 '9992 '9990 '9988
 
 0'9997 '9997 '9996 '9995 '9994
 
 0 '9999
 
 '9952 '9944 '9934 '9924
 
 0'9978 '9974 '9969 '9964 '9957
 
 0 '9999
 
 '9713 .9677 '9637
 
 0.9925 •9913 .9900 -9884 '9867
 
 0 '9994
 
 '4 '6 '8
 
 0'9869 .9849 •9828 '9804 '9777
 
 0 '9959
 
 '2
 
 '9998 '9998 '9998 '9997
 
 '9999 '9999 '9999 '9999
 
 17.0
 
 0'9594 '9546
 
 0'9748
 
 '9968 •9962 '9956 '9949
 
 '9983 .9980 '9976 •9972
 
 '9991 '9989 '9987 -9985
 
 0'9996 '9995 '9994 '9993 '9992
 
 0'9998 '9998 '9997 '9997 '9996
 
 0'9999
 
 '9495 .9440 '9381
 
 0.9950 '9942 '9933 -9922 •9910
 
 0 '9993
 
 '4 •6 .8
 
 0.9912 '9898 .9883 •9866 .9848
 
 0 '9986
 
 .9715 '9680 .9641 '9599
 
 0.9848 •9827 '9804 '9778 '9749
 
 0 '9973
 
 '2
 
 x8•o
 
 0.9317
 
 0'9554
 
 '9249
 
 '4 •6 •8
 
 '9177 .9100 •9019
 
 .9505 '9452 .9395 '9334
 
 0.9718 .9683 - 9646 •9606 '9562
 
 0.9827 -9804 '9779 •9751 '9720
 
 0.9897 '9882 •9866 .9847 •9827
 
 0.9941 '9931 '9921 '9909 '9896
 
 0.9967 •9961 '9955 '9948 '9939
 
 0.9982 '9979 '9975 '9971 '9966
 
 0.9990 '9989 '9986 '9984 .9981
 
 0'9995
 
 '2
 
 0.9998 '9997 '9996 '9996 '9995
 
 19.0
 
 0.8933 '8842
 
 '4 •6 •8
 
 '8746 •8646 8541
 
 0.9269 '9199 '9126 '9048 •8965
 
 0.9514 '9463 '9409 '9350 •9288
 
 0.9687 .9651 '9612 '9570 '9524
 
 0.9805 .9780 '9753 .9724 '9692
 
 0.9882 •9865 '9847 .9828 •9806
 
 0.9930 '9920 '9908 '9895 •9881
 
 0'9960 '9954 '9946 '9938 .9929
 
 0.9978 '9974 '9970 '9965 '9959
 
 0'9988 '9986 '9983 •9980 '9977
 
 0 '9994
 
 '2
 
 20'0
 
 0.8432
 
 0.8878
 
 0.9221
 
 0 '9475
 
 0.9657
 
 0'9782
 
 0.9865
 
 0.9919
 
 0'9953
 
 0 '9973
 
 0'9985
 
 .
 
 .996; '9954 '9945 '9936
 
 0.9999 '9999 '9999 '9999 '9998
 
 z8
 
 '9999 '9999
 
 0 '9999
 
 '9999
 
 '9999 '9999 '9998 '9998
 
 r
 
 =
 
 29
 
 0'9999
 
 '9999 '9999
 
 0 '9999
 
 '9999
 
 See page 24 for explanation of the use of this table.
 
 32
 
 '9999 '9999 '9999
 
 '9994 '9993 '9991 '9990
 
 0 '9999
 
 '9999
 
 '9999 '9999 '9998 '9998
 
 '9992 '9991 .9989 '9987
 
 TABLE 3. BINOMIAL COEFFICIENTS This table gives values of
 
 n! n(n — 1). .(n — r + 1) (n — r)! r! — r!
 
 (r ) =nC,
 
 when r> in use (1 = n )• (n) is the number of r n r r ways of selecting r objects from n, the order of choice being immaterial. (See also Table 6, which gives values of log10 n! for n < 300.) —
 
 2
 
 n
 
 =x
 
 I
 
 3
 
 4
 
 2
 
 I
 
 I 2
 
 3
 
 I I
 
 3 4
 
 3 6
 
 I 4
 
 5
 
 I 1
 
 10 15
 
 7 8
 
 I x
 
 21
 
 9
 
 I
 
 5 6 7 8 9
 
 10
 
 6
 
 35 56 84
 
 xo II 12
 
 I I I
 
 12
 
 13
 
 I
 
 13
 
 14
 
 I
 
 15 16 17 18
 
 I 1 I 1
 
 19
 
 I
 
 20 21 22 23 24
 
 4
 
 Jo II
 
 I
 
 28 36 45 55 66
 
 6
 
 5
 
 I
 
 5 15 35 70 126
 
 20
 
 6
 
 1
 
 21
 
 7 28 84
 
 56 126
 
 120
 
 210
 
 252
 
 210
 
 120
 
 330 495
 
 462 792
 
 462 924
 
 33o 792
 
 1716
 
 1716
 
 3003
 
 3432
 
 14
 
 715 1001
 
 1287 2002
 
 15
 
 105
 
 455
 
 1365
 
 16 17
 
 120
 
 560
 
 1820
 
 18 19
 
 136 153 171
 
 68o 816 969
 
 2380 3060 3876
 
 3003 4368 6188 8568 11628
 
 5005 8008 12376 18564 27132
 
 I I I I I
 
 20 21 22
 
 190 210 231
 
 I I 4o 1330 1540
 
 23
 
 253
 
 1771
 
 4845 5985 7315 8855
 
 15504 20349 26334 33649
 
 38760 54264 74613 100947
 
 24
 
 276
 
 2024
 
 10626
 
 42504
 
 134596
 
 25 26 27
 
 I I I
 
 300
 
 28 29
 
 x I
 
 25 26 27 28 29
 
 325 351 378 406
 
 2300 2600 2925 3276 3654
 
 12650 14950 17550 20475 23751
 
 53130 65780 80730 98280 118755
 
 230230 296010 376740 475020
 
 30
 
 I
 
 30
 
 435
 
 4060
 
 27405
 
 142506
 
 593775
 
 ?I
 
 II
 
 12
 
 = 20
 
 184756
 
 167960
 
 125970
 
 21 22 23
 
 352716
 
 352716
 
 293930
 
 646646 1144066 1961256
 
 705432 1352078 2496144
 
 646646 1352078 2704156
 
 3268760 5311735
 
 4457400 7726160
 
 24
 
 26 27 28 29
 
 8436285
 
 13037895
 
 13123110
 
 21474180
 
 2.0030010
 
 34597290
 
 5200300 9657700 17383860 30421755 51895935
 
 30
 
 30045015
 
 54627300
 
 86493225
 
 25
 
 I
 
 8 36
 
 165 220 286 364
 
 10
 
 9
 
 I
 
 78 91
 
 r
 
 8
 
 7
 
 33
 
 177100
 
 13
 
 77520 203490 497420
 
 6435
 
 1
 
 9
 
 1
 
 45 165 495
 
 xo 55 220
 
 1287 3003
 
 715 2002
 
 31824 50388
 
 6435 12870 24310 43758 75582
 
 24310 48620 92378
 
 77520 x 1628o 170544 245157 346104
 
 125970 203490 319770 490314 735471
 
 167960 293930 497420 817190 13.07504
 
 480700 657800 888030 1184040 1560780
 
 1081575 1562275 2220075 3108105 4292145
 
 2042975 3124550 4686825 6906900 10015005
 
 2035800
 
 5852925
 
 14307150
 
 11440
 
 19448
 
 14
 
 5005 11440
 
 15
 
 2496144
 
 3876o 116280 319770 817190 1961256
 
 15504 54264 170544 490314 1307504
 
 5200300 10400600 20058300 37442160 67863915
 
 4457400 9657700 20058300 40116600 77558760
 
 3268760 7726160 17383860 37442160 77558760
 
 119759850
 
 145422675
 
 155117520
 
 1144066
 
 TABLE 4. THE NORMAL DISTRIBUTION FUNCTION The function tabulated is 0(x) =
 
 fx .V2it
 
 dt. 0(x) is
 
 -00
 
 the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < o use 40(x) = i -0( - x), as the normal distribution with zero mean and unit variance is symmetric about zero.
 
 x
 
 0(x)
 
 x
 
 (I)(x)
 
 x
 
 (11(x)
 
 x
 
 I(x)
 
 x
 
 (13( x)
 
 x
 
 0'00
 
 0'5000 '5040 '5080
 
 0'40 '41 '42
 
 0*6554 '6591
 
 0'80 •81
 
 1'20
 
 0'8849 •8869
 
 2'00
 
 0.97725
 
 .9463 *9474
 
 •5120 •5160
 
 •82 •83
 
 x.6o •61 •62
 
 0'9452
 
 •8907 '8925
 
 '63
 
 '9484
 
 - 44
 
 •6628 •6664 •67oo
 
 0'7881 •7910 '7939
 
 .64
 
 '9495
 
 •0, •02 •03 •04
 
 '97778 *97831 '97882 *97932
 
 0.8944 •8962 •898o .8997
 
 1.65 •66 •67 -68 '69
 
 0.9505 •9515 •9525 '9535 '9545
 
 2'05
 
 0'97982
 
 •o6 •07 •o8 •09
 
 •98030
 
 1•70
 
 0.9554 .9564 '9573 .9582 '9591
 
 2•10
 
 •01 •02
 
 •03 •04
 
 '43
 
 '84
 
 .7967 '7995
 
 •21 •22 •23 .24
 
 0'85
 
 0'8023
 
 1'25
 
 •86 •87 •88 •89
 
 •8051 •8078 •8106 •8133
 
 •26 •27 •28 -29
 
 0'05 •06
 
 0.5199 '5239
 
 0.45 .46
 
 .07
 
 .5279
 
 *47
 
 •08
 
 '5319
 
 '09
 
 '5359
 
 •48 .49
 
 0.6736 .6772 •6808 •6844 .6879
 
 0•10
 
 0'5398
 
 0'50
 
 0'6915
 
 0'90
 
 0'8159
 
 1•30
 
 'II •12
 
 '5438 '5478
 
 •13 '14
 
 .5517 '5557
 
 •51 •52 .53 '54
 
 •6950 •6985 .7019 '7054
 
 '91 •92 •93 .94
 
 •8186 •8212 .8238 .82,64
 
 •3I -32 .33 '34
 
 0.15 •16 •17 •18 •19
 
 0-5596 •5636 .5675 .5714 '5753
 
 0.55 •56 '57 •58 '59
 
 0.7088 •7123 '7157 •7190 '7224
 
 o.95 •96 .97 •98 .99
 
 0.8289 •8315 .8340 •8365 .8389
 
 0'20 '21 '22
 
 0.5793
 
 0.60
 
 0.7257
 
 100
 
 '5832 '5871
 
 '61
 
 '7291
 
 '01
 
 •62
 
 •02 '03 '04
 
 '5910
 
 '63
 
 '5948
 
 '64
 
 '7324 '7357 '7389
 
 0.25 •26
 
 0 '5987
 
 0'65
 
 0'7422
 
 1.05
 
 •6026 •6064 '6103 •6141
 
 '7454 '7486 .7517 '7549
 
 •06
 
 •27 '28
 
 •66 •67 •68
 
 •o8 •09
 
 .23 '24
 
 •29
 
 '69
 
 '07
 
 •8888
 
 '9015 0'9032 *9049
 
 '98077
 
 •98124 '98169 0'98214 '98257 '98300
 
 •9066 .9082 '9099
 
 .71 '72 .73 '74
 
 1.35 •36 '37 •38 '39
 
 0-9115 •9131 '9147 •9162 '9177
 
 r75 •76 .77 •78 '79
 
 0 '9599
 
 2'15
 
 0'98422
 
 •9608 .9616 •9625 '9633
 
 •16 .17 •18 '19
 
 •98461 •98500 .98537 '98574
 
 0'8413
 
 1'40
 
 0'9192
 
 1.80
 
 0.9641
 
 '41
 
 .9207
 
 '8,
 
 '9649
 
 2'20 '21
 
 0.98610
 
 .8438 '8461 '8485 '8508
 
 '42
 
 '9222
 
 '9236 '925 1
 
 -9656 '9664 .9671
 
 •22 .23 .24
 
 •98679
 
 '43 .44
 
 •82 .83 .84
 
 '98745
 
 0.8531 .8554 '8577 •8599 •8621
 
 1'45 '46 '47 •48 '49
 
 0 '9265
 
 1.85 •86
 
 0'98778
 
 •26
 
 '9292
 
 '87
 
 '27
 
 '98809 '98840
 
 •9306 '9319
 
 •88 '89
 
 0.9678 •9686 .9693 •9699 '9706
 
 2'25
 
 '9279
 
 •28 •29
 
 •98899
 
 1•50
 
 0.9332 '9345 '9357 '9370 -9382
 
 1'90
 
 0.9713 '9719
 
 2'30
 
 0'98928
 
 .31
 
 .98956
 
 '9726
 
 '32
 
 '98983
 
 '9732 '9738
 
 '33 '34
 
 '99010 '99036 0.99061 '99086
 
 •II •12 .13 •14
 
 0'30 •31 •32
 
 0.6179
 
 0•70 '71 '72
 
 0.7580
 
 1•10
 
 '6217 •6255
 
 '7611 •7642
 
 •I 1
 
 '33 '34
 
 .6293 '6331
 
 '73 '74
 
 '7673 '7704
 
 •13 '14
 
 0.8643 •8665 •8686 '8708 '8729
 
 0.35 •36 '37 •38 '39
 
 0.6368 •6406 '6443 •6480 '65 1 7
 
 0.75 •76 '77 •78 '79
 
 0'7734
 
 r15 •16 •17 •i8 •19
 
 0.8749 •8770 .8790 •8810 •883o
 
 r55 '56 .57 •58 '59
 
 0 '9394
 
 1'95
 
 0 '9744
 
 2'35
 
 •7764 '7794 •7823 '7852
 
 .9406 '9418 •9429 '9441
 
 '96 '97 •98 '99
 
 '9750 '9756 •9761 '9767
 
 -36 .37 •38 '39
 
 0'40
 
 0.6554
 
 0.80
 
 0.7881
 
 1•20
 
 0'8849
 
 1•60
 
 0'9452
 
 2'00
 
 0'9772
 
 2.40
 
 •12
 
 (I)(x)
 
 '51 '52 '53 .54
 
 34
 
 '91 .92 '93 '94
 
 .98341 .98382
 
 •98645 '98713
 
 •98870
 
 '99111
 
 '99134 '991 58 0'99180
 
 TABLE 4. THE NORMAL DISTRIBUTION FUNCTION x
 
 x
 
 (1.(x)
 
 x
 
 (1)(x)
 
 x
 
 (1)(x)
 
 x
 
 (1)(x)
 
 2'40
 
 0.99180
 
 2'55
 
 0'99461
 
 2'70
 
 '99202 '99224 '99245 '99266
 
 •56
 
 '99477
 
 II
 
 2.85 •86
 
 '57 •58
 
 .72 '73 '74
 
 '99683
 
 •88
 
 •59
 
 '99492 .99506 .99520
 
 0.99653 '99664 '99674 '99693
 
 •89
 
 0.99781 .99788 '99795 .99801 -99807
 
 3.00 0.99865
 
 ',II
 
 2'60
 
 0 '99534
 
 2.75
 
 0.99813
 
 3•05
 
 0.99886
 
 -76
 
 0.99702 .9971i
 
 2'90
 
 •61 •62 '63 '64
 
 '99547
 
 •9x
 
 .99819
 
 •o6
 
 .99889
 
 '99560
 
 .77
 
 .99720
 
 '92
 
 '99825
 
 •07
 
 '99893
 
 '49
 
 0'99286 '99305 '99324 '99343 '99361
 
 '93 '94
 
 '9983 1 '99836
 
 •o8 .09
 
 '99900
 
 2'50
 
 0.99379
 
 .52
 
 '99396 '99413
 
 0'99841 - 99846
 
 3.10
 
 . 51
 
 •I2
 
 '53 '54
 
 •13
 
 '99913
 
 '14
 
 '99916
 
 2'55
 
 3'15
 
 0'99918
 
 '42 '43 '44 2'45
 
 '46 '47 '48
 
 '87
 
 '99573
 
 •78
 
 .99728
 
 '99585
 
 '79
 
 '99736
 
 2.65
 
 0'99598
 
 •99609 .99621
 
 2.8o •8x
 
 2'95
 
 '99430 '99446
 
 •66 .67 •68 .69
 
 -99
 
 .99851 .99856 .99861
 
 0'99461
 
 2.70
 
 3'00
 
 0'99865
 
 .99632
 
 •83
 
 '99643
 
 *84
 
 (3'99744 '99752 .9976o '99767 '99774
 
 0.99653
 
 2'85
 
 0'99781
 
 •82
 
 .96
 
 .97
 
 .98
 
 •ox •02 '03 •04
 
 •I
 
 x
 
 (D(x) .99869 '99874 '99878
 
 '99882
 
 .99896
 
 0.99903 .99906 '99910
 
 0(x)
 
 3'15 •x6
 
 0.99918
 
 •x7 •i8 •19
 
 '99924 .99926 '99929
 
 3'20 '2I '22 6 23 •24
 
 0 '99931
 
 3'25
 
 0 '99942
 
 '26 '27
 
 •28 -29
 
 '99944 '99946 '99948 '99950
 
 3.30
 
 0.99952
 
 .99921
 
 '99934 '99936 '99938 '99940
 
 The critical table below gives on the left the range of values of x for which 0(x) takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of (1)(x) indicated. 3.075 0.9990 3o5 0.9991 '130 0'9992 3.215 3'174 0.9993 0 '9994
 
 3'263 09994
 
 3-320 09995 3.389 0.9996 3'480 0.9997 3.615 0.9998 0 '9999
 
 When x > 3.3 the formula -0(x) *
 
 xV2IT
 
 0
 
 99990
 
 3 .916 0 '99995 3.976 099996
 
 0 3.826 0.99993 3.867 0.99994
 
 4'055 0.99997 4'173 0.99998 4'417 099999 1•00000
 
 3'73ro .99991 3159 3 .791 99992
 
 0 '99995
 
 I 3 15 1051 is very accurate, with relative error 7+ 78+71x
 
 less than 945/x1°.
 
 TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION This table gives percentage points x(P) defined by the equation
 
 P
 
 ioo
 
 =
 
 lc° e-It2 dt. x(P)
 
 If X is a variable, normally distributed with zero mean and unit variance, P/Ioo is the probability that X x(P). The lower P per cent points are given by symmetry as - x(P), x(P) is 2PI loo. and the probability that IXI
 
 P
 
 x(P)
 
 P
 
 50
 
 0'0000
 
 45 40 35
 
 0'1257
 
 30 25
 
 0'2533 0 '3853 0'5244 0 '6 745 0.8416
 
 x(P)
 
 P
 
 x(P)
 
 P
 
 x(P)
 
 5'0
 
 P6449
 
 2'0
 
 2'0537
 
 I'0
 
 2'3263
 
 0•10
 
 3'0902
 
 1.6646 1'6849
 
 3'0 2'9
 
 1'8808
 
 4.8 4'6 4'4
 
 P8957
 
 2'8
 
 1 .91 10
 
 2.0749 2•0969
 
 2.7
 
 0'07
 
 P7279
 
 2'6
 
 P9268 1.9431
 
 2.3656 2•089 2.4573
 
 4*2
 
 I'6
 
 2'1444
 
 0.9 o•8 0.7 o•6
 
 0.09 0T8
 
 1.7060
 
 1.9 1.8 r7
 
 2.5121
 
 0'06
 
 3'1214 3.1559 3'1947 3.2389
 
 P7507
 
 2.5
 
 P9600
 
 I.5
 
 2•1701
 
 o•5
 
 1'7744
 
 P9774 1 '9954
 
 1.4
 
 2.1 973
 
 0.4
 
 2.5758 2.6521
 
 1 . 7991
 
 2'4 2'3
 
 1'8250 P8522
 
 2*2 2'1
 
 2'0141
 
 r3 1•2
 
 2'0335
 
 I •I
 
 2•2262 2'2571 2'2904
 
 0'3 0•2 0•1
 
 I0
 
 P2816
 
 4'0 3.8 3•6 3.4
 
 5
 
 P6449
 
 3'2
 
 20 15
 
 1.0364
 
 35
 
 2•i20i
 
 P
 
 x(P)
 
 2/478 2•8782
 
 3.0902
 
 P
 
 x(P)
 
 0•0x 0.005
 
 3.2905 3.7190 3.8906
 
 0.001 0.0005
 
 4.4172
 
 0.05
 
 4.2649
 
 TABLE 6. LOGARITHMS OF FACTORIALS n
 
 log10 n!
 
 n
 
 0
 
 0'0000
 
 i
 
 o•0000
 
 logio n!
 
 n
 
 log10 n!
 
 n
 
 log10 n!
 
 n
 
 loglo n!
 
 100
 
 157'9700
 
 377'2001
 
 250 251
 
 161'9829
 
 267'1177
 
 200 201 202
 
 374.8969
 
 159'9743
 
 15 151 152
 
 26 62 4 '9 7 35. 6 59 9
 
 Ica
 
 379'5054
 
 163.9958
 
 153
 
 269.3024
 
 203
 
 381.8129
 
 252 253
 
 154
 
 271'4899
 
 204
 
 384.1226
 
 254
 
 492.5096 494'9093 497'3107 499'7138 502'1186
 
 227753.'86783043
 
 205 206
 
 255 256
 
 278'0693 280'2679
 
 207 208
 
 282'4693
 
 209
 
 386 '4343 388.7482 39 P 0642 393.3822 395'7024
 
 210 211 212
 
 398'0246 400'3489 402'6752
 
 log10 n!
 
 n
 
 50
 
 64.483 1
 
 5x
 
 102
 
 103
 
 2
 
 0'3010
 
 52
 
 3 4
 
 0.7782
 
 53
 
 66.1906 67.9066 69.6309
 
 I • 3802
 
 54
 
 71'3633
 
 104
 
 166•0128
 
 5 6 7 8 9
 
 2'0792 2'8573
 
 73.1037 74.8519 76.6077 78.3712 80. 1420
 
 105 xo6 107 xo8 109
 
 168.0340 170.0593
 
 3'7024 4'6055 5'5598
 
 55 56 57 58 59
 
 172'0887
 
 156 157
 
 174•1221 176.1595
 
 158 1 59
 
 IO II
 
 6.5598
 
 6o
 
 81•9202 83'7055
 
 178'2009 180•2462
 
 284'6735
 
 61
 
 II0 III
 
 160
 
 7'6012
 
 161
 
 12 13 14
 
 8.6803 9'7943 10'9404
 
 62 63 64
 
 85'4979 87.2972 89'1034
 
 112 1 xx 13 4
 
 182.2955 118846...43045845
 
 262 163
 
 286.8803 289•o898
 
 15
 
 12'1165
 
 65
 
 90'9163
 
 115
 
 188'4661
 
 16
 
 13.3206
 
 92'7359 94'5619 96'3945 98.2333
 
 xx6
 
 440075..734 360
 
 291'3020
 
 258 259
 
 504'5252 506'9334 509'3433 511'7549 514.1682
 
 260 261 262 263
 
 518.9999 52 r 4182 523.8381
 
 264
 
 526•2597 528.6830 531.1078 533'5344 535.9625 538.3922
 
 257
 
 164 293.5168
 
 214 215
 
 409.6664
 
 297.9544
 
 216 217
 
 265 266
 
 4112:3 4 03 07 03 9
 
 ix 8
 
 165 ,66 167 ,68
 
 295'7343
 
 190.5306 192.5988 194.6707
 
 2,8 416.6758
 
 267 268
 
 119
 
 196'7462
 
 169
 
 219
 
 419.0162
 
 269
 
 220 221 222
 
 421'3587 423'7031 426'0494
 
 270 271 272
 
 17
 
 14'5511
 
 66 67
 
 x8
 
 15.8063
 
 68
 
 19
 
 17.0851
 
 69
 
 20
 
 18.3861
 
 70
 
 100'0784
 
 120
 
 198.8254
 
 170
 
 306.8608
 
 21 22 23
 
 19'7083 21'0508 22'4125
 
 71 72
 
 101 .9297
 
 200'9082
 
 171
 
 309'0938
 
 202 '9945
 
 24
 
 23'7927
 
 107. 5196
 
 121 122 123 124
 
 172 173 174
 
 311.3293 313'5674 315'8079
 
 223 224
 
 428'3977 430'7480
 
 273 274
 
 25
 
 25.1906 26.6056 28.0370 29%4841 30'9465
 
 75
 
 109'3946 111. 2754
 
 125
 
 209-2748
 
 175
 
 318.0509
 
 225
 
 433'1002
 
 126
 
 211'3751
 
 176
 
 320'2965
 
 226
 
 322'5444 324"7948 327'0477
 
 227 228 229
 
 435'4543 437.8103 4.40.1682 442.5281
 
 275 276 277
 
 8o 81 83
 
 124.5961
 
 34
 
 38- 4702
 
 84
 
 126.5204
 
 329.3030 331.5607 333.8207 336.0832 338'3480
 
 230 231
 
 82
 
 120'7632 122'6770
 
 33
 
 32.4237 33.9150 35'4202 36.9387
 
 85 86
 
 128.4498 130'3843
 
 X85
 
 340'6152
 
 235
 
 186
 
 342•8847
 
 26 27
 
 28 29 30 31 32
 
 35
 
 40'0142
 
 36 37
 
 41'5705 43.1387
 
 38
 
 44 • 7185
 
 39 46.3096
 
 73 74
 
 76 77
 
 78 79
 
 103'7870 105'6503
 
 117
 
 205'0844 207'1 779
 
 113.1619
 
 127
 
 213.4790
 
 115-0540
 
 128
 
 215.5862
 
 177 178
 
 116.9516
 
 129
 
 217.6967
 
 179
 
 118.8547
 
 130 131 132
 
 219'8107 221'9280 224'0485
 
 181
 
 133 134
 
 226 .1 724 228'2995
 
 135 136 137 138
 
 230.4298 232- 5634 234.7001 236 . 8400
 
 87
 
 132-3238
 
 88 89
 
 134.2683 136-2177
 
 180 182 183 184
 
 300'1771 302'4024 304'6303
 
 189
 
 283 284
 
 572.5753 575' 0287
 
 285
 
 :5569:7 02 99 6:
 
 286
 
 577'4835 579.9399
 
 461'4742 463 .8508
 
 288
 
 349'70 71
 
 239
 
 466.2292
 
 289
 
 468'6094 470'9914 473'375 2 475'7608 478.1482
 
 47'91 16
 
 90
 
 138'1719
 
 140
 
 241'1291
 
 190
 
 351'9859
 
 240
 
 49'5244 51' 1477 52'7811 54'4246
 
 91
 
 140.1310
 
 141
 
 243.2783
 
 354.2669
 
 241
 
 45
 
 56.0778
 
 46 47 48 49
 
 57'7406 59'4127 61'0939 62. 7841
 
 50
 
 64.4831
 
 92
 
 142'0948
 
 142
 
 245'4306
 
 93 94
 
 144. 0632 146'0364
 
 143
 
 144
 
 247'5860 249'7443
 
 191 192 193 194
 
 95 96 97 98
 
 148.0141 1 49'9964 151•9831 1 53'9744
 
 145 146
 
 251'9057 254.0700
 
 147
 
 256'2374
 
 368'0003
 
 99
 
 155.9700
 
 148 149
 
 258.4076 260.5808
 
 197 198 1 99
 
 100
 
 57'9700
 
 150
 
 262'7569
 
 200
 
 For large n, logio n!
 
 565.2246 567-6733
 
 237
 
 40
 
 570'1235
 
 584 2;8 39 577 587.3180
 
 290
 
 589/804
 
 291
 
 592'2443
 
 292 293 294
 
 594'7097 597.1766 599'6449
 
 295 296 297
 
 6o2'1147
 
 356'5502
 
 242
 
 358.8358 361.1236
 
 243 244
 
 195
 
 363'4136
 
 245
 
 196
 
 365.7059
 
 246
 
 480'5374 482.9283
 
 370.2970 372'5959
 
 248 2 47 8 249
 
 487 71 5 5'32140
 
 298
 
 609'5330
 
 490' 1116
 
 299
 
 612.0087
 
 374.8969
 
 250
 
 492.5096
 
 300
 
 614.4858
 
 0.39909 + (n+ logio n - 0.4342945 n.
 
 36
 
 553'0044 555'4453 557.8878 560.3318 562 '7774
 
 280 281 282
 
 238
 
 41 42 43 44
 
 540'8236
 
 543.2566 545.6912 548'1273 550'5651
 
 444.8898 447'2 534 449-6189 451.9862 454'3555
 
 3 3 :=
 
 187
 
 139 238.9830
 
 232
 
 233 234
 
 278
 
 279
 
 516'5832
 
 604.586o 607.0588
 
 TABLE 7. THE x'-DISTRIBUTION FUNCTION F,(x)
 
 The function tabulated is FAx)
 
 -
 
 jo
 
 tiv-le-igdt 0 (The above shape applies for v > 3 only. When v < 3 the mode is at the origin.)
 
 for integer v < 25. Fp(x) is the probability that a random variable X, distributed as X2 with v degrees of freedom, will be less than or equal to x. Note that F,(x) = 20(xi) - (cf. Table 4). For certain values of x and v > 25 use may be made of the following relation between the X2 and Poisson distributions :
 
 with mean v and variance 2v. A better approximation is usually obtained by using the formula
 
 Fv(x) * (1)(V-z; - zy -
 
 Fv(x) = 1 - F(iv - x I ix)
 
 where 4(s) is the normal distribution function (see Table 4)• Omitted entries to the left and right of tabulated values are r and o respectively (to four decimal places).
 
 where F(rlit) is the Poisson distribution function (see Table z). If v > 25, X is approximately normally distributed
 
 = x = 0.0 'I '2
 
 '3 '4
 
 I
 
 V =
 
 2
 
 V =
 
 x = 4.0
 
 0 '9545
 
 x = 0•0
 
 0.0000
 
 x = 4.0
 
 'I '2
 
 '9571
 
 •1
 
 I
 
 V =
 
 o•0000
 
 '2482 '3453 .4161 '4729
 
 2
 
 V =
 
 0•8647 •8713
 
 v=
 
 x = 0.0
 
 o•0000
 
 x = 4-o
 
 :2 1
 
 :0 00 22 84 2
 
 '2
 
 -.4 6
 
 0.7385 '7593 :7 79 78 66 5
 
 . 0598
 
 •8
 
 8130
 
 0.5 -6
 
 o.o811
 
 5.0
 
 0.8282
 
 •1036
 
 -2
 
 .99°04963
 
 •7
 
 '9137
 
 '9
 
 '4 •6 •8
 
 '8423 '8553
 
 '9
 
 •1268 •1505 •1746
 
 0'3935 '4231 '4512
 
 5.o
 
 0.9179 •9219
 
 1•0 •I
 
 0'1987 '2229
 
 6•o
 
 •I '2
 
 '2
 
 '8 977
 
 '3
 
 .2 .3
 
 '2470 '2709
 
 '5034
 
 '4
 
 '4
 
 '2945
 
 '4 '6 '8
 
 •9063
 
 .4780
 
 '9257 '9293 '9328
 
 5'5 '6
 
 0 '9361
 
 1.5
 
 0'3177
 
 6 .7
 
 .3406 .3631
 
 7'0 '2
 
 0'9281
 
 '9392
 
 '8 27 0
 
 '3851 '4066
 
 :4 6
 
 :93 49 508
 
 .8
 
 *9497
 
 0.4276 '4481
 
 8-o
 
 •4681
 
 ':4 86
 
 0'9540 '9579 6 199 .. 966647
 
 9-o
 
 0'9707
 
 '2
 
 '4
 
 '9733 '9756
 
 •i
 
 '9596
 
 '2
 
 :0 04 98 58 2
 
 '2
 
 ' 8775
 
 .9619
 
 '3 '4
 
 '1393
 
 '8835
 
 '3
 
 -o400
 
 .1813
 
 '3 -4.
 
 .8892
 
 '4
 
 0.9661 •9680 '9698 .9715 '9731
 
 0'5
 
 0'2212
 
 4:5
 
 0 • 8946
 
 •6 '7
 
 •2592
 
 •6
 
 '8997
 
 '2953
 
 '8
 
 '3297
 
 '9
 
 '3624
 
 0'9747 -9761 '9774 '9787
 
 1'0 'I
 
 '9799
 
 '4
 
 •3 '4
 
 '9641
 
 0•5
 
 0'5205
 
 •6 '7 •8 .9
 
 - 5614
 
 '5972 •6289 -6572
 
 4.5 •6 .7 -8 '9
 
 1•0
 
 0.6827
 
 5•0
 
 'I
 
 '7057
 
 'I
 
 '2
 
 '7267
 
 '2
 
 '3 '4
 
 '7458 '7633
 
 '3 '4
 
 I'5 '6 '7 •8 .9
 
 0 '7793
 
 0.9810 •9820
 
 1.5
 
 0.5276
 
 •6
 
 '9830 '9840
 
 .7
 
 •8203 -8319
 
 5'5 '6 '7 '8 '9
 
 '8
 
 -5507 .5726 '5934
 
 '9849
 
 .9
 
 .6133
 
 '9
 
 '9477
 
 2'0
 
 0'8427
 
 6.o
 
 0.9857
 
 2.: 0 3 1
 
 1 O.:68 33 24
 
 6:.!
 
 2 o:.99945520:
 
 •z
 
 ' 8527
 
 'I
 
 '65or
 
 '2
 
 •2
 
 -8620
 
 '2
 
 '9865 '9872
 
 '6671
 
 '3
 
 '4875
 
 '4
 
 '6988
 
 '4 •6 .8
 
 'I '2
 
 '9879 '9886
 
 '9550 '9592 •9631 -9666
 
 2'5
 
 0:55422 457
 
 '794 1 '8o77
 
 .2 '3
 
 '2
 
 3
 
 3
 
 :78
 
 •8
 
 '2
 
 •8672
 
 •8782 o•8884
 
 '9142
 
 '9214
 
 '9342
 
 '3
 
 ' 8706
 
 *4
 
 '8787
 
 '3 '4
 
 2•5
 
 0.8862
 
 6.5
 
 o'9892
 
 2•5
 
 0'7135
 
 7.o
 
 0'9698
 
 '6
 
 '8931
 
 '6
 
 '9898
 
 '6
 
 '7275
 
 '2
 
 '9727
 
 '7
 
 '8997
 
 '7
 
 '9904
 
 '9057
 
 '8
 
 '9909
 
 '9
 
 '9114
 
 '9
 
 '9914
 
 '9
 
 '7654
 
 '4 .6 '8
 
 '9753 .9776 '9798
 
 '7 .8 '9
 
 '5598
 
 '8
 
 :78
 
 503: :774
 
 '5927
 
 :6 8
 
 :97 977 97
 
 3'0
 
 0.9167 -9217
 
 7•0
 
 3-o •I
 
 0'7769
 
 8:2 o
 
 7 0:9 98314
 
 3• o .1
 
 o • 6o84 •6235
 
 10.0
 
 •1
 
 '2
 
 '7981 •8o8o '8173
 
 '4
 
 '9850
 
 '2
 
 •6
 
 '3
 
 '8
 
 •9864 '9877
 
 '4
 
 '6382 '6524 - 666o
 
 '4 '6 •8
 
 0.9814 •9831 '9845 '9859 •9871
 
 o•8262 '8347 '8428
 
 9'0 '2
 
 o•9889 '9899
 
 '4
 
 '9909
 
 '8577
 
 '6 '8
 
 '9918 '9926
 
 o.679z •6920 '7043 •7161 '7275
 
 I•o
 
 '8504
 
 3.5 -6 '7 -8 '9
 
 o'8647
 
 I0•0
 
 0.9933
 
 4'0
 
 0'7385
 
 '2
 
 '9264
 
 '2
 
 '3 '4
 
 '9307 '9348
 
 '3 '4
 
 0.9918 '9923 '9927 '9931 '9935
 
 3'5 '6 '7 '8 '9
 
 0'9386 '9422 '9456 '9487
 
 7.5 '6
 
 0'9938 '9942
 
 '7
 
 '9945
 
 '8
 
 '9517
 
 '9
 
 '9948 '9951
 
 3.5 '6 '7 '8 '9
 
 4'0
 
 0 '9545
 
 8'o
 
 0.9953
 
 4'0
 
 'I
 
 •3 '4
 
 •7878
 
 37
 
 . 5765
 
 •2
 
 •2
 
 0.9883 •9893
 
 '4
 
 '9903
 
 •6 '8
 
 .9911 .9919
 
 12'0
 
 0'9926
 
 TABLE 7. THE x2-DISTRIBUTION FUNCTION 9
 
 xo
 
 II
 
 .00x 8 •0073 •0190
 
 o'0006 •0029 •oo85
 
 0'0002
 
 0•0001
 
 •0011 •0037
 
 0.0729
 
 0.0383
 
 •1150
 
 '0656
 
 0.0191 .0357
 
 0.0091 •0186
 
 v=
 
 4
 
 5
 
 6
 
 7
 
 8
 
 X = 0'5 1•0
 
 0'0265 •0902
 
 0'0079
 
 0'0022
 
 0'0006
 
 0'000 I
 
 '0374
 
 1.5
 
 .1734
 
 •o869
 
 •0144 •0405
 
 2'0
 
 •2642
 
 •1509
 
 •0803
 
 •0052 •0177 •0402
 
 2'5 3•0
 
 0.3554
 
 0.2235
 
 0.1315
 
 '4422
 
 •3000
 
 •1912
 
 12
 
 13
 
 14
 
 •0004 •0015
 
 0.0001 •0006
 
 0•0002
 
 0.0001
 
 0'0042
 
 0'0018
 
 •0093
 
 •0045
 
 00008 •0021
 
 0.0003 -0009
 
 3'5 4'0 4'5
 
 •5221
 
 '3766
 
 '2560
 
 •1648
 
 •'008
 
 '0589
 
 '0329
 
 '0177
 
 '0091
 
 '0046
 
 '0022
 
 '5940
 
 '4506 '5201
 
 '3233 . 3907
 
 •2202 .2793
 
 •1429 '1906
 
 -o886 •1245
 
 •o527 •0780
 
 •0301 -4471
 
 .ol 66 •0274
 
 •oo88 •0154
 
 '0045 ' 0084
 
 5.0
 
 0.7127
 
 0.4562 •5185 . 5768 '6304 .6792
 
 0.3400 •4008 '4603 •5173 '5711
 
 o'2424 •2970 •3528 •4086 *4634
 
 0.1657 •2113 •26o x •3110 *3629
 
 0.1088 .1446 •1847 •2283 .2746
 
 0.0688 .o954 •1266 •16zo •2009
 
 0'0248
 
 0'0142
 
 •7603 •8009
 
 0.5841 •6421 .6938 '7394 . 7794
 
 0'0420
 
 5.5 6•o 6.5 7.0
 
 •0608 •o839 •1112 .1424
 
 '0375 .0538 - 0978
 
 '0224 '0335 '0477 '0653
 
 0.8140 .8438 .8693 .8909 *9093
 
 0.7229 .7619 '7963 '8264 '8527
 
 0.6213 '6674 *7094 '7473 •7813
 
 0.5162 '5665 .6138 '6577 •6981
 
 0.4148 '4659 •5154 '5627 •6075
 
 0.3225 '3712 '4199 '4679 .5146
 
 0.2427 •2867 '3321 *3781 '4242
 
 0.1771 •2149 *2551 •2971 •3403
 
 0.1254 •1564 '1904 •2271 •2658
 
 0.0863 •1107 -1383 •1689 -zozz
 
 0'9248 *9378 '9486 .9577 •9652
 
 0'8753 .8949 •9116 .9259 •9380
 
 0.8114 -838o •8614 •8818 -8994
 
 0'7350 •7683 '7983 •8251 .8488
 
 0.6495 •6885 '7243 •7570 .7867
 
 0'5595
 
 •6022 '6425 •6801 . 7149
 
 0'4696 •5140 '5567 •5976 '6364
 
 0.3840 *4278 . 4711 .5134 '5543
 
 0•3061 '3474 •3892 .4310 '4724
 
 0.2378 .2752 •3140 .3536 '3937
 
 0.9715 *9766 '9809 '9844 '9873
 
 0'9483
 
 0'9147
 
 '9279 '9392 .9488 '9570
 
 o'8697 •8882 .9042 •9182 '9304
 
 0.8134 * 8374 .8587 •8777 .8944
 
 0.7470 '7763 .8030 .8270 *8486
 
 0.6727 .7067 .7381 7 6 7o '7935
 
 0.5936 .6310 •6662 .6993 '7301
 
 0.5129 . 5522 . 5900 •6262 •6604
 
 0'4338
 
 '9570 '9643 '9704 '9755
 
 0'9896 '9916 '9932 '9944 '9955
 
 0'9797 .9833
 
 •9862 '9887 '9907
 
 0.9640 *9699 '9749 '9791 •9826
 
 0.9409 '9499 '9576 '9642 '9699
 
 0.9091 '9219 '9331 .9429 '9513
 
 0.8679 .8851 •9004 •9138 .9256
 
 0.8175 '8393 •8589 •8764 •8921
 
 0.7586 '7848 •8088 •8306 •8504
 
 o•6926 .7228 •7509 •7768 '8007
 
 o.6218 '6551 •6866 •7162 '7438
 
 0.9924 .9938 '9949 .9958 *9966
 
 0.9856 •9880 '9901 .9918 '9932
 
 0'9747 .9788
 
 '9822 '9851 '9876
 
 0'9586 '9648 '9702 .9748 .9787
 
 0.9360 •9450 '9529 '9597 .9656
 
 0.9061 '9184 *9293 '9389 '9473
 
 0.8683 '8843 *8987 '9115 .9228
 
 0.822.6 '8425 -8606 .8769 •8916
 
 0.7695 .7932
 
 '9992 '9994
 
 0. 9964 '9971 '9976 '9981 .9984
 
 20 21 22 23
 
 0'9995
 
 0'9988
 
 0'8699
 
 '9999
 
 0.9707 '9789 '9849 '9893 '9924
 
 0 '9048
 
 24
 
 0.9821 *9873 '9911 '9938 '9957
 
 0 '9329
 
 '9962 '9975 '9983 '9989
 
 0.9897 *9929 '9951 '9966 '9977
 
 0 '9547
 
 '9992 '9995 '9997 '9998
 
 0.9972 •9982 '9988 '9992 '9995
 
 0 '9944
 
 '9997
 
 '9666 '9756 *9823 '9873
 
 *9496 '9625 '9723 '9797
 
 .9271 '9446 *9583 '9689
 
 *8984 '9214 '9397 '9542
 
 25 26 27
 
 0 '9999
 
 0 '9999
 
 0 '9997
 
 0.9984 '9989 '9993 '9995 '9997
 
 0'9970 '9980 '9986 '9990 '9994
 
 0.9769 .9830
 
 0'9654
 
 '9963 '9974 '9982 '9988
 
 0'9909 '9935 '9954 '9968 '9977
 
 0'9852
 
 '9998 '9999 '9999 '9999
 
 0'9992 '9995 '9997 '9998 '9999
 
 0 '9947
 
 '9999
 
 0 '9999
 
 0'9998
 
 0'9996
 
 0.9991
 
 0'9984
 
 0 '9972
 
 '6575
 
 *8352
 
 -8641
 
 7'5 8•o 8.5 9.0 9'5
 
 o-8883 '9084
 
 10.0 xo.5 x•o
 
 -9251 .9389 '9503
 
 11•5
 
 0.9596 .9672 '9734 .9785
 
 12.0
 
 •9826
 
 12•5
 
 13.0 13.5
 
 0.9860 •9887 '9909
 
 14•0
 
 *9927
 
 14.5
 
 '9941
 
 15.0 15.5 16•o
 
 0 '9953
 
 16.5 17'0
 
 .9976 .9981
 
 17.5
 
 0 '9985
 
 18•o 18'5 19.0 19.5
 
 '9988
 
 28 29 30
 
 '9962 .9970
 
 '9990
 
 '9998 '9999
 
 '9999
 
 38
 
 6
 
 '9893 '9923 '9945 '9961
 
 ' 0739
 
 '4735 •5124 •5503 •5868
 
 •8151 .8351 '8533
 
 '9876 '9910 '9935
 
 -9741 -9807 '9858 '9895
 
 0 '9953
 
 0 '9924
 
 TABLE 7. THE f-DISTRIBUTION FUNCTION v= X
 
 15
 
 x6
 
 17
 
 18
 
 19
 
 =3 4
 
 0.0004 •0023
 
 0'0002
 
 0'0001
 
 •001I
 
 '0005
 
 0'0002
 
 0'000 I
 
 5 6 7 8 9
 
 0.0079 •0203 •0424 -0762 •I225
 
 0'0042
 
 0'0022
 
 0'001 I
 
 •0 I 19
 
 •oo68
 
 •o267
 
 •0165
 
 '051 I
 
 •0335
 
 •o866
 
 •0597
 
 •0038 •0099 '0214 •0403
 
 10 II 12
 
 0'1803
 
 0.1334 •1905
 
 0.0964 •1434
 
 •2560
 
 •1999
 
 •3977 '4745
 
 •3272 .4013
 
 '2638 •3329
 
 o•o681 •1056 •1528 •2084 '2709
 
 13
 
 '5 16 17 x8 19
 
 0 '5486
 
 0.4754 '5470 .6144 .6761 .7313
 
 0 '4045
 
 0•3380
 
 •4762 .5456 -6112 .6715
 
 20 21 22 23 24
 
 0'8281
 
 0.7708 '821 5 •8568 •8863 '9105
 
 25 26 27
 
 0'9501
 
 14
 
 '2474 '3210
 
 •6179 •6811 '7373 •7863
 
 •8632 •8922 •9159
 
 '9349
 
 20
 
 21
 
 22
 
 23
 
 24
 
 25
 
 0•0006
 
 0'0003
 
 0.0001
 
 •0021 •0058 •0133 •0265
 
 •00II
 
 '0006
 
 •0033 •oo8 1 .0 r 7 1
 
 •0019 •0049 •0'08
 
 0.0001 •0003 •00I0 •oo28 •oo67
 
 0.0001 •0005 -00'6 •0040
 
 0.0001 •0003 •0009 •0024
 
 0.0001 •0005 •0014
 
 0.0471 •0762 •1144 •1614 •2163
 
 0'0318
 
 0'0211
 
 0'0137
 
 0'0087
 
 0'0055
 
 0'0033
 
 -0538 •0839 •1226 •1695
 
 .0372 •0604 •0914 '1304
 
 •0253 •0426 •0668 •0985
 
 •0168 •0295 •0480 .0731
 
 .oi To •0201 •0339 .0533
 
 '0235 •0383
 
 '4075 '4769 •5443 •6082
 
 0.2774 '3427 •4101 '4776 '5432
 
 0.2236 •2834 •3470 '4126 .4782
 
 0.1770 .2303 •2889 '3510 '4149
 
 0.1378 .1841 •2366 '2940 '3547
 
 0'1054 •1447 •1907 •2425 *2988
 
 0.0792 •x '19 •1513 .1970 .2480
 
 0.0586 '0852 . i '82 '1576 .2029
 
 0.7258 '7737 •8153 •8507 •8806
 
 0.6672 •7206 •7680 •8094 •8450
 
 0.6054 •6632 •7157 •7627 .8038
 
 0.5421 •6029 .6595 -7112 . 7576
 
 0.4787 '5411 '6005
 
 0.4170 '4793 '5401
 
 '6560
 
 * 5983
 
 •7069
 
 .6528
 
 0.3581 '4189 '4797 '5392 . 5962
 
 0.3032 '3613 '4207 .4802 '5384
 
 0.2532 '3074 '3643 •4224 -4806
 
 0.9053 *9255 '9419 '9551 '9655
 
 0.8751 •9002 •9210 '9379 '9516
 
 0.8395 •8698 -8953 .9166 '9340
 
 0'7986 .8342 •8647 •8906 '9122
 
 0.7528 *7936 •8291 •8598 •886o
 
 0.7029
 
 0.6497 '6991 .7440 '7842 '8197
 
 0'5942
 
 '7483 •7888 •8243 •8551
 
 0.5376 '5924 '6441 -6921 '7361
 
 •0071 '0134
 
 28
 
 '9713 '9784
 
 29
 
 '9839
 
 0.9302 '9460 '9585 •9684 '9761
 
 30 31 32 33
 
 0.9881 '9912 .9936 '9953 '9966
 
 0.9820 •9865 .9900 .9926 '9946
 
 0 '9737
 
 0'9626 '9712 .9780 '9833 '9874
 
 0.9482 '9596 '9687 -9760 '98,6
 
 0'9301 '9448 '9567 .9663 '9739
 
 0.9080 '9263 '9414 .9538 '9638
 
 0.8815 •9039 '9226 -9381 '9509
 
 0.8506 •8772 .8999 '9189 '9348
 
 o.8x 52 •8462 •8730 .8959 .9153
 
 0 '7757
 
 •9800 '9850 .9887 '9916
 
 35 36 37 38 39
 
 0'9975
 
 0.9960 '9971 '9979 '9985 '9989
 
 0.9938 '9954 '9966 '9975 .9982
 
 0.9905 '9929 '9948 '9961 '9972
 
 0.9860 .9894 '9921 '9941 -9956
 
 0 '9799
 
 '9846 '9883 .9911 '9933
 
 0'9718 .9781 '9832 .9871 .9902
 
 0.9613 '9696 .9763 '9817 '9859
 
 0'9480 '9587 '9675 '9745 '9802
 
 0.9316 '9451 '9562 '9653 .9727
 
 0'9118 '9284 '9423 '9537 .9632
 
 40 41 42 43 44
 
 0 '9995
 
 0'9992 '9994 '9996 '9997 '9998
 
 0'9987
 
 '9997 '9998 '9998 '9999
 
 '9991 '9993 '9995 '9997
 
 0.9979 •9985 '9989 .9992 '9994
 
 0'9967 '9976 .9982 .9987 '9991
 
 0.9950 '9963 '9972 .9980 '9985
 
 0.9926 .9944 .9958 .9969 '9977
 
 0.9892 '9918 '9937 '9953 '9965
 
 0.9846 '9882 .9909 .9931 '9947
 
 0.9786 .9833 '9871 .9901 '9924
 
 0.9708 .9770 '9820 •986o '9892
 
 45 46 47 48 49
 
 0 '9999
 
 0 '9999
 
 0'9996 '9997 '9998 '9998 '9999
 
 0 '9973
 
 0 '9960
 
 0.9942
 
 0 '9916
 
 '9995 '9996 '9997 '9998
 
 0'9989 '9992 '9994 '9996 '9997
 
 0'9983
 
 '9999 '9999
 
 0'9998 '9998 '9999 '9999 '9999
 
 0 '9993
 
 '9999
 
 '9987 '9991 '9993 '9995
 
 -9980 '9985 '9989 '9992
 
 '9970 '9978 '9983 .9988
 
 '9956 '9967 '9975 '9981
 
 '9936 '9951 '9963 .9972
 
 0 '9999
 
 0 '9999
 
 0 '9998
 
 0 '9996
 
 0 '9994
 
 0.9991
 
 0'9986
 
 0.9979
 
 34
 
 50
 
 •9620
 
 '9982 .9987 '9991 '9994
 
 39
 
 '6468 '6955 .7400 '7799
 
 -8i io •842o •8689 '8921
 
 TABLE 8. PERCENTAGE POINTS OF THE x2-DISTRIBUTION This table gives percentage points equation
 
 g(p)
 
 P/100
 
 defined by the
 
 co -
 
 12 1-1/PN f,p)X1P-1
 
 100 2'
 
 e-i' dx.
 
 If X is a variable distributed as X2 with v degrees of freedom, Phoo is the probability that X 26(P). For v > loo, ✓2X is approximately normally distributed with mean ✓2v-1 and unit variance.
 
 V
 
 =
 
 0 x(P) (The above shape applies for v 3 3 only. When v < 3 the mode is at the origin.)
 
 8o
 
 P
 
 99'95
 
 99'9
 
 99'5
 
 99
 
 97'5
 
 95
 
 90
 
 I
 
 0.06 3927 0.00I000 0 . 01528
 
 0'051571 0'002001 0'02430
 
 0'043927 0.01003 0'07172
 
 0'031571 0'02010 0'1148
 
 0'039821 0.05064 0'2158
 
 0'003932 0'1026 0'3518
 
 0'01579
 
 0;6 04 69 418
 
 0;0 26 10 47 0- 5844
 
 0.4463 roo5
 
 0.06392
 
 0 09080
 
 0.2070
 
 0.2971
 
 0.4844
 
 0.7107
 
 2
 
 3 4 5 6 7 8 9
 
 .
 
 0.1581
 
 0.2102
 
 0.4117
 
 0 '5543
 
 0.8312
 
 P145
 
 1.610
 
 2 '343
 
 0.2994
 
 0'3811
 
 0'6757
 
 0.8721
 
 V237
 
 P635
 
 2'204
 
 3'070
 
 0 '4849
 
 0 '5985 0.8571 1.152
 
 0'9893 1.344 P735
 
 1'239 1.646
 
 1.690 2.180
 
 2.088
 
 2/00
 
 2.167 2133 3'325
 
 2.833 3'490 4'168
 
 3.822 4'594 5.380 6.179 6.989 7.807 8.634 9'467
 
 0/104
 
 0.9717
 
 xo
 
 1'265
 
 1 '479
 
 2.156
 
 2'558
 
 II
 
 1 .587
 
 1 . 834
 
 2.214
 
 3-053 3'571 4'107 4'660
 
 3'247 3.816 4'404 5.009 5.629
 
 3'940 4'575 5.226 5.892 6.571
 
 4'865 5'578 6.304 7.042 7'790
 
 7.261 7.962 8.672 9'390 10•12
 
 8.547 9.312 10.09 10•86 11. 65
 
 12.86 13.72
 
 10-85 11.59 12- 34 13.09 13.85
 
 12.44 13.24 14'04 14'85 15.66
 
 12
 
 1 '934
 
 13 14
 
 2 . 305
 
 2. 617
 
 2.697
 
 3.041
 
 2.603 3'074 3.565 4'075
 
 15 16
 
 3-108 3'536 3.980 4'439 4'912
 
 3'483 3'942 4'416 4.905 5'407
 
 4'601 5. 142 5.697 6.265 6.844
 
 5.229 5.812 6.408 7.015 7633
 
 6.262 6.908 7'564 8'231 8.907
 
 5'398 5.896
 
 5.921 6.447
 
 7'434 8.034 8- 643 9-260 9.886
 
 8.260 8.897
 
 9'591 10•28 :0;9689
 
 17
 
 18 19 20 21 22 23 24
 
 6'404
 
 6.983
 
 6- 924 7'453
 
 7-529 8.085
 
 1902 10.86
 
 12.40
 
 70
 
 6o
 
 0 . 1485 0/133 12 94 5 1 2:4
 
 0'2750 P022 3 76 59 2 1.- 8
 
 3-000 3.828 4'671 5'527 6 '393
 
 3.655 4.570 5'493 6.423 7'357
 
 7.267 8.148 99 9:02 3:
 
 8.295 9'237 io.: Ir3 8
 
 1o•82
 
 12-08
 
 11.72 12.62 13'53 14'44 15.35
 
 13.03 13.98 14'94 15 .89 16.85
 
 14'58 15'44 16. 31 17.19 18.06
 
 16.27 17.18 18.10
 
 17.81 18.77 19.73
 
 19.02
 
 20.69
 
 19'94
 
 21.65
 
 20.87 2P79 22.72
 
 22.62 23'58
 
 10.31 11.15 12'00
 
 25
 
 7'991
 
 8.649
 
 10.52
 
 11.52
 
 13.12
 
 14'61
 
 16'47
 
 18.94
 
 26
 
 8.538
 
 9.222
 
 11'16
 
 12'20
 
 13'84
 
 15'38
 
 17.29
 
 19.82
 
 27 28 29
 
 9.093
 
 18•1i
 
 20.70 21.59 22.48
 
 ir81
 
 1z.88
 
 14'57
 
 12'46 13.12
 
 13'56
 
 15'31 16.05
 
 0.15 16.93
 
 18.94
 
 10.23
 
 10'39 10.99
 
 17.71
 
 19.77
 
 10.80 11.98 13.18
 
 11.59 12.81 14.06
 
 18'49
 
 205,-60
 
 25'51
 
 20'07
 
 22- 27 22 26 53-"93 14 56
 
 -64
 
 38
 
 15'64
 
 16 61
 
 .
 
 .
 
 2:98r:382491 22-88
 
 21.66 23 27 24.88
 
 23.95
 
 15'32
 
 14'95 16.36 17'79 10.23 20 69
 
 16.79
 
 14.40
 
 13.79 15.13 16.50 17 89 19 29
 
 28.73 30'54
 
 27-37 29.24 31 12 32 99 .
 
 27-44 29-38 31.31 33.25 35-19
 
 40 50
 
 16.9z 23-46 30'34 37'47 44'79
 
 17 92
 
 20'71
 
 22 . 16
 
 24'43
 
 26.51
 
 24-67 31'74 39'04 46'52
 
 27-99 35'53 178 4 51 3:2
 
 29-71
 
 32.36 4570-.4185 48.76
 
 3520. 3 64 41'45
 
 34'87 1 81 44 5;3
 
 37'13 66 4 56.-82
 
 63.35 72.92
 
 66.40 76 19
 
 52•28 59.90
 
 54' 16 61.92
 
 59.20 67.33
 
 30
 
 32
 
 34 36
 
 6o 70 8o 90 I00
 
 9'656
 
 9.803
 
 .
 
 .
 
 .
 
 14'26
 
 8 3 47 5:444 53'54 61.75 70.06
 
 65.65 74' 22
 
 40
 
 .
 
 434 37196 51'74 6o 39
 
 27-34 29.05 37-69 5456:3463
 
 23.65 24.58
 
 .
 
 24'54 25.51 26.48
 
 .
 
 64.28
 
 59'90 69.2!
 
 69.13 77'93
 
 73'29 82.36
 
 78.56
 
 82'51
 
 85 . 99
 
 87.95
 
 92-13
 
 95.81
 
 .
 
 TABLE 8. PERCENTAGE POINTS OF THE f-DISTRIBUTION This table gives percentage points x;,(P) defined by the equation
 
 rco 100
 
 2142
 
 rq)
 
 A( p)
 
 xiv-1 e- P dx. 0
 
 If Xis a variable distributed as x2 with v degrees of freedom, Phoo is the probability that X x,2,(P). For v > ioo, VzX is approximately normally distributed with meanzi .s/ and unit variance.
 
 P
 
 50
 
 v=I
 
 40
 
 (The above shape applies for v at the origin.)
 
 30
 
 20
 
 To
 
 5 3.841 5'991 7'815 9.488
 
 2 3 4
 
 1.386 2.366 3'357
 
 0'7083 1.833 2.946 4'045
 
 1.074 2.408 3'665 4'878
 
 1.642 3'219 4.642 5'989
 
 2.706 4'605 6.251 7'779
 
 5 6 7 8 9
 
 4'351 5.348 6.346 7'344 8.343
 
 5.132 6.2i 1 7.283 8'351 9'414
 
 6.064 7.231 8.383 9'524
 
 7.289 8.558
 
 9.236 10.64
 
 II
 
 9'342 10.34
 
 0 '4549
 
 X,2,'(P)
 
 2'5
 
 I
 
 3 only. When v < 3 the mode is
 
 0'5
 
 0•I
 
 0'05
 
 5.024 7'378 9'348 11.14
 
 6.635 9.210 11'34 13.28
 
 7.879 10•6o 12.84 14.86
 
 10'83
 
 12'12
 
 13.82 16'27 18'47
 
 15.2o 17'73 20.00
 
 11.07 12'59
 
 12.83 14'45
 
 15 '09
 
 20'52 22'46 24'32 26'12 27'88
 
 22'II 24'10 26'02 27'87 29'67
 
 12'02
 
 14'07
 
 16'01
 
 18.48
 
 11.03
 
 13.36
 
 15'51
 
 17'53
 
 10•66
 
 12'24
 
 14'68
 
 16'92
 
 19'02
 
 20'09 21'67
 
 16.75 18.55 20.28 21.95 23.59
 
 10'47 1P53
 
 11.78 12'90
 
 13.44 14.63
 
 15'99 17.28
 
 18.31
 
 20'48 21'92
 
 23.21 24'72
 
 25.19
 
 29'59
 
 31'42
 
 19'68
 
 2616
 
 31'26
 
 14'01 15'12
 
 15•81 16'98
 
 18'55 19'81
 
 21.03
 
 23.34
 
 26.22
 
 22'36
 
 24'74
 
 27'69
 
 16.22
 
 18.15
 
 21.06
 
 23.68
 
 26.12
 
 29.14
 
 28.30 29.82 31.32
 
 32.91 34'53 36.12
 
 33'14 34'82 36.48 38.11
 
 19.31 20'47 z1•61 22.76 23.90
 
 22.31 23'54 24'77 25'99 27.20
 
 25.00 26.3o 2759 28.87 30.14
 
 27'49 28'85
 
 32.80 34'27 35'72 3716 38.58
 
 37'70 39'25 40'79 42.31 43'82
 
 39'72 41.31
 
 30.19 31•53 32.85
 
 30.58 32.00 33'41 34' 81 36.19
 
 28'41
 
 27'10
 
 25.04 26.17 27.30 28'43 29.55
 
 29'62 30'81 32'01 33'20
 
 31.41 32.67 33'92 35'17 36.42
 
 34'17 35'48 36.78 38.08 39'36
 
 37'57 38.93 40'29 41'64 42 .98
 
 40.00 4P40 42.80 44' 18 45'56
 
 45'31 46.80 48'27 49'73 51.18
 
 47'50 49'01 50.51 52.00 53'48
 
 29
 
 28.17 29.25 30.32 31.39 32.46
 
 30.68 31•79 32.91 34'03 35'14
 
 34'38 35'56 36.74 37'92 39'09
 
 3765 38.89 40.11 41'34 42.56
 
 40.65 41'92 43'19 44'46 45'72
 
 44'31 45'64 46 .96 48.28 49'59
 
 46'93 48.29 49'64 50'99 52. 34
 
 52.62 54'0 5 55'48
 
 27'34 28'34
 
 26.14 27.18 28.21 29.25 30.28
 
 56-89 58'30
 
 54'95 56.41 57.86 59'30 60.73
 
 30 32 34 36 38
 
 29. 34 31'34 33'34 35'34 37'34
 
 31'32 33'38 35'44 37'50 39'56
 
 33'53 35'66 37'80 39'92 42.05
 
 36.25 38'47 40.68 42.88 45.08
 
 40'26 42'58 44'90 4721 49'51
 
 43'77 46'19 48.60 51'00 53.38
 
 46'98 49'48 51.97 54'44 56.90
 
 50'89 53'49 56.06 58.6z 61•16
 
 53'67 56'33 58.96 61.58 64.18
 
 5910 62.49 65.25 67.99 70'70
 
 62.16 65•oo 67.8o 70'59 73'35
 
 40 50 6o
 
 39.34 49'33 59.33 69.33 79.33
 
 41.62 51'89 62.13 72.36 82.57
 
 44'16 54'72 65.23 75.69 86.,2
 
 47' 27 58.16 68.97 79'71 90'41
 
 51.81 63.17 74'40 85'53 96.58
 
 55'76 67.5o 79.08 90.53 I01.9
 
 59'34 71.42 83.3o 95.02 106.6
 
 63.69 76.15 88.38 100'4 rI2•3
 
 66.77 79'49 91'95 104.2 116.3
 
 73'40 86.66 99.61 112.3 124.8
 
 76'09 89'56 102'7
 
 89.33 99.33
 
 92.76 102.9
 
 96.52 106.9
 
 124.3
 
 118•1 129.6
 
 124'1 135.8
 
 128.3 140.2
 
 149'4
 
 12
 
 11'34
 
 12'58
 
 13 14
 
 12.34 13.34
 
 13'64 14.69
 
 15
 
 14'34 15'34
 
 15'73
 
 1732
 
 16.78 17.82 18.87 19.91
 
 18.42 19'51 20.60
 
 20'95 21.99
 
 22.77 23.86 24'94 26'02
 
 16 17 18 19
 
 16'34 17'34 18'34
 
 20
 
 19.34
 
 21
 
 20'34
 
 22 23
 
 21 '34
 
 24
 
 23'34
 
 25 26
 
 24'34 25'34
 
 27 28
 
 70
 
 8o 90
 
 zoo
 
 22 '34
 
 26 '34
 
 23.03 24'07 25•11
 
 21'69
 
 9'803
 
 111.7
 
 107.6 118.5
 
 41
 
 16.81
 
 1372
 
 45'97
 
 115.6 128.3 140.8 153'2
 
 TABLE 9. THE t-DISTRIBUTION FUNCTION The function tabulated is
 
 F„(t)
 
 ray +1-) f
 
 =
 
 ,
 
 VV 7T
 
 - co k I m
 
 ds svoi(v+i) .
 
 F„(t) is the probability that a random variable, distributed as t with v degrees of freedom, will be less than or equal to t. When t < o use F„(t) = i F„( t), the t distribution being symmetric about zero. The limiting distribution of t as v tends to infinity is the normal distribution with zero mean and unit variance (see Table 4). When v is large interpolation in v should be harmonic. -
 
 V
 
 =
 
 I
 
 -
 
 V =
 
 V =
 
 Omitted entries to the right of tabulated values are (to four decimal places).
 
 V =
 
 2
 
 t = o 0 0.5000 •1 '5317
 
 t = 4•0 4.2
 
 0.9220 .9256
 
 '2
 
 '5628
 
 .9289 '9319 '9346
 
 •5700
 
 -2
 
 .5928 •621
 
 4'4 4'6 4.8
 
 '2
 
 .3 '4
 
 •3 '4
 
 -6038 •6361
 
 '3 '4
 
 0.5
 
 0'6476
 
 •6
 
 •6720
 
 .7
 
 '6944
 
 •8 '9
 
 •7148 '7333
 
 5.0 5'5 6.0 6.5 7.0
 
 0.9372 '9428 '9474 '9514 '9548
 
 0.5 -6 '7 -8 '9
 
 0.6667 .6953 •7218 '7462 • 684
 
 I•0
 
 0.7500
 
 I.0
 
 •7651
 
 7.5 8.0
 
 0.9578
 
 I
 
 '2
 
 '7789
 
 8.5
 
 •9627
 
 '2
 
 '3
 
 '7913 •8026
 
 9.0 9.5
 
 .9648 .9666
 
 1.5 •6 •7 •8 '9
 
 0.8128
 
 10. 0 I0•5
 
 -8386 '8458
 
 II-5 I2•0
 
 2•0
 
 0.8524 •,_, R585
 
 12.5
 
 '2
 
 •3 '4 2'5
 
 0.8789
 
 •6 •7 -8 .9
 
 •8831 -8871
 
 t = 0.0
 
 0.5000 '5353
 
 2
 
 v= t = 0.0
 
 3
 
 V
 
 =
 
 3
 
 0•5000
 
 t = 4.0
 
 .5367
 
 .1
 
 0.9860 .9869
 
 '2
 
 '5729
 
 '2
 
 '9877
 
 .9760
 
 •3 '4
 
 •6081 •6420
 
 •3 '4
 
 '9891
 
 4'5 '6 '7 -8 '9
 
 0 '9770
 
 0.5
 
 0. 6743
 
 4'5
 
 '9779
 
 -6
 
 .7046
 
 .6
 
 '9788 '9804
 
 .7 •8 •9
 
 -7328 .7589 -7828
 
 '7 .8 '9
 
 5'0
 
 0'9811
 
 I.0
 
 '2
 
 •9818 .9825
 
 •I '2
 
 0 '8045 - 8242 - 8419
 
 5•0 •I •2
 
 0.9923
 
 I
 
 '3 '4
 
 0.7887 8070 -8235 -8384 •8518
 
 •3 '4
 
 .9831
 
 '9837
 
 •3 '4
 
 .8578 •872o
 
 '3 '4
 
 '9934 '9938
 
 0.9683 •9698 .9711 '9724 '9735
 
 r5 •6 '7 .8 .9
 
 0.8638 .8746 - 8844 .8932 .9011
 
 5'5
 
 0.9842 •9848 '9853 .9858 •9862
 
 /.5 -6 •7 -8 •9
 
 0.8847 •8960
 
 5.5 .6 '7 .8 '9
 
 0'9941
 
 0'9746 .9756
 
 21)
 
 0'9082
 
 6.0
 
 0.9303 '9367
 
 '8642
 
 13.5
 
 '9765
 
 '2
 
 '9206
 
 •I '2
 
 '9875
 
 2'0 'I '2
 
 0 '9954
 
 '9147
 
 0.9867 -9871
 
 6.0
 
 13•0
 
 '9424
 
 .8695
 
 14.0
 
 '9773
 
 14'5
 
 '9781
 
 '9308
 
 '3 '4
 
 '9879 '9882
 
 '3 '4
 
 '9475 .9521
 
 -9960
 
 '8743
 
 '3 '4
 
 •2 •3 '4
 
 . 9961
 
 15
 
 0.9788
 
 2.5
 
 6.5
 
 0'9561
 
 •6 .7 -8 •9
 
 .9598 .9631
 
 - 8943
 
 .6 '7 .8 '9
 
 -9687
 
 6.5 -6 -7 -8 '9
 
 0.9963
 
 •9801 •9813 -9823 .9833
 
 0.9886 -9889
 
 2'5
 
 16 17 i8 19
 
 3•0 •I '2
 
 0. 8976 •9007 '9036
 
 20 21 22
 
 0'9841
 
 3•0
 
 'I
 
 0.9712 '9734
 
 7.0 •I
 
 -3 '4
 
 •9063 -9089
 
 23
 
 •9862
 
 0.9970 .9971 -9972 '9973
 
 24
 
 3.5 •6 .7 -8 •9
 
 0'9114
 
 25
 
 •9138 -916o •918z •9201
 
 30
 
 4'0
 
 0'9220
 
 '4
 
 •8222 -8307
 
 -8908
 
 •9604
 
 t = 4*0 •I
 
 -
 
 •6 '7 •8 •9
 
 '9259
 
 0.9352 -9392
 
 •6 .7 -8
 
 '9429 -9463 '9494
 
 0 '9714
 
 .9727 '9739 '9750
 
 -9796
 
 -9892 .9895
 
 •9062 •9152 .9232
 
 -9661
 
 1
 
 •9884
 
 0.9898 •9903 .9909 . 9914
 
 '9919 -9927 '9931
 
 '9944 '9946 '9949
 
 '9951 -9956 -9958
 
 .9965 -9966
 
 .9967
 
 .9
 
 -9898
 
 7•0 •I '2
 
 .9753
 
 •2
 
 '9867
 
 '3 '4
 
 0.9901 '9904 .9906 .9909 •9911
 
 3•0
 
 '3 '4
 
 0.9523 '9549 '9573 '9596 •9617
 
 '3 '4
 
 '9771 '9788
 
 '3 '4
 
 3'5 •6 .7 -8 '9
 
 0.9636 - 9654 •9670 •9686 •97ot
 
 7.5 -6 -7 •8 •9
 
 0.9913 •9916 •9918 •9920 .9922
 
 3.5 -6 '7 .8 .9
 
 0.9803 •9816 -9829 '9840 •9850
 
 7'5 .6 '7 -8 '9
 
 0 '9975
 
 45
 
 0.9873 '9894 '9909 •9920 '9929
 
 50
 
 0'9936
 
 4 '0 0.9714
 
 8.0
 
 0.9924
 
 4.0
 
 0.9860
 
 8.0
 
 0.9980
 
 35
 
 40
 
 '9849 '9855
 
 '2
 
 42
 
 2
 
 '9969
 
 '9974
 
 .9976 '9977 -9978 '9979
 
 TABLE 9. THE t-DISTRIBUTION FUNCTION 4
 
 5
 
 6
 
 7
 
 8
 
 9
 
 xo
 
 II
 
 12
 
 13
 
 14
 
 t = 0.0
 
 0.5000
 
 0•50o0
 
 0.5000
 
 0.500o
 
 0.5000
 
 0.5000
 
 0.5000
 
 0.500o
 
 0.500o
 
 0.500o
 
 0.5000
 
 'I •2
 
 '5374 '5744
 
 '3 '4
 
 •6104 . 6452
 
 '5379 '5753 •6119 '6472
 
 .5382 .5760 •6129 .6485
 
 .5384 '5764 •6136 . 6495
 
 .5386 .5768 •6141 •6502
 
 '5387 '5770 •6145 •6508
 
 .5388 '5773 •6148 •6512
 
 •5389 '5774 •6151 •6516
 
 '5390 '5776 •6153 •6519
 
 '5391 '5777 •6155 •6522
 
 '5391 '5778 .6157 •6524
 
 0.5 •6 '7 .8
 
 0•6783
 
 0.6809
 
 0.6826
 
 •7096 .7387 .7657
 
 .7127
 
 •7148
 
 '9
 
 •7905
 
 '7424 •7700 '7953
 
 '7449 '7729 .7986
 
 0•6838 •7163 '7467 '7750 •8oio
 
 0•6847 '7174 •7481 .7766 -8028
 
 0•6855 -7183 '7492 '7778 •8042
 
 0.6861 .7191 •7501 .7788 •8054
 
 0•6865 '7197 •7508 '7797 •8063
 
 0•6869 •7202 •7514 •7804 •8o71
 
 0•6873 •7206 .7519 •7810 •8078
 
 0•6876 •7210 •7523 •7815 •8083
 
 ro •x
 
 o•813o •8335 •8518 •8683 •8829
 
 0•8184 •8393 •8581 .8748 .8898
 
 0.8220 - 8433 •8623 •8793 .8945
 
 0•8247 •8461 •8654 •8826 '8979
 
 0.8267 •8483 •8678 •8851 •9005
 
 0•8283 •85o1 •8696 •8870 •9025
 
 0•8296 '8514 •8711 •8886 •9041
 
 0.8306 .8526 •8723 •8899 -9055
 
 0•8315 •8535 •8734 •8910 .9066
 
 0•8322 .8544 '8742 •8919 .9075
 
 0.8329 .8551 •875o .8927 -9084
 
 I.5 •6
 
 0.8960
 
 0.9030
 
 •9076
 
 •9148
 
 0'9079 •9196
 
 '7 .8 '9
 
 •9178 •9269 '9349
 
 '925 1 '9341
 
 0.9140 .9259 •9362 0 5 532 :9 94
 
 0.9161 -9280 .9383 '9473 '9551
 
 0.9177 '9297 •9400 '9490 •9567
 
 0.9191 .9310 '9414 •9503 -958o
 
 0.9203 '9322 156 1 5529 994 .9
 
 9421
 
 '9390 9469
 
 0.9114 •9232 '9335 9426 .9 04
 
 0.9212 '9332 '9435 '9525 •9601
 
 0.9221 '9340 '9444 '9533 •9609
 
 2'0
 
 0'9419
 
 'I '2
 
 '9482 '9537
 
 '3 '4
 
 '9585 •9628
 
 0.9490 '9551 •9605 •9651 '9692
 
 0.9538 '9598 •9649 •9694 '9734
 
 0.9572 -9631 •9681 -9725 •9763
 
 0.9597 •9655 .9705 '9748 •9784
 
 0.9617 •9674 '9723 '9765 •9801
 
 0.9633 '9690 '9738 '9779 •9813
 
 0.9646 .9702 '9750 '9790 •9824
 
 0.9657 .9712 '9759 '9799 •9832
 
 0.9666 '9721 .9768 .9807 •9840
 
 0•9674 .9728 '9774 .9813 -9846
 
 2'5 .6
 
 0.9666
 
 0.9728 '9759
 
 '9730
 
 •9786 •9810 •9831
 
 0•9767 '9797 •9822 '9844 '9863
 
 0'9795
 
 •9700
 
 '9823 •9847 -9867 •9885
 
 0.9815 '9842 -9865 •9884 .9901
 
 0.9831 -9856 •9878 .9896 '9912
 
 0.9843 •9868 •9888 •9906 -9921
 
 0.9852 .9877 •9897 '9914 -9928
 
 0.9860 .9884 •9903 '9920 '9933
 
 0•9867 .9890 -9909 '9925 '9938
 
 0.9873 -9895 '9914 '9929 '9942
 
 0.985o •9866 -9880 '9893 •9904
 
 0.9880 .9894 '9907 .9918 -9928
 
 0.9900 •9913 .9925 '9934 '9943
 
 0.9915 '9927 '9937 '9946 '9953
 
 0.9925 '9936 '9946 '9954 '9961
 
 0.9933 '9944 '9953 -996o '9966
 
 0.9940 '9949 '9958 .9965 '9970
 
 0.9945 '9954 .9962 .9968 '9974
 
 0.9949 '9958 .9965 '9971 '9976
 
 0.9952 -9961 '9968 '9974 '9978
 
 0.9914 '9922 '9930 '9937 '9943
 
 0.9936 '9943 '9950 '9955 •9960
 
 0'9950
 
 0.9960 •9965 '9970 '9974 '9977
 
 0.9966 '9971 '9975 '9979 •9982
 
 0.9971 '9976 '9979 •9983 '9985
 
 0'9975
 
 '9956 .9962 .9966 '9971
 
 '9979 •9982 •9985 -9988
 
 0.9978 '9982 '9985 •9987 -9989
 
 0.998o .9984 .9987 .9989 '9991
 
 0.9982 .9986 '9988 '9990 '9992
 
 0.9948 '9953 '9958 •9961 '9965
 
 0.9964 .9968 '9972 '9975 '9977
 
 0.9974 '9977 .9980 -9982 '9984
 
 0•9980 •9983 '9985 •9987 •9989
 
 0.9984 .9987 -9988 '9990 '9991
 
 0'9987
 
 0'9990
 
 0.9991
 
 0'9992
 
 •9989 '9991 '9992 '9993
 
 '9991 '9993 '9994 '9995
 
 '9993 '9994 '9995 '9996
 
 '9994 '9995 '9996 '9996
 
 0.9993 '9995 '9996 '9996 '9997
 
 0.9979 '9982 '9983 .9985 -9986
 
 0.9986 •9988 '9989 '9990 '9991
 
 0.9990 '9991 '9992 '9993 '9994
 
 0.9993 '9994 '9994 '9995 '9996
 
 0.9994 '9995 '9996 '9996 '9997
 
 0.9995 '9996 '9997 '9997 '9998
 
 0.9996 '9997 '9997 '9998 '9998
 
 0 '9997
 
 0 '9998
 
 '9998 '9998 '9998 '9999
 
 '9998 '9998 '9999 '9999
 
 0.9988
 
 0.9992
 
 0.9995
 
 0 '9996
 
 0'9997
 
 0.9998
 
 0 '9998
 
 0.9999
 
 0 '9999
 
 v=
 
 '2 '3 '4
 
 '7 .8 '9 3'0 'I '2 '3 '4 3.5 •6
 
 '9756 '9779 0.980o •9819
 
 '9835 •9850 '9864 0.9876
 
 '9
 
 •9886 •9896 '9904 •9912
 
 4'0
 
 0 '9919
 
 'I '2 '3 '4
 
 •9926 '9932
 
 '7 .8
 
 '9937 '9942
 
 4.5 .6
 
 0.9946
 
 '7 .8 '9
 
 '9953 '9957 .9960
 
 0.9968 '9971 '9973 '9976 '9978
 
 5'0
 
 0.9963
 
 0 '9979
 
 '9950
 
 .9300
 
 43
 
 TABLE 9. THE t-DISTRIBUTION FUNCTION v=
 
 15
 
 16
 
 17
 
 i8
 
 19
 
 20
 
 24
 
 30
 
 40
 
 6o
 
 c0
 
 t = 0.0 •1 .2 •3 '4
 
 0.5000 .5392 *5779 •6159 '6526
 
 0'5000
 
 0'5000
 
 0'5000
 
 0'5000
 
 0'5000
 
 0'5000
 
 0'5000
 
 0'5000
 
 0.5000
 
 .5392
 
 '5780 •6160 •6528
 
 *5392 '5781 •6161 •6529
 
 '5393 '5781 •6162 .6531
 
 '5393 '5782 •6163 . 6532
 
 '5393 '5782 •6164 *6533
 
 '5394 '5784 •6166 '6537
 
 '5395 '5786 •6169 '6540
 
 '5396 '5788 -6171 '6544
 
 '5397 '5789 •6174 '6547
 
 0.5000 '5398 '5793 '6179 '6554
 
 0.5 •6 '7 •8 '9
 
 0.6878 •7213 '7527 •7819 •8088
 
 0.6881 •7215 '7530 •7823 •8093
 
 0.6883 •7218 '7533 •7826 •8097
 
 0.6884 •722o '7536 •7829 -81oo
 
 0.6886 •7222 '7538 . 7832 -8103
 
 0.6887 •7224 '7540 . 7834 •8xo6
 
 0.6892 •7229 '7547 '7842 •8115
 
 0.6896 '7235 '7553 •7850 •8124
 
 0.6901 '7241 '7560 •7858 •8132
 
 0.6905 '7246 . 7567 •7866 '8141
 
 0.6915 '7257 .7580 •7881 '8159
 
 1.0
 
 0.8339 •8562 '8762 '8940 '9097
 
 0.8343 •8567 '8767 '8945 '9103
 
 0'8347 .8571 -8772 *8950 '9107
 
 0 '8351
 
 0 '8354
 
 0 '8364
 
 •8578 '8779 *8958 •9116
 
 •8589 .8791 '8970 •9128
 
 0.8383 •8610 •8814 '8995 •9154
 
 0 '8413
 
 .8575 '8776 *8954 •9112
 
 0.8373 •8600 •8802 '8982 •9141
 
 0 '8393
 
 '3 '4
 
 0'8334 •8557 •8756 '8934 '9091
 
 •8621 •8826 '9007 •9167
 
 '8643 •8849 '9032 -9192
 
 1.5
 
 0'9228
 
 0'9235
 
 0'9240
 
 0'9245
 
 0'0250
 
 0'9254
 
 0'9267
 
 0'9280
 
 .6 '7 .8 '9
 
 '9348 '9451 '9540 '9616
 
 '9354 '9458 '9546 •9622
 
 '9360 '9463 '9552 •9627
 
 '9365 .9468 '9557 •9632
 
 '9370 '9473 '9561 •9636
 
 '9374 '9477 '9565 •9640
 
 '9387 '9490 '9578 •9652
 
 '9400 '9503 '9590 •9665
 
 0.9293 '9413 .9516 •9603 •9677
 
 0.9306 .9426 '9528 •9616 •9689
 
 0.9332 '9452 '9554 -9641 .9713
 
 2'0
 
 0.9680 '9735
 
 0.9691 '9745 '9790 '9828 '9859
 
 0.9696 '9750 '9794 .9832 '9863
 
 0.9700 '9753 '9798 .9835 •9866
 
 0 '9704
 
 0.9715 '9768 -9812 '9848 •9877
 
 0'9727 '9779 •9822 '9857 •9886
 
 0.9738 '9790 •9832 '9866 '9894
 
 0.9750 •9800 •9842 '9875 '9902
 
 0.9772 •9821 •9861 '9893 •9918
 
 •I •z
 
 '2
 
 '9781
 
 '3 '4
 
 '981 9 '985 1
 
 0.9686 '9740 .9786 '9824 '9855
 
 2.5 '6 '7 .8 '9
 
 0.9877 '9900 '9918 '9933 '9945
 
 0.9882 '9903 '9921 '9936 '9948
 
 0.9885 '9907 '9924 '9938 *9950
 
 0.9888 '9910 '9927 .9941 '9952
 
 0.9891 '9912 '9929 '9943 '9954
 
 0'9894 '9914 '9931 '9945 '9956
 
 0'9902
 
 0'9909
 
 '9921 '9937 '9950 *9961
 
 '9928 '9944 '9956 '9965
 
 0'9917 '9935 '9949 '9961 '9970
 
 o'9924 '9941 '9955 •9966 '9974
 
 0'9938 *9953 '9965 '9974 '9981
 
 3'0
 
 0.9955 .9963 '9970 .9976 '9980
 
 0 '9958
 
 0.9960 .9967 '9974 '9979 '9983
 
 0.9962 -9969 '9975 -9980 '9984
 
 0.9963 .9971 '9976 -9981 '9985
 
 0 '9965
 
 0 '9969
 
 0.9973
 
 0'9977
 
 •9972 '9978 •9982 '9986
 
 .9976 '9981 '9985 *9988
 
 .9979 '9984 .9988 '9990
 
 .9982 '9987 .9990 '9992
 
 0.9980 .9985 *9989 .9992 '9994
 
 0.9987 .9990 '9993 .9995 '9997
 
 3'5 '6 '7 .8 '9
 
 0 '9984
 
 0 '9985
 
 0.9987 '9990 '9992 '9993 '9995
 
 0.9988 '9990 '9992 '9994 '9995
 
 0.9989 '9991 '9993 '9994 '9996
 
 0.9991 '9993 '9994 '9996 '9997
 
 0 '9994
 
 '9988 '9990 .9992 '9994
 
 0.9986 '9989 '9991 '9993 '9994
 
 0 '9993
 
 .9987 '9989 '9991 '9993
 
 '9994 '9996 '9997 '9997
 
 '9996 .9997 '9998 '9998
 
 0.9996 '9997 '9998 '9998 '9999
 
 0.9998 '9998 '9999 '9999
 
 4'0 'I
 
 0 '9994
 
 0 '9995
 
 0 '9995
 
 0.9999
 
 '9998 '9998 '9999 '9999
 
 '9999 '9999 '9999 '9999
 
 '9999 '9999 '9999
 
 '9999
 
 '3 '4
 
 0.9996 '9997 '9998 '9998 '9999
 
 0 '9999
 
 '9996 '9997 '9998 '9998
 
 0.9996 '9997 '9998 '9998 '9998
 
 0 '9998
 
 '9996 '9997 '9997 '9998
 
 0'9996 '9997 *9997 '9998 '9998
 
 0 '9997
 
 '9995 '9996 '9997 '9997
 
 4,5
 
 0 '9998
 
 0'9998
 
 0'9998
 
 0 '9999
 
 0 '9999
 
 0 '9999
 
 0 '9999
 
 •1
 
 •I
 
 '2
 
 •3 '4
 
 '2
 
 .9966 *9972 .9977 '9982
 
 44
 
 '9757 •9801 '9838 •9869
 
 TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION This table gives percentage points tv(P) defined by the equation
 
 P too
 
 rav + - vw, r(#y)
 
 tv(p)(1
 
 dt t 2I p)i(P +1) •
 
 Let Xi and Xz be independent random variables having a normal distribution with zero mean and unit variance and a X'-distribution with v degrees of freedom respectively; then t = XJVX2/P has Student's t-distribution with v degrees of freedom, and the probability that t t„ (P)is P/Ioo. The lower percentage points are given by symmetry as - t„ (P), and the probability that Iti t,,(P) is 2Phoo.
 
 P (To)
 
 30
 
 40
 
 25
 
 20
 
 V = I
 
 0.3249
 
 0.
 
 7265
 
 I•0000
 
 1 '3764
 
 2 3 4
 
 0'2887
 
 0'6172
 
 0'2767 0'2707
 
 0'5844 0'5686
 
 0.8165 0. 7649 0.7407
 
 -o607 0.9785 09410
 
 5 6 7 8 9
 
 The limiting distribution of t as v tends to infinity is the normal distribution with zero mean and unit variance. When v is large interpolation in v should be harmonic.
 
 15
 
 to
 
 5%
 
 2.5 31.82 6.965 4'541 3'747
 
 r 963 I .386
 
 3.078
 
 I'250 1'190
 
 1.638 1.533
 
 6.314 2.920 2.353 2.132 2.015 1'943 1.895 1.860 1.833
 
 2'571
 
 2'262
 
 3.365 3'143 2.998 2.896 2.821
 
 1.812
 
 2. 228
 
 2.764
 
 3.169
 
 2'201 2'179 2'160 2'145
 
 2'718 2'681 2'650 2'624
 
 3'106
 
 1 . 886
 
 0.2672
 
 0'5594
 
 0/267
 
 0. 2648
 
 0- 5534 0'5491
 
 0.2619 o- 26io
 
 0'5459 0'5435
 
 0.9195 0.9057 0.8960 0.8889 0.8834
 
 1.156 1' 134
 
 0'2632
 
 0.7176 0.711I 0.7064 0.7027
 
 1. 108 1•100
 
 1'476 r 440 1'415 1 '397 1.383
 
 0.2602 0.2596
 
 0.5415 0'5399
 
 0'6998 0'6974
 
 0.8791 0'8755
 
 r 093 1. 088
 
 1.372 F363
 
 0'2590 0. 2586 0'2582
 
 0.5386
 
 13 14
 
 0.5375
 
 0.6955 0. 6938 0'6924
 
 0.8726 0'8702 0. 8681
 
 I'083 I' 079 1'076
 
 1'356 1'350 1'345
 
 1'796 1'782 I'771 1'761
 
 15
 
 0.2579
 
 0 '5357
 
 0. 6912 0.69o1 0'6892 0.6884 0. 6876
 
 0.8662 0.8647 0.8633 0.8620 o• 8610
 
 r 074 .071 1069 1.067 r•o66
 
 I • 341 1.337 1'333 1'330 1.328
 
 1'753 1/46 1' 740 1'734 x729
 
 2.131
 
 0'2576
 
 2. 120 2' I I0 2' IOI 2'093
 
 0.6870 0.6864
 
 o.8600 0.8591
 
 0'6858
 
 0. 8583 0'8575
 
 I'064 1'063 1'06' I .06o
 
 I ' 325 1 . 323 1'321 1'319
 
 I ' 725 I . 721 I'717 1'714
 
 0.8569
 
 r 059
 
 1.318
 
 1.711 1'708 P 706
 
 to II
 
 12
 
 0'5366
 
 0.5
 
 12.71 4.303 3.182 2.776
 
 'I19
 
 2'447 2.365 2.306
 
 0•X
 
 63.66 318.3 636.6 31.6o 9.925 22'33 12.92 5.841 10.21 8.610 7.173 4'604 4'032 3.707 3'499 3'355 3'250
 
 5'893 5.208 4'785 4'501 4'297
 
 2. 947 2.921 2.898
 
 3'733 3.686 3.646
 
 2'878
 
 3'610
 
 2.861
 
 3.579
 
 4'073 4.0 x 5 3.965 3.922 3.883
 
 2.086
 
 2.528
 
 2.845
 
 2. 080 2'074
 
 2'518 2'508
 
 2.o69 2.064
 
 2.500 2.492
 
 2'831 2'819 2'807
 
 3.552 3.527 3- 505 3.485 3'467
 
 3.850 3.819 3-792 3.768 3'745
 
 2. 060 2. 056 2.052 2'048 2-045
 
 2.485 2.479
 
 3'450 3'435 3.421 3'408 3.396
 
 3.725 3.707 3.690 3'674 3.659
 
 2'042 2'037 2.032 2. 028 2. 024
 
 2.457 2.449 2441 2434 2429
 
 2.750 2. 738 2'728 2'719
 
 3'385 3. 365 3'348 3'333 3.319
 
 3.646
 
 3'551 3'496 3. 460 3'373 3.291
 
 0.2571 0.2569
 
 20 21 22 23
 
 0'2567 0'2566 0'2564 0'2563
 
 0'5329 0'5325 0'5321 0.5317
 
 24
 
 0.2562
 
 0.5314
 
 0.6853 0.6848
 
 25 26 27 28
 
 0. 2561 0. 2560 0' 2559 0.2558 0 ' 2557
 
 0.5312 0.5309 0.5306 0.5304 0.5302
 
 0'6844
 
 0'8562
 
 1. 058
 
 1'316
 
 0.6840 0.6837 0'6834 0.6830
 
 0.8557 0' 8551 0.8546 0.8542
 
 r 058 r 057 i• 056
 
 P315 1 '314 1.313
 
 1.055
 
 1.31
 
 1.699
 
 30
 
 0- 2556
 
 0.5300
 
 0.6828
 
 0.8538
 
 r 055
 
 1.310
 
 32
 
 0'2555
 
 0'5297
 
 0'6822
 
 0'8530
 
 0.2553
 
 0.5294
 
 0.68,8
 
 0.8523
 
 36 38
 
 0'2552 0'2551
 
 0'5291 0'5288
 
 0'6814 0'6810
 
 0'8517 0'8512
 
 1.309 1.307 1'306 1'304
 
 I '697 r 694
 
 34
 
 I'054 I'052 1'052 1'051
 
 1.688 1.686
 
 40 50 6o
 
 0.2550 0- 2547 0.2545
 
 0.5286 0.5278 0.5272
 
 0.6807 0.6794 0.6786
 
 2'403 2'390
 
 2/04 2'678 2•660
 
 0. 6765
 
 1.684 1676 P671 1658
 
 2423
 
 0'5258
 
 1. 303 r 299 1.296 1.2.89
 
 2'009 2'000
 
 0'2539
 
 r 050 r 047 1. 045 1-041
 
 2.021
 
 X20
 
 0.8507 0 ' 8489 0.8477 0. 8446
 
 P980
 
 2.358
 
 2.617
 
 3-307 3.261 3.232 3.160
 
 op
 
 0.2533
 
 0.5244
 
 o•6745
 
 o•8416
 
 i•o36
 
 1•282
 
 r645
 
 1.960
 
 2'326
 
 2'576
 
 3.090
 
 45
 
 1-69.
 
 4.587 4'437 4.318
 
 2. 602 2. 583 2. 567 2'552 2'539
 
 0 ' 2573
 
 29
 
 5'041 4'781
 
 3.055 3.012 2 '977
 
 17 18 19
 
 I.701
 
 6.869 5'959 5'408
 
 4'144 4'025 3'930 3.852 3.787
 
 0- 5350 0 '5344 0.5338 0.5333
 
 1'703
 
 0'05
 
 2'473 2'467 2.462
 
 v 797 2.787 2/79 2. 771 2'763 2.756
 
 2'71[2
 
 4'221 4' 140
 
 3.622 3.6ox 3.582 3.566
 
 TABLE 11(a). 2.5 PER CENT POINTS OF BEHRENS' DISTRIBUTION 0 vz
 
 =
 
 o°
 
 17.36 8'344 7.123 6.771 6.636 6.577
 
 15.56 6.34o 4.960 4'469 4.218 4'074
 
 I I•04
 
 9'065
 
 6'546
 
 3'980
 
 2'365
 
 11.03
 
 9.060 9.055 9.052
 
 6.529 6.511 6-5o1
 
 3'917 3.835 3.786
 
 2.306
 
 9•046
 
 6'485
 
 3'685
 
 2'228 2'179 2'064
 
 9.040
 
 6.473
 
 3.615
 
 1.960
 
 4'563 3'645 3.312 3'145 3'045 2 '979 2 '933 2 '873 2 '835 2•750 2.679
 
 4'414 3.36o 2 '978 2.784 2.667 2.589 2 '534 2460 2 '414
 
 4'303 3.182 2.776 2.571 2.447
 
 3.191 2.816 2.626 2.513 2.437
 
 17.36 11.54
 
 3 4 5 6 7 8
 
 12/ 1 12'71 12'71
 
 I2•29 12'28 12•28
 
 1 I•I x
 
 12.71
 
 12.28 12.28
 
 2
 
 12'71 12/1 12'71 12'71 12/1 12'71
 
 = 2
 
 4'303 4'303 4'303 4'303 4.303 4'303
 
 4.303
 
 I0
 
 4.303
 
 12
 
 4.303
 
 24
 
 4.303 4'303
 
 00
 
 v, = 3 4 5 6 7 8
 
 12'28
 
 12.28
 
 11'03
 
 12'28 12•28 12'28
 
 11.03 I I•03 I I•03
 
 4.190
 
 3'882
 
 4'187 4.186 4.184
 
 3'867 3'857 3'846 3'840 3.828 3.818
 
 4'624 3'903 3'653 3'535 3'468 3'427 3'400 3.366 3'346 3.306 3.276
 
 3.225 3.088 3.026
 
 3.244 3.012 2.897
 
 3.225 2.913 2.756
 
 4'414 4'240 4'205 4'194
 
 4.182 4.180 4.178
 
 4'563 4'100 3'964 3'909
 
 0
 
 go° 12.71 4'303 3.182 2.776 2.571 2 '447
 
 2'305 2•206
 
 2'365 2'306 2'228 2'179 2'064 I•060
 
 3.182
 
 3.191
 
 3'182 3'182 3.182 3.182 3.182 3.182 3.182 3.182 3.182
 
 3'149 3.134 3.127 3.122 3'120 3.117 3.115 3.111 3.1o8
 
 2'992 2'972 2'958
 
 2'831 2'787 2'758
 
 2'663 2'600 V556
 
 2.942 2.933 2.913 2.898
 
 2.719 v696 2.644 2.603
 
 2.498 2.462 2.378 2304
 
 2.312 2.267 2.162 2.067
 
 2/76
 
 2.776 2.776
 
 2.772 2.754 2/46
 
 2 '779 2.717 2.682
 
 2.787 2.675 2.610
 
 2.779 2.625 2532
 
 2.772 2.582 2 '468
 
 2/76 2.571 2 '447
 
 2/76 2/76
 
 2'741 2'738
 
 24
 
 2.776 2.776 2.776
 
 2'365 2'306 2'228
 
 CO
 
 2'776
 
 IO 12 24
 
 00
 
 v1 = 4 5 6 7 8
 
 =4
 
 I•o6 11.04 11•04
 
 17.97 10.14 9.303 9.136 9.090 9.073
 
 15.56 12.41
 
 3 4 5 6 7 8
 
 V2
 
 75
 
 1211
 
 00
 
 =3
 
 6o°
 
 12.71
 
 24
 
 V2
 
 45°
 
 2
 
 IO
 
 =
 
 30°
 
 P1 = I
 
 12
 
 V2
 
 150
 
 IO 12
 
 2'384
 
 2'660
 
 2'567
 
 2•471
 
 2'392
 
 2'734 2.732 2.727
 
 2'646 2.628 2.617 2'594
 
 2.428 2'371 2'335 2.252
 
 2.339 2•268
 
 2•723
 
 2'576
 
 2.537 2.498 2.475 2.421 2'377
 
 If t1and t2 are two independent random variables distributed as t with v1, 1/2 degrees of freedom respectively, the random variable d = t1sin 0 t2 cos 0 has Behrens' distribution with parameters VI, V2 and 0. The function tabulated in Table II is dp = dP(vi, v2 0) such that
 
 Pi
 
 2'178
 
 2'223 2'118 2•024
 
 3.182 2.776 2.571 2.447 2'365 V306 2'228 2 '179 2 '064
 
 1.960
 
 2 '179 2 ' 064
 
 1.96o
 
 v2. When v1 < V2 use the result that
 
 dp(vi , 1/2, 0) = dP(P2,
 
 90° - 0)•
 
 -
 
 Behrens' distribution is symmetric about zero, so Pr (1d1 > dP) = zP/Ioo.
 
 ,
 
 Pr (d > dp) = Phoo
 
 Notice that in this table 0 is measured in degrees rather than radians.
 
 for P = 2.5 and o•5 and a range of values of v1and v2 with
 
 46
 
 TABLE 11(a). 2.5 PER CENT POINTS OF BEHRENS' DISTRIBUTION 0 V2 =
 
 5
 
 =
 
 7
 
 v2 = 8
 
 V2 = 10
 
 V2=12
 
 1/2 = 24
 
 1/2 = CO
 
 75°
 
 90°
 
 2.564
 
 2'562
 
 2'565
 
 2'562
 
 2'564
 
 2'571
 
 2 '554
 
 2.470 2.410 2.367 2•310 2.274
 
 2.449 2. 374 2.320
 
 24
 
 2.571 2.571 2.571
 
 2.549 2 '546 2.541 2 '539 2.533
 
 2'228 2'179 2'064
 
 2'571
 
 2'529
 
 2.191 2'118
 
 2'248 2'203 2'098
 
 00
 
 2.500 2.458 2.428 2.390 2.366 y312 2.266
 
 2.447
 
 2-571
 
 2.527 2.505 2.490 2 '471 2.460 2.436 2.416
 
 2•004
 
 P960
 
 2.435 2'413 2.398 2.379 2.367
 
 2.436 2-394 2.364 2.325 2.301
 
 2.435 2.375 2.331 2.274 2.239
 
 2 '440 2'364 2'310 2'238 2'193
 
 2 '447 2'365 2'306 2'228 2.179
 
 2'342 2'322
 
 2.247 2•201
 
 2.156
 
 2•088 P993
 
 2.064 1.960
 
 2'352 2'322 2'283
 
 2'352 2'309 2'252
 
 2'358 2.304 2'232 2'187 2'082
 
 2'365 V306 2.228 2'179 2'064
 
 P987
 
 1.960
 
 2. 300 2'228 2.183
 
 2.306 2'228 2'179
 
 2.077 1.982
 
 2.064 P960
 
 2'223 2'178 2'072
 
 2179
 
 1.977
 
 1.960
 
 2.571
 
 2'365
 
 2.306
 
 v1 = 6
 
 2 '447
 
 2.440
 
 7 8
 
 2 '447
 
 2 '434
 
 2.447
 
 xo
 
 2 '447
 
 12 24
 
 2.447 2.447
 
 00
 
 2 '447
 
 2.431 2.426 2.423 2.418 2 '413
 
 7 8
 
 2.365
 
 2.358
 
 2'352
 
 2.365
 
 2. 354
 
 2.337
 
 ICI 12 24 CO
 
 2'365 2'365 2'365 2'365
 
 2•350
 
 2'317
 
 2. 347
 
 2.306
 
 2.259
 
 2.216
 
 2'341 2'336
 
 2'280 2'259
 
 2'205 2•158
 
 2•133 2'060
 
 1,1 = 8 I0 12 24
 
 2'306 2'306 2•306 2'306
 
 2.300 2.295 2'292 2'286
 
 2'294 2'274 2'262 2'236
 
 2'292 2'254 2'230 2.175
 
 2'294 2'237 2'201 2'118
 
 00
 
 2.306
 
 2.281
 
 2.215
 
 2.128
 
 2.044
 
 V1 = 10 12 24 CO
 
 2'228 2'228 2'228 V228
 
 2'223 2.220 2'214 V209
 
 2'217 2'205 2•178 2'157
 
 2'215 2'191 2'136 2'089
 
 2'217 2'181 V098 2'024
 
 = 12
 
 2'179
 
 2'175
 
 2'169
 
 2'167
 
 2'179
 
 y179
 
 2.168
 
 2.142
 
 2.112
 
 2.179
 
 2.163
 
 2'120
 
 2'064
 
 2'169 2'085 2.01 1
 
 2'175
 
 24 CO
 
 2.069 1.973
 
 2.064 1.960
 
 V1 = 24 00
 
 2'064 2'064
 
 2'062 2•056
 
 2•058 2'035
 
 2'056
 
 V058
 
 2'062
 
 2'064
 
 y009
 
 1.983
 
 P966
 
 1•96o
 
 vl = 00
 
 1.960
 
 1•96o
 
 1.960
 
 1'960
 
 1.96o
 
 1.96o
 
 i.96o
 
 V1
 
 =
 
 2'064
 
 Pi
 
 Pi
 
 -
 
 j.
 
 V, v2
 
 2'228
 
 -
 
 0 = tan-1 ( s -- - i s 2 )' 0 being 07
 
 4 measured in degrees. Define r = I - + s2 and d =
 
 2.082
 
 If d > dp the confidence level associated with it 2 is less than P per cent, and if d < dp the confidence level associated with ft 2 is less than P per cent. (See H. Cramer, Mathematical Methods of Statistics, Princeton University Press (1946), Princeton, N.J., pp. 520-523.) Also, the values of Pi -#2 such that 1(Yi - - (#1-P2)1 < rdp provide a Ioo 2P per cent Bayesian credibility interval for #2.
 
 This distribution arises in investigating the difference between the means #1, P2 of two normal distributions without assuming, as does the t-statistic, that the variances are equal. Let o i, p72 be the means and 4., 4 the variances of two independent samples of sizes n1, n2 from normal distributions, let v1= n1-1, v2 = n2 - 1 and
 
 6o°
 
 45°
 
 2.571
 
 5 6 7 8
 
 12
 
 v2
 
 30°
 
 2 '571
 
 v1 =
 
 xo
 
 v2 = 6
 
 15.
 
 o°
 
 I. -072 .
 
 r
 
 47
 
 pi
 
 -
 
 TABLE 11(b). 0-5 PER CENT POINTS OF BEHRENS' DISTRIBUTION v2 = I
 
 vl = I
 
 2
 
 3 4 5 6 7
 
 8 io
 
 12 24 c0 V2 = 2
 
 V1 = 2
 
 3 4 5 6 7 8 10
 
 12
 
 24
 
 V2
 
 =3
 
 P2 = 4
 
 o°
 
 x5
 
 3o°
 
 450
 
 6o°
 
 75.
 
 go°
 
 63.66 63.66 63.66 63'66 63.66 63.66 63.66 63.66 63.66 63.66 63.66 63.66
 
 77.96 61.61 61 '49 61'49 61 '49 61'49 61 '49 61 '49 61 '49 61 '49 61'49 61'49
 
 86.96 55.62 55'15 55'14 55'14 55'14 55'13 55'13 55'13 55'13 55'13 55'13
 
 90.02 46.18 45' 08 45'04 45.03 45.03 45.03 45.03 45'03 45.03 45.02 45.02
 
 86.96 34'18 32.04 31.89 31.87 31.86 31.86 31.86 31.86 31.86 31.85 31.85
 
 7796 21'11 17'28 16'70 16'59 16'57 16.56 16.55 16.55 16.54 16'54 16.53
 
 63.66 9.925 5 .841 4'604 4. 032 3.707 3'499 3'355 3.169 3.055 2.797 2 '576
 
 10'01
 
 10'14 8'905 8.717 8.676 8.663 8.657 8.653 8.649 8. 647 8. 642 8.638
 
 10'19 7'937 7'428 7'270 7'210 7'183 7'169 7155 7.148 7'134 7'124
 
 10'14 6.966 6.082 5.716 5'535 5'434 5'373 5.308 5'275 5.223 5'194
 
 10'0!
 
 9'640 9'609 9'604 9'602 9.601 9'600 9.600 9'599 9'598 9'597
 
 6.187 5 .049 4'5 28 4'235 4'049 3'921 3'759 3.660 3'446 3.276
 
 9.925 5'841 4'604 4'032 3.707 3'499 3'355 3.169 3-055 2.797 2.576
 
 5'841 5'841
 
 5'754 5'694
 
 5'640 5'349
 
 5.841
 
 5.681
 
 5.256
 
 5.841 5'841
 
 5.676 5'673
 
 5.218 5'199
 
 5'640 4'720 4'316 4'095 3'958 3.866 3'753 3.686 3'548 3'449
 
 5'754 4'601 4'076 3.782 3'595, 3'467 3'302 3'201 2 '977 2.789
 
 5'841 4.604 4'032 3.707 3'499 3'355 3.169 3.055 2.797 2.576
 
 4'400 3'983 3'755 3.613 3'517 3'395 3'323 3.167 3'045
 
 4'525
 
 4'604 4'032 3.707 3'499 3'355 3.169 3.055 2.797 2.576
 
 9.925 9'925 9'925 9'925 9.925 9.925 9.925 9.925 9'925 9'925 9'925
 
 .
 
 Pi = 3 4 5 6 7 8 xo
 
 5.841
 
 5.671
 
 5.189
 
 5.841
 
 1205 g.
 
 5 'E1 1
 
 5'669 5.668 5.666 5 .664
 
 5'177 5.171 5.159 5.150
 
 5'598 4'986 4'739 4'617 4'548 4'506 4'459 4'434 4'389 4'361
 
 v1 = 4
 
 4'604 4'604 4'604 4'604
 
 4'525 4:505 4'497 4'493 4'490 4.487 4'486 4'482 4'479
 
 4'400 4.283 4.229 4'201 4'184 4.165 4'155 4'135 4'i2i
 
 4'350 4'084 3'945 3.862 3.809 3'745 3.709 3. 64° 3'592
 
 5 6 7 8 I0
 
 12 24
 
 4. 604 4.604 4.604 4'604
 
 4'604
 
 If t1and t2 are two independent random variables distributed as t with v1, v2 degrees of freedom respectively, the random variable d = t1sin 0- t2 cos 0 has Behrens' distribution with parameters V1, V2 and 0. The function tabulated in Table it is dp = dP(vi, v2, 0) such that Pr (d
 
 Pi
 
 3'993
 
 3-694 3'504 3'373 3.206 3'104 2.876 2•685
 
 P2. When v, < V2 use the result that
 
 0). dp(Vi, v2, 0) = dp(v2, V1, 90° Behrens' distribution is symmetric about zero, so Pr (1d1
 
 > dp) = P/ioo
 
 > dp) = 213 1 ioo.
 
 Notice that in this table 0 is measured in degrees rather than radians.
 
 for P = 2.5 and 0.5 and a range of values of vi and v2 with
 
 48
 
 TABLE 11(b). 0.5 PER CENT POINTS OF BEHRENS' DISTRIBUTION 0 V2 = 5
 
 vl
 
 = 5
 
 6 7 8 10 12 24 00
 
 =6 7 8 10 12
 
 v2 = 6
 
 24
 
 00 V2 =7
 
 v, = 7 8 xo 12
 
 24 c0 v2 = 8
 
 v1 = 8 10 12
 
 24 00
 
 o°
 
 xs°
 
 30°
 
 450
 
 6o°
 
 750
 
 900
 
 4.032 4.032 4'032 4.032 4.032 4.032 4.032 4'032
 
 3'968 3'957 3'952 3'949 3'945 3'943 3.938 3'934
 
 3.856 3'794 3'760 3'739 3'715 3 '702 3'677 3'658
 
 3.809 3.663 3'575 3'518 3'447 3'407 3'325 3'266
 
 3.856 3'622 3'476 3'378 3'253 3. I 78 3'016 2.886
 
 3.968 3.666 3'474 3'342 3.173 3.069 2.840 2.646
 
 4.032 3.707 3'499 3'355 3.169 3.055 2'797 2.576
 
 3'707 3'707 3'707 3.707 3.707 3.707 3'707
 
 3'654 3'648 3'644 3'639 3'637 3'631 3'627
 
 3'556 3'519 3'496 3'468 3'453 3.424 3.402
 
 3'514 3'423 3'363 3.289 3'246 3'158 3.093
 
 3'556 3'408 3'308 3.180 3'104 2.938 2'804
 
 3'654 3-461 3'328 3.158 3'053 2.822 2.627
 
 3'707 3'499 3'355 3.169 3'055 2.797 v576
 
 3'499 3'499 3'499 3'499 3'499 3'499
 
 3'454 3'450 3'445 3'442 3'436 3'431
 
 3'369 3'344 3'314 3'298 3.265 3'241
 
 3'331 3'269 3'193 3'149 3.056 2'987
 
 3'369 3.267 3'138 3'060 2.892 2'755
 
 3'454 3.321 3.149 3'045 2.812 2•616
 
 3'499 3'355 3.169 3'055 2.797 2.576
 
 3'355 3.355 3.355 3'355 3.355
 
 3'316 3.310 3.307 3'301 3.295
 
 3'241 3.210 3.192 3.158 3.132
 
 3.206 3.129 3.083 2.988 2.916
 
 3.241 3.110 3-032 2.862 2.723
 
 3.316 4 13 49 3 :0
 
 3'355
 
 3'169
 
 3'138
 
 3.169 3.169 3.169
 
 3.135 3'127 3.121
 
 3.078 3.059 3'021 2.993
 
 3.049 3'002
 
 00
 
 3.055 3.055 3.055
 
 3'029 3.021 3.015
 
 2'978 2.939 2.909
 
 V2 = 24 VI = 24 00
 
 2'797 2.797
 
 2'784 2.777
 
 P2 = CO V1 = 00
 
 2 '576
 
 2.576
 
 V2 = 10
 
 V1 = 10 12 24
 
 00 V2= 12
 
 vl = 12 24
 
 3.078
 
 3.138 3'033
 
 2'904
 
 2'998 2'825
 
 2.828
 
 2.684
 
 2'798 2.600
 
 3.169 3-055 2'797 2.576
 
 2'954 2'853 2.775
 
 2'978 2.803 2.661
 
 3'029 2.794 2.595
 
 3'055 2'797 2.576
 
 2'759 2726
 
 2 '747 2.664
 
 2'759
 
 2'784
 
 2'797
 
 2'613
 
 2'584
 
 2'576
 
 2.576
 
 2.576
 
 2'576
 
 2'576
 
 2'576
 
 If d > dp the confidence level associated with illt-C. /12 is less than P per cent, and if d < dp the confidence level associated with 121 11 2 is less than P per cent. (See H. Cramer, Mathematical Methods of Statistics, Princeton University Press (2946), Princeton, N.J., pp. 520-523.) Also, the values of -#2 such that I(x1- x2) - (01-#2)1 5 rdp provide a 200-2P per cent Bayesian credibility interval for it, -#2.
 
 This distribution arises in investigating the difference between the means ltil #2 of two normal distributions without assuming, as does the t-statistic, that the variances are equal. Let oil, x2 be the means and 4, 4 the variances of two independent samples of sizes n1, n2 from normal distributions, / S2 •
 
 -
 
 ,
 
 let = - V2 = 712 -1 and 0 =
 
 (071 N/V2)
 
 S2 S 2
 
 measured in degrees. Define r = ji- +1and d vi V2
 
 2.806 2.608
 
 3'169
 
 3.055 2.797 2.576
 
 U being -X2 r
 
 49
 
 TABLE 12(a). 10 PER CENT POINTS OF THE F-DISTRIBUTION The function tabulated is F(P) = F(Plv,, v2) defined by the equation
 
 P zoo
 
 rco
 
 ITO “JTI)
 
 Fip.-
 
 r(i-v2) vl v2b2 F(p)(v2 +P,FP( P'+"')c1F'
 
 for P = io, 5, 2.5, I, 0.5 and 0•1. The lower percentage points, that is the values F'(P) = F'(PIP1, P2) such that the probability that F < F'(P) is equal to Pim°, may be found by the formula
 
 F'(P IPi,
 
 VI =
 
 I
 
 P2) = I/F(Plv2,
 
 2
 
 3
 
 (This shape applies only when vl > 3. When v1< 3 the mode is at the origin.)
 
 4
 
 8
 
 xo
 
 12
 
 24
 
 CO
 
 58.91 9'349 5.266 3'979
 
 59.44 9'367 5.252 3'955
 
 60.19 9.392 5.230 3'920
 
 60.71 9.408 5.216 3.896
 
 62.00 9.450 5.176 3.831
 
 63'33 9.491 5'134 3.761
 
 5
 
 6
 
 7
 
 39.86 8.526 5'538 4'545
 
 49.50 9.000 5'462 4'325
 
 53'59 9.162 5'391 4.191
 
 55'83 9.243 5'343 4.107
 
 57.24 9'293 5'309 4.051
 
 58.20 9'326 5'285 4.010
 
 4'060 3.776 3'589 3.458
 
 3.78o 3.463 3'257 3.113
 
 3.619 3.289 3.074
 
 3.520 3.181 2.961
 
 3'453 3.108 2.883
 
 2'924
 
 2'806
 
 2.726
 
 3'006
 
 2.813
 
 •693
 
 2.611
 
 3'368 3'014 2.785 2.624 2.505
 
 3'339 2'983 2.752 2.589 2.469
 
 3'297 2.937 2.703 2.538 2.416
 
 3.268 2.905 2.668 2.5o2 2'379
 
 3.191 2.818 2.575 2.404 2'277
 
 3.105 2.722 2.471 2'293
 
 3'360
 
 3'405 3.055 2.827 2•668 2.551
 
 3.285 3.225 3.177 3.136 3.102
 
 2.924
 
 2728 2.66o
 
 2•414
 
 2'377 2.304
 
 2.323 2.248
 
 2.284
 
 2'245
 
 2560 2.522
 
 2.195
 
 2'188 2'138
 
 2'209 2'147 2'097
 
 2'178 2'100 2'036 1.983
 
 2 '055
 
 2'451 2'394 v347 2.307
 
 2'461 2'389
 
 2.763 2.726
 
 2.605 2•536 2.480 2.434 2.395
 
 2 '154
 
 2.095
 
 2.0 54
 
 P938
 
 P904 1.846 P797
 
 3'073 3.048 3'026 3.007
 
 2'490
 
 V361
 
 2'273
 
 2'208
 
 2'158
 
 2'119
 
 2'059
 
 2'017
 
 2.462 2'437 2.416 2.397
 
 2.333 2.308 2.286
 
 2.244 2.218
 
 2.178 2.152
 
 2.128 2.102
 
 2'990
 
 2 '695 2.668 2.645 2.624 2.606
 
 2'266
 
 2'196 2'176
 
 2'130 2'109
 
 2.058
 
 2.088 2.061 2.038 2.017
 
 2.028 voox 1.977 P956
 
 P985 P958 P933 I•912
 
 P899 P866 P836 P810 1.787
 
 P755 P718 P686 P657 P631
 
 2.589 2.575 2.561 2'549
 
 2.380 v365
 
 2'249
 
 2'158
 
 2'091
 
 2'040
 
 2.233
 
 2'142
 
 2'075
 
 2'351
 
 2'219
 
 2'128
 
 2'060
 
 23
 
 2.975 2.961 2.949 2.937
 
 2'339
 
 2.207
 
 2.115
 
 2.047
 
 24
 
 2'927
 
 2'538
 
 2'327
 
 V195
 
 2'103
 
 2'035
 
 2.023 2.008 P995 P983
 
 P999 P982 1.967 P953 1.941
 
 P937 P920 P904 1.890 1.877
 
 1.892 P875 P859 1.845 P832
 
 P767 1.748 1.731 1.716 P702
 
 P607 P586 P567 P549 1'533
 
 25 26 27 28 29
 
 2.918
 
 2.528
 
 2'317
 
 2'184
 
 2'092
 
 2'024
 
 2'909 2'901
 
 2'519 2'511
 
 2.307
 
 2.174
 
 vo82.
 
 2.014
 
 2'073
 
 2'005
 
 P952
 
 2.503 2.495
 
 2'299 2'291
 
 2'165
 
 v894 2.887
 
 V I 57
 
 2.283
 
 2'149
 
 2'064 2.057
 
 P996 P988
 
 P943 P935
 
 1.929 P919 P909 p900 x.892
 
 P866 P855 1.845 P836 P827
 
 1•820 p809 P799 P790 1.781
 
 P689 P677 1•666 1.656 P647
 
 1.518 P504 1.491 P478 P467
 
 30
 
 2'881
 
 P980 P967
 
 P819
 
 P773
 
 1.638
 
 P913
 
 P870
 
 1'805
 
 P758
 
 P622
 
 34 36 38
 
 2'859 2.850
 
 2'466
 
 2'252
 
 V049 2'036 2'024
 
 1.884
 
 2.263
 
 2.456
 
 2.243
 
 2'142 2'129 2'118 2'108
 
 P927
 
 v869
 
 2.489 2.477
 
 2'276
 
 32
 
 v014
 
 P6o8 P595
 
 2'234
 
 2'099
 
 2'005
 
 1.858 P847 1.838
 
 P745 P734
 
 2'448
 
 P901 P891 1•881
 
 P793 1.781
 
 2'842
 
 P955 P945 P935
 
 P772
 
 P724
 
 P584
 
 1.456 P437 P419 1404 1.390
 
 40 60
 
 2.835 2/91
 
 2'440 V393
 
 2'226
 
 2'347
 
 P722
 
 1'652
 
 p574 1.511 1.447
 
 P377 P291 1 '193
 
 V303
 
 1.873 P819 P767 1.717
 
 P715 P657 I .601
 
 2/06
 
 P927 P875 1.824 P774
 
 P763 1.707
 
 2.748
 
 P997 P946 1.896 1.847
 
 1.829 p775
 
 120 00
 
 2.091 2.041 1.992 1.945
 
 p670
 
 P599
 
 P546
 
 P383
 
 P000
 
 P2 = I 2
 
 3 4 5 6 7 8 9 10 II 12
 
 13 14 15 16 17
 
 18 19 20 21 22
 
 2'86o 2'807
 
 2'606
 
 v177 2' I 3o 2.084
 
 2'522
 
 2.331 2.283 2.243
 
 50
 
 2'342 2'283
 
 2.234 2 ' 193
 
 2'079
 
 P971 P961
 
 2 '159
 
 P972
 
 TABLE 12(b). 5 PER CENT POINTS OF THE F-DISTRIBUTION
 
 --1/-?X
 
 If F = X
 
 112
 
 , where X1and X2 are independent random
 
 variables distributed as X2 with v1and v2 degrees of freedom respectively, then the probabilities that F F(P) and that F F'(P) are both equal to Pilot). Linear interpolation in v1and v2 will generally be sufficiently accurate except when either v1> 1z or v2 > 40, when harmonic interpolation should be used. 0
 
 F(P)
 
 (This shape applies only when v1>. 3. When v, < 3 the mode is at the origin.) I
 
 2
 
 3
 
 4
 
 5
 
 6
 
 7
 
 8
 
 xo
 
 12
 
 24
 
 CO
 
 V2 = I
 
 161 4
 
 199.5
 
 215.7
 
 224.6
 
 230.2
 
 234•0
 
 2
 
 18'51 10'13
 
 19'00
 
 19.16
 
 19.25
 
 19-30
 
 19.33
 
 9.277 6.591
 
 9.117 6.388
 
 9.013 6•256
 
 8'941
 
 24P9 19.40 8.786 5.964
 
 249'1 19.45 8.639
 
 19.50 8.526
 
 6.163
 
 238.9 19'37 8.845 6.041
 
 243'9 19'41
 
 9'552 6.944
 
 236.8 19'35 8.887 6.094
 
 5'774
 
 5.628 4'365 3.669 3.230 2.928 2.707
 
 Ili =
 
 3 4
 
 7'709
 
 8.745 5'912
 
 254'3
 
 5
 
 6.6o8
 
 5.786
 
 5'409
 
 5'192
 
 5.050
 
 4'950
 
 4.876
 
 4.818
 
 4'735
 
 4'678
 
 4'527
 
 6 7 8 9
 
 5.987 5'591 5.318
 
 5'143
 
 4'757
 
 4'534
 
 4'387
 
 4'284
 
 4.207
 
 4'147
 
 4.06o
 
 4.000
 
 3.841
 
 5.117
 
 4'737 4'459 4'25 6
 
 4'347 4.066 3.863
 
 4'120 3.838 3.633
 
 3'972 3.687 3'482
 
 3.866 3.581 3'374
 
 3.787 3.500 3.293
 
 3.726 3'438 3.230
 
 3.637 3'347 3.137
 
 3'575 3.284 3.073
 
 3.410 3.115 2.900
 
 4.965 4.844 4'747 4.667 4.600
 
 4.103 3.982 3.885 3.806 3'739
 
 3.708 3.587 3'490 3.411 3'344
 
 3'478 3'357 3.259 3.179 3.112
 
 3.326 3.204 3.106 3.025 2.958
 
 3.217 3.095 2.996 2.915 2.848
 
 3.135 3.012 2.913 2.832 2.764
 
 3.072 2.948 2.849 2.767 2.699
 
 2.978 2.854 2.753 2.671 2.602
 
 2.913 2.788 2.687 2.604 2.534
 
 2 '737 2.609 2.505 2.42o 2.349
 
 2.538
 
 4'543 4'494 4'451 4'414 4.381
 
 3.682 3.634 3'592 3'555 3.522
 
 3.287 3'239 3.197 3.160 3.127
 
 3.056 3.007 2.965 2.928 2.895
 
 2.901 2.852 2.810 2.773 2.740
 
 2.790 2'741 2.699 2.661 2.628
 
 2.707 2.657 2.614 2.577 2.544
 
 2.641 2.591 2.548 2.510 2'477
 
 2.544
 
 2.475 2.425 2.381
 
 2.288 2.235
 
 2.066
 
 4.351 4'325 4'301 4'279
 
 3'493 3'467 3'443 3.422
 
 2'711 2.685 2.661 2.64o 2.621
 
 2.514 2.488
 
 2.420
 
 3'403
 
 2.866 2.84o 2817 2.796 2/76
 
 2.599 2.573 2.549
 
 4.26o
 
 3.098 3.072 3.049 3.028 3.009
 
 4'242 4.225
 
 2.991 2.975 2.96o 2.947 2.934
 
 2/59 2 '743
 
 2'728
 
 2 '572
 
 2 '459
 
 2.714
 
 4.183
 
 3.385 3.369 3'354 3'340 3.328
 
 2.558 2.545
 
 30
 
 4.171
 
 3.316
 
 2'922
 
 32 34
 
 4'149
 
 3.295
 
 2.901
 
 2.690 2.668
 
 4'130 4.113 4.098
 
 3'276
 
 2'883
 
 2'650
 
 2.534 2.512 2'494
 
 2'399 2.380
 
 3'259 3.245
 
 v866 2.852
 
 2.634 2.619
 
 2463
 
 2.364 2'349
 
 3.232 3.I50 3.072 2.996
 
 2.839 2/58 2.68o 2.605
 
 2.606 2.525
 
 2'449
 
 2'336
 
 2.249
 
 2.18o
 
 2368
 
 2'447
 
 2'290
 
 2. 254 2'175
 
 2'372
 
 2.214
 
 2.099
 
 2'167 2'087 2'010
 
 2'097 2'016 P938
 
 I0
 
 II 12
 
 13 14 15
 
 16 17
 
 18 19 20 21 22 23 24
 
 25 26 27 28 29
 
 36
 
 38
 
 4'210 4.196
 
 40
 
 4•o85
 
 6o
 
 4.001 3.920 3.841
 
 120
 
 00
 
 2/01
 
 2 '494
 
 2.45o 2.412 2-378
 
 2 '404
 
 2.296 2.2o6 2'131
 
 2'010 1.960
 
 2 '342
 
 2'190 2.150
 
 2.308
 
 2.114
 
 2.278 2.250 2.226 2.204
 
 1'843
 
 P917 p878
 
 2'397
 
 2'528
 
 2'464 2 '442
 
 2. 375
 
 2'348 2.321 2'297 2.275
 
 2.508
 
 2.423
 
 2.355
 
 2'255
 
 2'183
 
 2•082 v054 2.028 2.005 P984
 
 2'603
 
 2'490
 
 2'474
 
 2.405 2.388 2.373
 
 2.337 2.321 2.305
 
 2.236
 
 2.587
 
 2•220
 
 2'165 2'148
 
 P964 1•946
 
 1•71 I 1'691
 
 2.204
 
 2.132
 
 1.930
 
 1.672
 
 2'445 2.432
 
 2 '359
 
 2.291
 
 2.346
 
 2.278
 
 2'190 2'177
 
 2'118 2.104
 
 1.915 P901
 
 1.654 1'638
 
 2.421
 
 2.334 2313
 
 2'165 2'142 2'123 2'106 2'091
 
 2'092 2.070 2'050 2.033 2'017
 
 I .887 1.864 P843 P824 1'808
 
 2.077 I '993
 
 2'003
 
 P910 1'831'
 
 P834 P752
 
 P793 x.700 I .608
 
 P509 P389 1.254
 
 1.517
 
 1•000
 
 2 '477
 
 51
 
 2.447
 
 2.266
 
 2. 294
 
 2'244 2'225
 
 2.277
 
 2.209
 
 2'262
 
 2'194
 
 I•917
 
 1 .812
 
 P783 P757 P733
 
 1'622
 
 1.594 P569 1'547 I .527
 
 TABLE 12(c). 2.5 PER CENT POINTS OF THE F-DISTRIBUTION The function tabulated is F(P) = the equation
 
 P
 
 r(iPi+ i-v2)
 
 100
 
 F( v1)r(iv2)
 
 V2iv2
 
 v2) defined by
 
 F(p)(P2+
 
 viflttpx+vo dF,
 
 for P = 1o, 5, 2.5, I, 0.5 and o•I. The lower percentage points, that is the values F'(P) = FTP1v1, v,) such that the probability that F t F'(P) is equal to P/Ioo, may be found by the formula
 
 0
 
 F'(Plvi, v2) = IF(PIP2, PO.
 
 v1=
 
 F(P)
 
 (This shape applies only when v1> 3. When v1 < 3 the mode is at the origin.)
 
 5
 
 6
 
 7
 
 8
 
 ro
 
 12
 
 24
 
 00
 
 921'8
 
 937'1 39'33 14'73 9.197
 
 948.2 39'36 14.62 9'074
 
 956.7 39'37 14'54 8.98o
 
 968.6 39'40 14'42 8.844
 
 976.7 39'41 14'34 8.751
 
 997'2 39'46 14.12 8.511
 
 1018 39'50 13'90 8'257
 
 6.978 5.820
 
 6.757 5.6o0 4'899 4'433
 
 6.619
 
 6'525
 
 5.461
 
 5'366
 
 4'102
 
 4'761 4'295 3'964
 
 4'666 4' 200 3.868
 
 6.278 5.117 4'415 3'947 3'614
 
 6.015 4'849 4'142 3.670 3'333
 
 3.365 3.173 3.019 2.893 2.789
 
 3.080 2.883
 
 2'701 2'625 2'560 2'503 2'452
 
 v395 2.316 2.247 2.187 2-133
 
 2'602 2'570 2'541
 
 2'408 2'368 2'331 2'299 2'269
 
 2'085 2'042 2'003
 
 2.515 2'491 2'469 2'448 2'430
 
 2 '242 2.217 2.195 2'174 2'154
 
 I'906 1.878
 
 2.412 2.38, 2.353 2.329 2.307
 
 2'136 2'103 2'075 2'049 2'027
 
 1.787 1.750 1.717 1.687 1.661
 
 2.288
 
 2'007 1'882 1'760 I'640
 
 1'637 1'482 1'310 1'000
 
 2
 
 3
 
 4
 
 864.2 39.17 15.44 9'979
 
 899.6 39'25 15'10 9'605
 
 39'30 14' 88 9'364
 
 V2 = i 2
 
 647'8 38'51
 
 3 4
 
 12'22
 
 799'5 39.0o 16.04 10•65
 
 5 6 7 8 9
 
 8.813 8.073 7'571 7.209
 
 8'434 7.260 6'542 6.059 5.715
 
 7'764 6.599 5.890 5'416 5.078
 
 7.388 6.227 5.523 5.053 4'718
 
 7.146 5.988 5-285 4'817 4'484
 
 4'652 4'320
 
 6.853 5.695 4'995 4'529 4'197
 
 5'456 5.256 5.096 4'96 5 4'857
 
 4'826 4'630 4'474 4'347 4'242
 
 4%168 4'275 4'121 3'996 3.892
 
 4'236 4'044 3.891 3-767 3.663
 
 4'072 3.881 3.728 3 . 604 3.501
 
 3'950 3'759 3.607 3'483 3.38o
 
 3'855 3.664 3'512 3.388 3.285
 
 3'717 3.526 3'374 3.250 3'147
 
 3'621
 
 13 14
 
 6.937 6.724 6'554 6'414 6.298
 
 Is
 
 6'200
 
 6.115 6'042
 
 5.978 5.922
 
 3.804 3'729 3.665 3.608 3'559
 
 3'576 3.5oz 3'438 3.382 3'333
 
 3'415 36 341 3.277
 
 x8
 
 4'153 4'077 4' 0 II 3'954 3.903
 
 3.293 3.219 3.156 3.100 3.051
 
 3'199 3.125 3.061 3.005 2.956
 
 3.060 2.986
 
 17
 
 4'765 4'687 4'619 4'5 6o 4'508
 
 2'963
 
 z6
 
 2'817
 
 2'769 2'720
 
 4%161 4'420 4'383 4'349 4'319
 
 3'859 3.819 3.783 3'750 3.721
 
 3.515 3'475 3'440 3'408 3'379
 
 3.289
 
 3.128 3.090 3.055 3.023 2.995
 
 3.007 2 '969 2'934
 
 2'913
 
 2 '774 2 '735
 
 2-637
 
 2'902 2'874
 
 2.874 2.839 2.808 2.779
 
 3.129 3.105 3.083 3:063 3'044
 
 2.753 2.729
 
 2.613
 
 2'923 2'903 2'884
 
 2'802 2'782 2/63
 
 2'707 2'687
 
 2.568 2 '547
 
 4'201
 
 3'353 3.329 3'307 3.286 3.267
 
 2'848 2.824
 
 5.588
 
 3'694 3.670 3'647 3.62,6 3.607
 
 2.969 2 '945
 
 5'610
 
 4'291 4.265 4'242 4.221
 
 2.669
 
 2'529
 
 4'182 4'149 4'1zo 4'094 4'071
 
 3.589 3'557 3'529 3.505 3'483
 
 3'250
 
 3.026 2'995 2.968 2'944
 
 2.867 2.836 2.808 2.785 2.763
 
 2/46 2.715
 
 2.651 2.620 2.593 2.569 v548
 
 2'511 2'480
 
 34 36 38
 
 5.568 5.531 5'499 5'471 5.446
 
 2.453
 
 40 6o
 
 5'424 5.286
 
 3'463 3'343
 
 120 co
 
 5'152 5'024
 
 4'05I 3'925 3.805 3.689
 
 2'529 2'412 2'299 2'192
 
 v388 2.27o 2 'I57 2.048
 
 zo zz
 
 12
 
 zo 20 21 22 23
 
 24 25 26 27
 
 28 29 30 32
 
 17'44
 
 5.871 5'827
 
 5.786 5-750 5'717 5.686 5.659 5'633
 
 3'227 3'116
 
 3'218 3'191
 
 3.167 3'145 3.126 3.008 2. 894 v786
 
 3'250 3'215
 
 3.183 3'155
 
 2'923
 
 2. 904 2.786 v674 2.567
 
 5'119
 
 3'221 3'172
 
 2.688 2.664 v643
 
 2 '744
 
 2.624
 
 2.627 2.515 2.408
 
 2.507 2.395 2.288
 
 52
 
 2'922
 
 2.866
 
 2'700
 
 2.668 2•64o
 
 2'590
 
 2%429 2 407
 
 3'430 3.277 3'153 3.050
 
 2.889 2.825
 
 2'676
 
 2'169 2'055
 
 1.945
 
 2'725
 
 2.595 2.487
 
 r968 1'935
 
 1.853 1'829 1'807
 
 TABLE 12(d). 1 PER CENT POINTS OF THE F-DISTRIBUTION --2, where X1and X2 are independent random Xpi11X F=V2
 
 If
 
 variables distributed as X2 with v1and v2 degrees of freedom respectively, then the probabilities that F F(P) and that F < F'(P) are both equal to Nioo. Linear interpolation in vi or v2 will generally be sufficiently accurate except when either v1 > 12 or v2 > 4o, when harmonic interpolation should be used. 0
 
 F(P)
 
 (This shape applies only when v1 at the origin.) vl =
 
 I
 
 v2 = I 2
 
 3 4 5 6 7 8 9 xo II 12
 
 2
 
 3
 
 4
 
 5
 
 6
 
 3. When v1< 3 the mode is
 
 7
 
 8
 
 to
 
 12
 
 24
 
 00
 
 5928 99'36 27.67 14.98
 
 5981 99'37 27.49 14'80
 
 6056 99'40 27.23 14'55
 
 6,o6 99'42 27.05 4'37
 
 6235 99'46 26.6o 13'93
 
 6366 99'50 26.13 13'46 9'020 6.88o
 
 4052 98'50 34- 12 21.20
 
 4999 99'00 30.82 18.00
 
 5403 99'17 29.46 16.69
 
 5625 99'25 28.71 15.98
 
 5764 99'30 28.24 15'52
 
 16.26 13.75
 
 13.27 10.92
 
 12.06 9.780
 
 I1•39 9.148
 
 10.97
 
 10.67
 
 10.46
 
 10•29
 
 8.746
 
 8.466
 
 8.26o
 
 8.102
 
 10.05 7'874
 
 9.888 7718
 
 9.466 7313
 
 12.25 11.26
 
 9'547 8'649
 
 8'451 7.591
 
 7'847 7.006
 
 7'460 6.632
 
 7.191 6.371
 
 6.993 6.178
 
 6.840 6.029
 
 6.620 5'814
 
 6.469 5'667
 
 6.074 5'279
 
 10.56
 
 8'022
 
 6'992
 
 6'422
 
 6'057
 
 5'802
 
 5.613
 
 5 .467
 
 5'257
 
 5'111
 
 4.729
 
 4'859 4.31 1
 
 10'04 9.646
 
 6'552 6.217 5'953 5'739 5 .564
 
 5'994 5 .668 5'412 5'205 5'035
 
 5'636
 
 5.386
 
 5.200
 
 5.316 5.064 4'862 4'695
 
 5.069 4.821 4'620 4'456
 
 4.886 4'640 4'441 4'278
 
 5.057 4'744 4'499 4'302 4'140
 
 4'849 4'539 4'296 4'100 3'939
 
 4'706 4'397 4'155 3 .960 3'800
 
 4'327 4'021 3'780 3'587
 
 3.909 3.602 3.361 3 .165
 
 3'427
 
 3'004
 
 3'434
 
 3'666 3'553 3'455 3.371 3'297
 
 3'294 3'181 3'084 2.999 2'925
 
 2.868 2.753 2 '653 2.566 2.489
 
 5859 99'33 27.91 15.21
 
 5.650
 
 13
 
 9'074
 
 7'559 7.206 6'927 6'701
 
 14
 
 8.862
 
 6.515
 
 15 16 17 18 19
 
 8.683
 
 6'359
 
 5'417
 
 4'893
 
 4'556
 
 4'318
 
 4'142
 
 4'004
 
 3805
 
 8.531 8.400 8.285 8.185
 
 6.226
 
 4'773 4'669 4'579 4.500
 
 4'437 4'336 4'248 4'171
 
 4'202 4'102 3'939
 
 4.026 3'927 3-841 3'765
 
 3.890 3'791 3.705 3'631
 
 3'691 3'593
 
 6.013 5.926
 
 5'292 5'185 5'092 5010
 
 20
 
 8.096 8.017 7'945 7.881 7.823
 
 5'849 5'780 5'719 5.664 5.614
 
 4'938 4'874 4'817 4'765 4.718
 
 4'431 4'369 4'313 4'264 4.218
 
 4.103 4'042 3'988 3'939 3.895
 
 3.871 3.812 3'758 3'710 3'667
 
 3'699 3.640 3'587 3'539 3'496
 
 3.564 3.506 3'453 3'406 3'363
 
 3.368 3'310 3'258 3.211
 
 3.231 3'173 3.121 3.074
 
 2.859 2.8o1 2.749 2.702
 
 2.421 2.360 2.305 2.256
 
 3'168
 
 3.032
 
 2.659
 
 2.211
 
 7'770 7'721 7.677 7.636 7'598
 
 5'568 5'526 5.488 5'453 5'420
 
 4'675 4'637 4'601 4'568 4.538
 
 4'177 4'140 4'106 4'074 4'045
 
 3'855 3.818 3'785 3'754 3'725
 
 3'627 3'591 3'558 3'528 3'499
 
 3'457 3'421 3.388 3'358 3'330
 
 3'324 3.288 3.256 3.226 3.198
 
 3'129 3.094 3062 3.032 3.005
 
 2'993 2.958 2.926 2.896 2-868
 
 2.62o 2.585 2.552 2'522 2.495
 
 2.169 2.131 2 '097 2 ' 064 2 '034
 
 5.390 5'336 5'289 5'248 5'211
 
 4'510
 
 4.018
 
 3'699
 
 4'459 4'416 4'377 4'343
 
 3'969 3'927 3'890 3'858
 
 3'652 3'611 3'574 3'542
 
 3'473 3'427 3 .386 3'351 3'319
 
 3'304 3.258 3.218 3.183 3.152
 
 3'173 3.127 3.087 3'052 3.021
 
 2'979 2.934 2.894 2.859 2.828
 
 2'843 2.798 2'758 2.723 2.692
 
 2.469 2.423 2.383 2'347 2.316
 
 2.006
 
 34 36 38
 
 7.562 7'499 7'444 7.396 7'353
 
 1.911 1.872 1'837
 
 40 6o
 
 7'314 7077
 
 5'179 4'977 4'787 4.605
 
 4'313 4'126 3'949 3.782
 
 3'828 3'649 3'480 3.319
 
 3'514 3'339 3'174 3.017
 
 3.291 3'119 2.956 2.802
 
 3.124 2'953 2.792 2.639
 
 2'993 2.823 2.663 2.511
 
 2.801 2.632 2.472 2.321
 
 2.665 2.496 2.336 2.185
 
 2.288 2.115 1•950 1.791
 
 1.8o5 1.601 1.381 1.000
 
 21 22 23 24 25 26 27
 
 28 29 30 32
 
 9.330
 
 120
 
 6'851
 
 00
 
 6.635
 
 4.015
 
 53
 
 3.508
 
 1'956
 
 TABLE 12(e). 0.5 PER CENT POINTS OF THE F-DISTRIBUTION The function tabulated is F(P) = F(Plv,, v2) defined by the equation
 
 P
 
 ravi+ -PO v
 
 Ioo r(iv,) ra v2) 1
 
 v iv2 _ co z
 
 fF(p) (12+ viF)1(P.+92) dF,
 
 for P = 1o, 5, 2.5, I, 0•5 and o•i. The lower percentage points, that is the values F'(P) = F'(Plvi, v2) such that the probability that F < F'(P) is equal to P/Ioo, may be found by the formula
 
 F'(Plvi, v2) = i/F(Plv2, v1)•
 
 Vi. =
 
 I
 
 2
 
 3
 
 4
 
 1/2 = I
 
 20000 199'0
 
 21615
 
 22500
 
 2
 
 16211 198.5
 
 199'2
 
 199'2
 
 3 4
 
 55'55 31•33
 
 49'80 26.28
 
 47'47 24.26
 
 46'19 23.15
 
 5 6 7 8 9
 
 22.78 16.24 14.69 13.61
 
 18.31 14.54 12.40 11'04 IO II
 
 16.53 12'92 10•88 9'596 8.7i7
 
 12.83 12.23 I r 75 1 P 37 ii•o6
 
 9.427 8.912 8.510 8.186 7.922
 
 15 i6 17 18 19
 
 10•80 1o•58 10•38
 
 20
 
 (This shape applies only when vl at the origin.) 7
 
 8
 
 zo
 
 12
 
 24
 
 (X)
 
 23715 199'4 44'43 2 I .62
 
 24224 43'69 20'97
 
 24426 199'4 43'39 20.70
 
 24940 199'5 42'62 20.03
 
 25464
 
 22'46
 
 23437 199'3 44'84 2 1 •97
 
 23925 199'4 44'13 2r35
 
 15'56 12.03 1o•o5 8.805 7956
 
 14'94 11.46 9'522 8.3oz 7'471
 
 14'51 11.07 9'155 7952 7134
 
 14'20 10.79 8.885 7694 6.885
 
 13.96 /0'57 8.678 7496 6.693
 
 13.62 10.25 8.38o 7.211 6.417
 
 13.38 10'03 8.176 7.015 6.227
 
 12.78 9'474 7-645 6'503 5/29
 
 12 '14 8'879
 
 8.081 7.600 7226 6.926 6.68o
 
 7'343 6.88 6.521 6.233 5'998
 
 6'872 6.422 6.071 5'791 5'562
 
 6'545 6.102 5'757 5'482 5'257
 
 6.3o2 5.865 5'525 5'253 5'031
 
 6.116 5.682 5'345 5'076 4'857
 
 5.847 5.418 5'085 4'820 4'603
 
 5.661 5.236 4'906 4'643 4'428
 
 5.173 4-756 4'431 4'173 3.961
 
 3'904 3'647 3.436
 
 7701 7.514 7354
 
 6 '476 6.303 6'156
 
 5'803 5.638 5'497
 
 10'22
 
 7215
 
 6'028
 
 5'375
 
 10.07
 
 7'093
 
 5'916
 
 5.268
 
 5'372 5.212 5'075 4'956 4'853
 
 5'071 4'913 4'779 4'663 4'561
 
 4'847 4'692 4'559 4'445 4'345
 
 4'674 4'521 4'389 4'276 4'177
 
 4'424 4'272 4'142 4.030 3'933
 
 4'250 4'099 3'971 3.860 3'763
 
 3/86 3.638 3.5 3'402 3'306
 
 3.260 3•112 2 '984 2'873 2.776
 
 6.986 6.891 6.806 6/30 6.661
 
 5.818 5.730 5.652 5'582 5.519
 
 5'174 5.091 5.017 4'950 4.890
 
 4'762 4.681 4.609 4'544 4'486
 
 4'472 4'393 4.322 4'259 4'202
 
 4.257 4'179 4'109 4'047 3.991
 
 4.090 4'013 3'944 3'882 3.826
 
 3.847 3'771 3'703 3'642 3.587
 
 3.678 3.602 3'535 3'475 3.420
 
 3.222 3.147 3'081 3'021 2.967
 
 2'690
 
 23 24
 
 9.944 9.830 9.727 9.635 9'551
 
 2.428
 
 25
 
 9.475
 
 26 27
 
 9.406
 
 5.462 5'409 5.361 5.317
 
 4'835 4/85 4.740 4.698 4-659
 
 4'433 4'384 4.340 4.300 4.262
 
 4'150 4'103 4.059 4.020 3'983
 
 3'939 3'893 3.850 3.811 3'775
 
 3'776 3'730 3.687 3.649 3'613
 
 3'537 3'492 3'450 3'412 3'377
 
 3'370 3'325 3.284 3'246 3.211
 
 2.918 2'873 v832
 
 2.377 2'330 2.287
 
 2 '794
 
 2.247
 
 2.759
 
 2.210
 
 4'228 4'166
 
 3'949 3'889
 
 3'742 3'682
 
 4'112
 
 3'836
 
 3'630
 
 4'065 4'023
 
 3'790 3'749
 
 3'585 3'545
 
 3'580 3.521 3.470 3.425 3'385
 
 3'344 3.286 3.235 3.191 3.152
 
 3'179 3.121 3.071 3.027 2.988
 
 2.727 2.670 2.620 2.576 2.537
 
 2.176 2'114 2.060 2•013 1.970
 
 3'986 3/60 3'548 3'350
 
 3'713 3.492 3'285 3'091
 
 3'509 3.291 3'087 2.897
 
 3'350 3.134 2 '933 2.744
 
 3.117 2 '904 2 '705 2.519
 
 2'953 2'742 2 '544
 
 2.502
 
 1.932 r689 1.431 I•000
 
 io II 12
 
 13 1 4
 
 2/ 22
 
 18.63
 
 z8
 
 9'342 9.284
 
 6'598 6'541 6'489 6•44o
 
 29
 
 9'230
 
 6'396
 
 5'276
 
 30
 
 9.180
 
 6 '355
 
 5'239
 
 32
 
 9'090
 
 6'281
 
 5'171
 
 34 36 38
 
 0.012 8.943 8.882
 
 6.217 6.161 6•
 
 5.113 5.062 5•o16
 
 4'623 4'559 4'504 4'455 4.412
 
 8'828
 
 6.066 5'795 5'539 5.298
 
 4'976 4'729 4'497 4.279
 
 4'374 4'140 3'921 3'715
 
 40 6o 120 00
 
 8'495
 
 8'179 7.879
 
 ,5 23056 199'3 45'39
 
 6
 
 3. When v1< 3 the mode is
 
 54
 
 199'4
 
 2'358
 
 2'290
 
 2.089 1.898
 
 199'5
 
 41-83 19.32
 
 7.076 5-951 5.188 4'639 4'226
 
 2.614
 
 v545 2 '484
 
 TABLE 12(f). 0.1 PER CENT POINTS OF THE F-DISTRIBUTION If
 
 IX , F= X v, V2 -2
 
 where X1and .7C2 are independent random
 
 variables distributed as X' with v1and v2 degrees of freedom respectively, then the probabilities that F F(P) and that F < F'(P) are both equal to Piro°. Linear interpolation in v1or v2 will generally be sufficiently accurate except when either vl > 12 or v2 > 4o, when harmonic interpolation should be used. (This shape applies only when V1 at the origin.) vl =
 
 I
 
 v2 = I * 2
 
 3 4 5 6 7 8 9
 
 2
 
 3
 
 4053 998'5 167•0 74'14
 
 5000 999'0 148.5 61.25
 
 5404 999'2 141.1 56.18
 
 47'18 35.51
 
 37'12 27.00
 
 33.2o 23.70
 
 4
 
 5
 
 5625 999'2 137.1 53'44
 
 5764 999'3 134.6 51'71
 
 6 5859 999'3 132.8 50'53
 
 3. When v, < 3 the mode is
 
 7
 
 8
 
 I0
 
 12
 
 24
 
 a)
 
 5929 999'4 131•6 49'66
 
 5981 999'4 130.6 49'00
 
 6056 999'4 129.2 48'05
 
 6107 999'4 128.3 47'41
 
 6235 999'5 125.9 45'77
 
 6366 999'5 123'5 44.05
 
 26.92 18.41
 
 26.42 17.99 13.71 11•19 9'570
 
 25.13 16.90 12.73 10.30 8.724
 
 23'79 15'75 11.70 9'334 7-813
 
 8'445
 
 7638 6.847 6 .249 5'781 5'407
 
 6.762 5'998 5'420 4'967 4'604
 
 5'101
 
 31.09
 
 29.75
 
 28.83
 
 28.16
 
 27.65
 
 20•80 16'21
 
 20'03 15'52
 
 19'46 15'02
 
 19'03
 
 29'25
 
 21'69
 
 18'77
 
 21'92 17'20
 
 14'63
 
 14'08
 
 25.41 22.86
 
 18'49 16.39
 
 15'83 13.90
 
 14'39 12.56
 
 13.48 11.71
 
 12.86 11.13
 
 12.40 10.70
 
 12.05 10.37
 
 11.54 9'894
 
 21.04 19.69 18.64 17.82 17.14
 
 14.91 13.81 12.97 12.31 11.78
 
 12.55 1r56 io•8o 10.21 9.729
 
 11•28 10.35 9.633 9'073 8.622
 
 10•48 9.578 8.892 8'354 7.922
 
 9.926 9'047 8.379 7.856 7'436
 
 9.517 8.655 8•ooi 7'489 7.077
 
 9.204 8-355 7.710 7.206 6.8o2
 
 8.754 7922 7292 6-799
 
 6. 404
 
 7626 7.005 6-519 6.130
 
 11'34 10'97
 
 9'335
 
 10•66 10.39 10•16
 
 8.727 8.487 8.280
 
 8.253 7944 7.683 7'459 7.265
 
 7022
 
 18 19
 
 16-59 16.x2 15.72 15.38 15.08
 
 6.808 6.622
 
 6•081 5.812 5'584 5'390 5'222
 
 5.812 5'547 5'324 5.132 4'967
 
 4'631 4'447 4' 288
 
 4'307 4'059 3.85o 3.670 3'514
 
 20 2x
 
 14'82 14'59
 
 9'953 9'772
 
 22 23 24
 
 14'38
 
 9'612
 
 14'20 14'03
 
 9'469 9'339
 
 8•098 7'938 7'796 7669 7'554
 
 7.096 6'947 6.814 6.696 6.589
 
 6'461 6.318 6.191 6•078 5'977
 
 13.88 13'74 13.61 13.5o 13.39
 
 9.223 9'116 9.019 8.931 8'849
 
 7'451 7'357 7.272 7.193 7.121
 
 6'493 6.406 6.326 6.253 6.186
 
 5.885 5.802 5.726 5.656 5'593
 
 13.29 13.12
 
 8.773 8.639
 
 6.125 6•014 5.919 5.836 5.763 5.698 5.307 4'947 4.617
 
 4'757 4'416 4'103
 
 10 II 12
 
 13 14 15 16 17
 
 25 26 27
 
 28 29
 
 9'006
 
 34 36 38
 
 12'97
 
 8'522
 
 I2•83
 
 8.420 8.331
 
 7.054 6.936 6.833 6.744 6.665
 
 40
 
 6o
 
 12.6i 11.97
 
 120
 
 11 . 38
 
 00
 
 1o•83
 
 8.251 7.768 7321 6.908
 
 6.595 6.171 5.781 5.422
 
 3o 32
 
 1211
 
 7'567
 
 7092
 
 6.741
 
 6.471
 
 7.272
 
 6.805
 
 6.460
 
 6.195
 
 6'562
 
 6'223
 
 6.355 6.175
 
 6.021 5'845
 
 5.962 5.763 5'590
 
 6•019 5.881 5'758 5'649 5'550
 
 5.692 5'557 5'438 5'331 5-235
 
 5.308 5.190 5.085 4'991
 
 5.075 4'946 4'832 4'730 4'638
 
 4'823 4'696 4'583 4'483 4'393
 
 4'149 4'027 3.919 3.822 3'735
 
 3'378 3.257 3.151 3.055 2.969
 
 5'462 5.381 5.308 5'241 5.179
 
 5'148 5.070 4'998 4'933 4'873
 
 4'906 4'829 4'759 4'695 4'636
 
 4'555 4480 4'412 4'349 4'292
 
 4'312 4.2 38 4'171 4'109 4'053
 
 3.657 3.586 3.521 3'462 3'407
 
 2'890 2'819
 
 5'534 5'429 5'339 5.26o 5.190
 
 5.122 5.021 4'934 4'857 4'790
 
 4.817
 
 4'719 4'633 4'559 4'494
 
 4.581 4'485 4'401 4'328 4-264
 
 4'239 4'145 4.063 3'992 3'930
 
 4.001 3.908 3.828 3'758 3.697
 
 3'357 3.268 3.191 3.123 3'064
 
 2.589 2498 2 '419 2'349 2.288
 
 5•128
 
 4'731 4'372 4'044 3'743
 
 4'436 4' 086 3-767 3'475
 
 4'207 3.865 3'552 3.266
 
 3'874 3'541 3'237 2.959
 
 3.642 3.315
 
 3'011 2'694 2'402 2'132
 
 v233
 
 5.44o
 
 * Entries in the row v2 = I must be multiplied by ioo.
 
 55
 
 3'016 2'742
 
 4.846
 
 2'754 2.695 2'640
 
 I .890
 
 1.543 I•000
 
 TABLE 13. PERCENTAGE POINTS OF THE CORRELATION COEFFICIENT r WHEN p = 0 The function tabulated is r(P) = r(P1v) defined by the equation 2 1)
 
 -
 
 \ITT
 
 1
 
 rp)fr(P)
 
 (1 - r2) 2 dr = P
 
 2
 
 Let r be a partial correlation coefficient, after s variables have been eliminated, in a sample of size n from a multivariate normal population with corresponding true partial correlation coefficient p = o, and let v = n - s. This table gives upper P per cent points of r; the corresponding lower P per cent points are given by - r(P), and the tabulated values are also upper 2P per cent points of For s = o we have v = n and r is the ordinary correlation coefficient. When v > 130 use the results that r is approximately normally distributed with
 
 -1
 
 6 7 8 9 xo II 12 13 14
 
 5
 
 2'5
 
 I
 
 0'5
 
 0.9877 '9000
 
 0.9969 •9500
 
 0 '9995
 
 0 '9999
 
 •9800
 
 .9900
 
 Tables of the distribution of r for various values of p are given by, for example, F. N. David, Tables of the Ordinates
 
 and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples, Cambridge University Press (1954), and R. E. Odeh, ' Critical values of the sample product-moment correlation coefficient in the bivariate normal distribution', Commun. Statist. - Simula Computa. II (I) (1982), pp. x-26. The z-transformation may also be used (cf. Tables 16 and 17).
 
 0 '9343
 
 0 '9587
 
 0 '9859
 
 •8822 '8329 •7887 7498
 
 •9172 . 8745 . 8343 '7977
 
 '9633 '9350 '9049 -8751
 
 0'5494 •5214 '4973 '4762 '4575
 
 0.6319 •6021 '5760 '5529 '5324
 
 0.7155 •6851 -6581 '6339 •6120
 
 0.7646 '7348 -7079 '6835 •6614
 
 0.8467
 
 0'4409
 
 0'5140
 
 '4259 '4124 '4000 •3887
 
 '4973 '4821 '4683 '4555
 
 20 21 22 23
 
 0.3783 .3687 •3598 '3515 '3438
 
 0.4438 '4329 '422 7 '4132 '4044
 
 '
 
 0.641 I •6226 •6055 '5897 '5751
 
 0.7301 '7114 '6940 '6777 •6624
 
 0 '5155
 
 0.5614 '5487 •5368 •5256 •5151
 
 0.6481 '6346 •62,19 '6099 .5986
 
 '5034 '4921 '4815 '4716
 
 0 '3365
 
 '3297 •3233 •3172 •3115
 
 0.3961 •3882 •3809 '3739 .3673
 
 0.4622 '4534 '4451 '4372 '4297
 
 30 31 32 33 34
 
 0.3061 •3009 -2960 '2913 •2869
 
 0.3610 '3550 •3494 '3440 •3388
 
 04226
 
 '4158 '4093 '4032 '3972
 
 0.5052 '4958 '4869 '4785 '4705
 
 0-5879 '5776 '5679 '5587 '5499
 
 0.4629 '4556 '4487 '4421 '4357
 
 0 '5415
 
 0.2826
 
 0'3338
 
 0'3916
 
 0 '4296
 
 785
 
 '3862 •3810
 
 '4238
 
 '2709
 
 •3291 •3246 •3202
 
 ' 2673
 
 '3160
 
 ' 2
 
 '2746
 
 '8199
 
 '7950 -7717 •7501
 
 0.5923 '5742 '5577 '5425 '5285
 
 25 26 27 28 29
 
 35 36 37 38 39
 
 '9980
 
 0.8783 •8114 '7545 .7067 •6664
 
 15 16 17 18
 
 24
 
 0 '999995
 
 o.8054 '7293 •6694 •6215 .5822
 
 '3760 '3712
 
 '4182 '4128 '4076
 
 1
 
 U-shaped.)
 
 zero mean and variance -- (cf. Tables 16 and 17). v-3
 
 P
 
 r(P)
 
 (This shape applies for v > 5 only. When v = 4 the distribution is uniform and when v = 3 the probability density function is
 
 zero mean and variance--, or (more accurately) that v -1 z = tanh-1r is approximately normally distributed with
 
 v --- 3 4 5
 
 0
 
 P v = 40
 
 5
 
 2'5
 
 0'2638
 
 0'3120
 
 0'3665
 
 42
 
 '2573
 
 '3044
 
 44 46 48
 
 '2512
 
 '2455 '2403
 
 -2973 ' 2907 - 2845
 
 '3578 •3496
 
 5c1 52 54 56 58
 
 0'2353 '2306 '2262 '2221 •218I
 
 0'2787
 
 6o 62 64 66 68
 
 0'2144 •2I08 ' 2075 '2042 '2012
 
 0'2542
 
 70 72 74 76 78
 
 0.1982 •1954 1927 .1901 •1876
 
 0.2352 '2319 •2287 '2257
 
 80
 
 0.1852 '1829 '1807 •1786 '1765
 
 0'2199 '2172
 
 90 92 94 96 98
 
 0 '1745
 
 •1726 1707 -1689 •1671
 
 100
 
 105 II0 115 120 125 130
 
 0'1478 '1449
 
 82 84 86 88
 
 '5334 '5257 '5184 -5113 0'5045 '4979 '4916 '4856 '4797
 
 56
 
 0%5
 
 O•I 0 '4741
 
 '3420 '3348 0.3281 •3218 '3158 •3102 •3048
 
 0.4026 '3932 '3843 •3761 •3683 0.3610 •3542 '3477 '3415 '3357
 
 0.4267 '4188 '4114 '4043 '3976
 
 0.2997 '2948
 
 0.3301 •3248
 
 0'3912
 
 '2902
 
 '3198
 
 .2858 •2816
 
 .3150 •3104
 
 •3850 '3792 '3736 •3683
 
 0.2776 '2737 '2700 •2664 •2630
 
 0.3060 •3017 '2977 '2938 •2900
 
 0.3632 •3583 '3536 '3490 '3447
 
 0 '2597
 
 0.2864 •2830 '2796 .2764 '2732
 
 0'3405
 
 •2565 '2535 .2505 '2477
 
 0.2072 •2050 •2028 •2006 .1986
 
 0.2449
 
 0'2 702
 
 0' 3215
 
 '2422 '2396 '2371 ' 2 347
 
 ' 2673
 
 - 2645
 
 '3181 '3148
 
 •2617 '2591
 
 •3116 •3085
 
 0. 1 654
 
 0.1966 '1918
 
 1576
 
 . 1874
 
 . 1541
 
 •1832 '1793
 
 0.2324 -2268 -2216 •2167
 
 0.2565 '2504 •2446 '2393
 
 0- 3054
 
 - 1614
 
 •2I22
 
 '2343
 
 0'2079 -2039
 
 0.2296
 
 1509
 
 '2732 •2681 '2632 •2586 '2500
 
 ' 2461 '2423 '2387
 
 '2227
 
 ' 2146 '2120 '2096
 
 0.1757 •1723
 
 '2252
 
 '4633 '4533 '4439 '4351
 
 '3364 '3325 •3287 '3251
 
 '2983 '2915 '2853 '2794
 
 0.2738 •2686
 
 TABLE 14. PERCENTAGE POINTS OF SPEARMAN'S S TABLE 15. PERCENTAGE POINTS OF KENDALL'S K Spearman's S and Kendall's K are both used to measure the degree of association between two rankings of n objects. Let di (1 5 i n) be the difference in the ranks of the ith object;
 
 -51-02(n+ 1)2(n— I) for S and ,72,1-n(n — t)(2n + 5) for K, and when n > 4o both statistics are approximately normally distributed; more accurately, the distribution function of X = [S n)]I[]n(n +1)' ” .17---1] -- is approximately equal to
 
 Spearman's S is defined as E 4. To define Kendall's K, re-
 
 Y
 
 (130 (x)—
 
 order the pairs of ranks so that the first set is in natural order from left to right, and let mi (1 5 i n) be the number of ranks greater than i in the second ranking which are to the
 
 e
 
 241/27T
 
 SPEARMAN'S S 2'5
 
 5
 
 I
 
 KENDALL'S K
 
 0'5
 
 0•I
 
 5 6 7 8 9
 
 2
 
 0
 
 6 16 3o 48
 
 4
 
 0 2
 
 12 22
 
 6
 
 4
 
 O
 
 14
 
 36
 
 26
 
 IO 20
 
 4 Io
 
 58 84 118 160
 
 42 64 92 128 170
 
 34 54 78 108 146
 
 20
 
 165
 
 zo
 
 34 52 76 104
 
 220
 
 II
 
 286 364 455
 
 222
 
 194
 
 140
 
 616
 
 284 354 436 53o
 
 248 312 388 474
 
 184 236 298 370
 
 72 102
 
 O
 
 2'5
 
 5
 
 n=4
 
 I0
 
 —
 
 P
 
 i(n3—
 
 0
 
 II
 
 —o.c:14(ign2+ 5n-36) *(n3—n)
 
 and 110(x) is the normal distribution function (see Table 4). A test of the null hypothesis of independent rankings is provided by rejecting at the P per cent level if S x(P), or K x(P), when the alternative is contrary rankings. The other points are similarly used when the alternative is similar rankings. To cover both alternatives reject at the 2P per cent level if S, or K, lies in either tail. Spearman's rank correlation coefficient rsis defined as 1 — 6S/(n3 — n), and has upper and lower P per cent points I — 6x(P)/(n3— n) and — [1— 6x(P)/(n3— n)] respectively. Kendall's rank correlation coefficient ric is defined as 4K I[n(n — 1, and has upper and lower P per cent points 4x(P)/[n(n — 1)] r and I} respectively. — {4x(P)I[n(n—
 
 right of rank i. Kendall's K is defined as E mi. i =1 For Table 14 the tabulated value x(P) is the lower percentage point, i.e. the largest value x such that, in independent rankings, Pr(S < x) P/ loo; in Table 15, K replaces S and the upper percentage point is given. A dash indicates that there is no value with the required property. The distributions are symmetric about means (n3— n) for S and in(n-1) for K, with maxima equal to twice the means; hence the upper percentage points of S are -i(n3 — n) — x(P) and the lower percentage points of K are in(n-1)— x(P). The variances are
 
 P
 
 (x3 — 3x), where y =
 
 I0
 
 n=4
 
 20
 
 5 6 7 8 9
 
 I
 
 0'5
 
 9
 
 I0
 
 10
 
 14
 
 14
 
 15
 
 22
 
 19 24 3o
 
 20 25
 
 27
 
 18 23 28
 
 12 13 14
 
 33 39 46 53 62
 
 34 41 48 56 64
 
 56o 68o 816 969 1140
 
 15 16 17 18 19
 
 7o 79 89 99 II0
 
 73 83 93 103 114
 
 1330
 
 121 133 146
 
 126 138 151
 
 159
 
 164
 
 172
 
 178
 
 144 157 171 185 216 232 248 266
 
 120
 
 5
 
 31
 
 26 33
 
 7'5 I0.5 14 18
 
 36 43 51 59 67
 
 37 44 52 61 69
 
 40 47 55 64 73
 
 22.5 27.5 33 39 45.5
 
 77 86 97 1(38
 
 79 89 I00
 
 83 94 105 117 129
 
 6o 68 76-5
 
 142 156 170 184 200
 
 95 zos xxs.s 126.5 138
 
 238 254 272
 
 216 232 249 267 285
 
 150 162.5 175'5 189 203
 
 303
 
 323 342 363 384
 
 217.5 232.5 248 264 280.5 297.5 315 333 351'5 370.s 390
 
 2I
 
 I2
 
 142
 
 13 14
 
 188 244
 
 xs x6 17 18 19
 
 388 478 58o 694
 
 20 21 22 23 24
 
 824 970 1132 1310 1508
 
 736 868 to18 1182 1364
 
 636 756 890 1040 1206
 
 572 684 8o8
 
 452 544 65o
 
 1771
 
 948 1102
 
 768
 
 2024
 
 900
 
 2300
 
 20 21 22 23 24
 
 25 26 27 28 29
 
 1724
 
 1566
 
 1272 1460 1664 1888 2132
 
 1584 1796
 
 260o 2925 3276 3654 4060
 
 25 26 27 28 29
 
 186 201 216 232
 
 2794
 
 1784 2022 2282 2564
 
 1388 1588 1806 2044 2304
 
 It:48
 
 1958
 
 248
 
 193 208 223 239 256
 
 3o 31 32 33 34
 
 3118 3466 3840 4240 4666
 
 2866 3194 3544 3920 4322
 
 2584 2884 3210 3558 3930
 
 2396 2682 2988 3318 3672
 
 2028 2280 2552 2844 316o
 
 4495 496o 5456 5984 6545
 
 3o 31 32 33 34
 
 265 282 300 318 337
 
 273 291 309 328 347
 
 283 301 320 340 359
 
 290 308 328 347 368
 
 35 36 37 38 39
 
 512o 5604 6118 666z 7238
 
 4750 5206 5692 6206 675o
 
 4330 4754 5206 5686 6196
 
 4050 4454 4884 5342 5826
 
 3498 3858 4244 4656
 
 35 36 37 38 39
 
 356 376 397 418 440
 
 367 388 409 430 452
 
 380 401
 
 410
 
 5092
 
 7140 7770 8436 9139 988o
 
 444 467
 
 432 454 477
 
 405 428 450 473 497
 
 40
 
 7846
 
 7326
 
 6736
 
 6342
 
 5556
 
 10660
 
 40
 
 462
 
 475
 
 490
 
 501
 
 522
 
 310
 
 2214 2492
 
 210
 
 268 338 418 512
 
 1210 1388
 
 1540
 
 57
 
 n(n — I) 3
 
 13
 
 35 56 84
 
 0•I
 
 6
 
 119 131
 
 200
 
 422
 
 III 123 135 148
 
 161 176 190 205 221
 
 388
 
 52.5
 
 85.5
 
 TABLE 16. THE z-TRANSFORMATION OF THE CORRELATION COEFFICIENT The function tabulated is
 
 coefficient p, and let v = n-s. Then z is approximately normally distributed with mean tanh-1p+plz(v I) (or, less accurately, tanh-1p) and variance - 3). If s = o we have v = n and r is the ordinary correlation coefficient. For p = o the exact percentage points are given in Table 13.
 
 z = tanh-1 r = loge (I
 
 . If r < o use the negative of the value of z for -r. Let r be a partial correlation coefficient, after s variables have been eliminated, in a sample of size n from a multivariate normal population with the corresponding true partial correlation
 
 -
 
 I
 
 r
 
 z
 
 r
 
 z
 
 r
 
 z
 
 r
 
 z
 
 r
 
 z
 
 0'00 •OI •02 '03
 
 0'0000 '0 I 00 '0200
 
 0.500 .5o5 •po '515 •52o
 
 0.5493 .556o •5627 •5695 •5763
 
 0'750
 
 0.9730 0 '9845 0.9962 z•oo82 1.0203
 
 0•9I0
 
 •912 '9,4 •916 .918
 
 1.5275 '5393 '5513 •5636 .5762
 
 0.9700 •9705 •9710 '9715 •9720
 
 2.0923 •xoo8 •1o95 •1183 .1273
 
 09950 '995x '9952 '9953 '9954
 
 '755 •760 .765 .770
 
 r
 
 z 2 '9945
 
 3.0046 3'0149 3'0255
 
 '04
 
 •0300 •0400
 
 0.05 o6 •07 •o8 •09
 
 0.0500 •o6oi •0701 -o8o2 •0902
 
 0'525
 
 0'5832
 
 0'775
 
 .5901 '5971 •6042 -611 2
 
 •78o .785 '790 '795
 
 1.0327 .0454 .0583 •0714 . o849
 
 0'920 '922 '924 '926 '928
 
 1.5890 -6022 .6157 -6296 '6438
 
 0.9725 .9730 '9735 '9740 '9745
 
 2.1364 '1457 •1552 •1649 '1747
 
 0'9955
 
 •530 '535 '540 '545
 
 0'I0 •II •I2
 
 0'1003 •II04 •1206
 
 0'550
 
 '93, '932 '933 '934
 
 1.6584 -6658 .6734 •681x •6888
 
 0.9750 '9755 '9760 .9765 '9770
 
 2'1847 •I950 - 2054 •2I6o
 
 •1409
 
 -56o .565 .57o
 
 1.0986 •1127 •127o 1417 •1568
 
 0'9960
 
 1 307
 
 o.800 .8o5 •810 .815 •820
 
 0'930
 
 .13 '14
 
 0.6184 •6256 •6328 •64ox .6475
 
 0.15 x6 '17 18 •19
 
 0'1511 '1614 •1717 •1820 '1923
 
 0.575 .58o .585 '590 '595
 
 0. 6550
 
 0'825 '830 '835
 
 1'1723
 
 0'935 .936 '937 .938 '939
 
 1.6967 '7047 -7129 -7211 .7295
 
 0'9775
 
 2.2380 '2494 -2610 .2729
 
 0.9965 •9966 '9967
 
 •285I
 
 •9969
 
 '2027 •218I '2340
 
 0'20 •2I '22 '23 '24
 
 0'2027 •2I32 •2237
 
 o.600 •6os .6 zo .615 •62o
 
 0.6931 •70I0 '7089 •7169 •7250
 
 o. 85o .852 '854 .856 -858
 
 1•2562
 
 0.940 '94x '942 '943 '944
 
 1.738o '7467 '7555 .7645 '7736
 
 0.9800 •9805 •98,o •9815 •9820
 
 2'2976
 
 0.9970 '9971 '9972 '9973 '9974
 
 3.2504 .2674 . 2849 •3031 -3220
 
 0'25 '26 '27
 
 0 '2554
 
 0•625 '630 '635 -640
 
 0.7332 '7414 '7498 -7582 •7667
 
 o 86o •862 '864 •866 •868
 
 1-2933 •3011 •3089 •3169 '3249
 
 0'945
 
 r7828 '7923 •8019 •8117 -8216
 
 0.9825 -983o .9835 •9840 - 9845
 
 2.3650 '3796 '3946 '4101 '4261
 
 0'9975
 
 '946 '947 '948 '949
 
 '9976 '9977 '9978 '9979
 
 3'3417 •3621 '3834 '4057 -4290
 
 0•870 '872
 
 0.950 '95x .952 '953 '954
 
 1.8318 •8421 •8527 -8635 - 8745
 
 0.9850 .9855 •9860 •9865 •9870
 
 2'4427
 
 •876 .878
 
 r333r '3414 '3498 •3583 •3670
 
 '4597 '4774 '4957 '5147
 
 0.9980 •9981 •9982 '9983 '9984
 
 3'4534 '4790 •5061 '5347 •5650
 
 2'5345 '5550 '5764 .5987 •6221
 
 0.9985 -9986 •9987 '9988 .9989
 
 3'5973 -6319 -6689 •7090 .7525
 
 0.9990 '9991 '9992 '9993 '9994
 
 3.8002 3'8529 3.9118 3.9786 4'0557 4'1469 .2585 '4024 •6o51 '9517
 
 •28 .29
 
 '2342 .2448 •2661 •2769 •2877 -2986
 
 '555
 
 '645
 
 •6625 -6700 •6777 .6854
 
 840 '845
 
 •1881 '2044 •2212 •2384
 
 •2634 •2707 •2782 .2857
 
 •9780 .9785 '9790 '9795
 
 -2269
 
 •31o3 -3235 .3369 •3507
 
 0.30 '31 .32 '33 '34
 
 0 '3095
 
 o.65o -655 -66o •665 •67o
 
 0'7753
 
 •3205 -3316 '3428 '3541
 
 0.35 •36 '37 •38 '39
 
 0. 3654 •3769 •3884 '4001 '4118
 
 0.675 •68o .685 •690 .695
 
 0.8199 •8291 -8385 -8480 -8576
 
 o.88o •882 .884 •886 •888
 
 1•3758 •3847 '3938 '4030 '4124
 
 0'955 .956 .957 .958 '959
 
 1.8857 -8972 •9090 .9210 '9333
 
 0.9875 •9880
 
 040
 
 0.4236 '4356 '4477 '4599
 
 0'700
 
 0.890 .892
 
 1.4219 '4316
 
 1'9459
 
 •720
 
 .9588 •9721 '9857 '9996
 
 0.9900 '9905 •9910 '9915 •9920
 
 2'6467 - 6724 '6996 '7283
 
 '4722
 
 0.8673 -8772 •8872 '8973 •9076
 
 0.4847 '4973 •510I •523o -5361
 
 0'725
 
 0.9181
 
 •46 '47 '48 '49
 
 '730 '735 '740 '745
 
 0.50
 
 0'5493
 
 0'750
 
 '41 '42 '43 '44 0'45
 
 '
 
 705
 
 .7 zo
 
 '7,5
 
 '7840 .7928 -8017 -81o7
 
 '874
 
 '9885
 
 -9890 •9895
 
 '9956 '9957 '9958 '9959
 
 '9961 •9962 '9963 '9964
 
 '9968
 
 '894
 
 '441 5
 
 '896 .898
 
 '4516
 
 •4618
 
 0.960 '961 •962 '963 '964
 
 0'900 •902
 
 '9395 .9505 •9616
 
 '904 '906 '908
 
 1.4722 '4828 '4937 '5047 .5 x 6o
 
 0.965 •966 '967 •968 '969
 
 2.0139 -0287 .0439 .0595 .0756
 
 0.9925 '9930 '9935 •9940 '9945
 
 v7911 -8257 -8629 •9031 '9467
 
 0'9995
 
 '9287
 
 0.9730
 
 0'910
 
 1.5275
 
 0.970
 
 2'0923
 
 0.9950
 
 2'9945
 
 I'0000
 
 58
 
 •7587
 
 '9996 '9997 .9998 '9999
 
 3'0363
 
 3.0473 .0585 •0701 -0819 '0939 3.1063 -I190 •132o •1454 .1591 3'1732 •1877
 
 00
 
 TABLE 17. THE INVERSE OF THE z-TRANSFORMATION The function tabulated is r = tanh z =
 
 e22 -
 
 +
 
 . If z < o, use the negative of the value of r for -z.
 
 z
 
 r
 
 z
 
 r
 
 z
 
 r
 
 z
 
 r
 
 z
 
 r
 
 z
 
 r
 
 0'00 '01 •02
 
 0'0000 '0100
 
 0'50
 
 •52 '53 '54
 
 0.7616 •7658 -7699 '7739 '7779
 
 0.905! •9069 •9087 •9104 -9121
 
 2'00 •02 '04
 
 0.9640 .9654 •9667 -9680 .9693
 
 3'00 •02
 
 '0200 •0300 '0400
 
 1'00 •OI '02 •03 '04
 
 x.50 '51
 
 '03 •04
 
 0.4621 '4699 '4777 '4854 '4930
 
 0.9951 '9952 '9954 '9956 '9958
 
 0'05
 
 0'0500
 
 .0599
 
 1.05 -06 -07 -08 .09
 
 0.7818 -7857 •7895 '7932 -7969
 
 x-55 •56 •57
 
 0.9138 '9154
 
 2•I0 •I2
 
 '9170
 
 -14
 
 - 58
 
 •9186
 
 '59
 
 - 9201
 
 •x6 -18
 
 0.9705 -9716 -9727 '9737 '9748
 
 3'10 •I2
 
 .0798 •o898
 
 0.55 -56 '57 •58 '59
 
 0.5005
 
 •o6 •07 •08 •09 0•10
 
 0.0997
 
 *14
 
 x.60 •6x -62 -63 - 64
 
 0.9217 -9232 '9246 -9261 .9275
 
 3'20 '22
 
 '1293 •I39I
 
 0.8005 •8041 -8076 •8110 - 8144
 
 2'20 - 22
 
 'I3
 
 0.5370 '5441 •5511 •5581 . 5649
 
 0.9757
 
 •1096 '1194
 
 o•6o •61 •62 -63 - 64
 
 PIO
 
 •II •I2
 
 - 24 '26 '28
 
 '9776 -9785 '9793
 
 .28
 
 0'15
 
 0'1489
 
 o•65 •66 -67 •68 -69
 
 0.5717 '5784 •585o •5915 •5980
 
 I•I5
 
 I•65
 
 0.9289 '9302
 
 2'30 - 32
 
 '67
 
 .9316 '9329 '9341
 
 -36 •38
 
 0.9801 -9809 -9816 -9823 •983o
 
 3.3o •32 - 34 •36 •38
 
 0 '9973
 
 -66
 
 •17 -x8 •x9
 
 0.8178 -8210 8243 -8275 •8306
 
 0.70 '71 -72 . 73 '74
 
 0.6044 •6107 -6169 •6231 •6291
 
 I'20 •2I '22 •23 '24
 
 0.8337 •8367 -8397 - 8426 - 8455
 
 1.70 '71 '72 '73 '74
 
 0 '9354
 
 2.40 - 42 '44 '46 •48
 
 0.9837 .9843 .9849 .9855 •9861
 
 3'40 - 42 .44 - 46 •48
 
 0.9978 '9979 '9979 -9980 '9981
 
 0.75 •76 '77 •78 '79
 
 0.6351 - 6411 - 6469 .6527 - 6584
 
 1'25
 
 0.8483 •8511 -8538 .8565 -8591
 
 1'75
 
 0 '9414 - 9425
 
 2'50
 
 '9436 '9447 '9458
 
 •52 '54 -56 •58
 
 0.9866 •9871 •9876 -9881 •9886
 
 3-50 '55 -60 -65 •70
 
 0.9982 '9984 -9985 -9986 -9988
 
 0.6640 -6696 •6751 •68o5 -6858
 
 1'30
 
 x.8o
 
 •32 '33 '34
 
 0.8617 - 8643 •8668 •8692 -8717
 
 -82 -83 -84
 
 0.9468 '9478 '9488 '9498 -9508
 
 2.60 -62 - 64 •66 -68
 
 0.9890 -9895 -9899 .9903 •9906
 
 3.75 •8o .85 •90 '95
 
 0.9989 - 9990 '9991 '9992 '9993
 
 4.00 •05 •xo .x5
 
 0 '9993
 
 - 20
 
 '9994 '9995 '9995 '9996
 
 •r7 -x8 •I9 0'20 •2I '22
 
 •o699
 
 •1586 •1684 '1781 '1877 0'1974 '2070
 
 .2165
 
 •23
 
 •2260
 
 '24
 
 '2355
 
 0.25
 
 0 '2449
 
 -26 •27 •28
 
 '2543 '2636
 
 '29
 
 •282I
 
 0'30
 
 0.2913 •3004
 
 '2729
 
 -5080 '5154 .52,27 .5299
 
 •II '12 - 13
 
 -26 •27 -28 •29
 
 '52
 
 '53 '54
 
 -
 
 -68 -69
 
 •76 '77 •78 '79
 
 -9366 '9379 '9391 '9402
 
 -06 •08
 
 - 34
 
 •9767
 
 '04
 
 -06 •08
 
 '14 •x6 •x8
 
 '24 '26
 
 0 '9959
 
 .9961 •9963 '9964 -9965 0.9967 -9968 •9969 '9971 '9972
 
 '9974 '9975 '9976 '9977
 
 '32
 
 •3095
 
 '33 '34
 
 •3185 '3275
 
 o•80 •81 -82 .83 -84
 
 0.35 •36 - 37 •38 '39
 
 0.3364 •3452 '3540 •3627 '3714
 
 0.85 -86 .87 •88 -89
 
 0.6911 -6963 •7014 '7064 •7114
 
 1-35
 
 0'8741
 
 •36 - 37 •38 '39
 
 -8764 -8787 .8810 -8832
 
 1-85 -86 -87 -88 .89
 
 0.9517 '9527 '9536 '9545 '9554
 
 2'70 '72
 
 '74 76 •78
 
 0.9910 '9914 .9917 -9920 '9923
 
 0'40
 
 0.3799 .3885 •3969 '4053 •4136
 
 0.90 '9I .92 .93 '94
 
 0.7163 -7211 '7259 •7306 '7352
 
 1 40
 
 0.8854 •8875 -8896 •8917 .8937
 
 x•90 '9, .92 '93 '94
 
 0.9562 '9571 '9579 -9587 '9595
 
 2.80 •82 '84 -86 88
 
 0.9926 -9929 '9932 '9935 '9937
 
 4'25 .30 '35 . 40 '45
 
 0.9996 '9996 '9997 '9997 '9997
 
 0.45 '46 '47 '48 '49
 
 0'4219
 
 0.95 •96 '97 •98 '99
 
 0.7398 '7443 '7487 '7531 '7574
 
 1'45
 
 1'95 •96 '97 -98 '99
 
 0.9603 -9611 •9618 -9626 -9633
 
 0 '9940
 
 •46 '47 •48 - 49
 
 0.8957 .8977 -8996 •9015 .9033
 
 2'90
 
 '4301 .4382 '4462 '4542
 
 •92 '94 -96 .98
 
 '9942 '9944 '9946 '9949
 
 4'50 - 55 •60 .65 -7o
 
 0.9998 '9998 '9998 '9998 '9998
 
 0'50
 
 0'4621
 
 1'00
 
 0.7616
 
 I•50
 
 0•905I
 
 2'00
 
 0'9640
 
 3'00
 
 0.9951
 
 4'75
 
 0'9999
 
 '31
 
 '41 '42 '43 '44
 
 .31
 
 '42 '43 '44
 
 59
 
 TABLE 18. PERCENTAGE POINTS OF THE DISTRIBUTION OF THE NUMBER OF RUNS with the required property. When n, and n2 are large, R is
 
 Suppose that th A's and n2 B's (n1 n 2) are arranged at random in a row, and let R be the number of runs (that is, sets of one or more consecutive letters all of the same kind immediately preceded and succeeded by the other letter or the beginning or end of the row). The upper P per cent point x(P) of R is the smallest x such that Pr {R x} 5 P/ioo, and the lower P per cent point x'(P) of R is the largest x such that Pr IR P/ioo. A dash indicates that there is no value
 
 approximately normally distributed with mean
 
 zni n2 + and ni+ n2
 
 2n022(2n1n2— — n2)
 
 . Formulae for the calculation (ni +n2)2 (ni +n2 — I) of this distribution are given by M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 2 (3rd edition, 1973), Griffin, London, Exercise 30.8. variance
 
 UPPER PERCENTAGE POINTS
 
 =3 4
 
 112
 
 P
 
 5
 
 =4 4 5 6
 
 7 8 9 9 9
 
 7 5
 
 5 6
 
 7 8 9 5 6
 
 6
 
 7
 
 7
 
 7
 
 8
 
 8
 
 8
 
 xo 6 7 8 9 xo
 
 I
 
 P
 
 o•x
 
 5
 
 n1 = 8 n2 = 17 18 19 20
 
 9 9
 
 9
 
 9
 
 II
 
 I0 II 12 13
 
 II
 
 14
 
 9 I0 I0
 
 I0 II II
 
 II II
 
 12 12
 
 9 12 12 13 13
 
 13
 
 II 12 13
 
 12 13 13 13
 
 14
 
 13
 
 7
 
 12
 
 13
 
 14
 
 8 9
 
 13
 
 14
 
 13
 
 15 15
 
 9 xo
 
 15 16 I7 18 19 20 TO II
 
 12 13
 
 10 II
 
 13 14
 
 14 15 15 15
 
 10
 
 14 15 16 17 i8
 
 10
 
 19
 
 14 15 15
 
 II
 
 20 II
 
 15 15 15
 
 II
 
 18 19
 
 8 9
 
 13 14
 
 14 15
 
 16 16
 
 xo II 12 13
 
 14 15 15 15
 
 17 17
 
 14
 
 16
 
 15 16 16 17 17
 
 15 ,6
 
 16 16
 
 17 17
 
 12
 
 14
 
 13
 
 14
 
 14 15 16 17
 
 II
 
 12
 
 12
 
 16 16 16 17 14
 
 I
 
 17
 
 17 17
 
 18 18
 
 17 18 18
 
 19 19 19
 
 18 16 16 17 17
 
 19 17 18 18 19
 
 17
 
 19 19 20 20 20
 
 19
 
 18 19 zo
 
 16
 
 16 16 17
 
 18 18
 
 18 18 19 19 19
 
 13
 
 17
 
 14
 
 14
 
 18 19 20 14 15 16 17
 
 I2 13
 
 19 19
 
 20 20 21
 
 14 15 16 17 18
 
 18 19 19 19 20
 
 20 20 2I 21 2I
 
 21 22 22 22 23
 
 19 20 12 13 14
 
 20 20 18 18 19
 
 22 22 19 20 21
 
 23 23 21 22 22
 
 15
 
 19
 
 21
 
 23
 
 I
 
 o•x
 
 20 20 21 21 21
 
 22 22 22 23 23
 
 23
 
 19 20 20 21 21
 
 21 21 22 22 23
 
 23 23
 
 21 22 22 20 21
 
 23 24 24 22 23
 
 25 25 26
 
 21 22 22 23 23
 
 23
 
 25
 
 24 24 24 24
 
 24 24 25
 
 24 24
 
 25
 
 24 24 25
 
 26 26 27
 
 21 22 22 23 23
 
 23 24 24 25 25
 
 25 26 26 27 27
 
 19
 
 24 23 23 24 24
 
 26 24 25 26 26
 
 28 z6 27 28 28
 
 16
 
 20
 
 25
 
 26
 
 29
 
 17
 
 17 18
 
 24 24
 
 26 26
 
 19
 
 25
 
 27
 
 28 29
 
 20
 
 25
 
 27
 
 29
 
 18 19 20
 
 25 25 26
 
 27 27 28
 
 29 30 30
 
 18 19 20
 
 15
 
 15 16 17
 
 18 19
 
 20 20
 
 5
 
 24
 
 18 19 20 20 20 2I 21 21
 
 13 14 15
 
 x6
 
 13
 
 19 19 17 17 18
 
 6o
 
 n2 =
 
 n1 =
 
 16 17 17 18 18
 
 15 15
 
 P
 
 0•I
 
 15
 
 20
 
 16
 
 16 17
 
 x8
 
 x8
 
 19
 
 20
 
 28
 
 19
 
 26
 
 28
 
 20
 
 27
 
 29
 
 30 31
 
 20
 
 27
 
 29
 
 31
 
 TABLE 18. PERCENTAGE POINTS OF THE DISTRIBUTION OF THE NUMBER OF RUNS LOWER PERCENTAGE POINTS
 
 P
 
 =
 
 2
 
 2
 
 n2
 
 =
 
 8 9
 
 3
 
 3
 
 n1 =
 
 8
 
 n2 = 19
 
 5
 
 x
 
 8 8 6 6 6
 
 6 6 4 5 5
 
 5 5 3 3 3
 
 7 7 7 8 8
 
 5 6 6 6 6
 
 4 4 4 4 5
 
 8 8 8 9 6
 
 7 7 7 7 5
 
 5 5 5 5 4
 
 7 7 8 8 8
 
 5 6 6 6 7
 
 4 4 4 5 5
 
 8 9 9 9
 
 7 7 7 8 8
 
 5 5 6 6 6 4 5 5 5 5
 
 12 13
 
 12
 
 2
 
 14
 
 5
 
 2
 
 15 x6 17 18
 
 2
 
 19
 
 5 5 5 5 5
 
 4 4 4 4 4
 
 5 3 4 4 4
 
 4 2
 
 3 —
 
 3 3 3
 
 2
 
 I0
 
 3 4 4 4 4
 
 2
 
 10
 
 2
 
 12
 
 12 13 14
 
 5 5 5 5 5
 
 3 3 3
 
 '3
 
 15 16 z7 18 19
 
 6 6 6 6 6
 
 4 4 5 5 5
 
 3 3 3 3 3
 
 xo
 
 20
 
 5 3 3 4 4
 
 4
 
 II
 
 2
 
 14
 
 8
 
 10
 
 6 4 4 5 5
 
 3
 
 15
 
 9
 
 6 6 6 7 7
 
 II 12 13 Ls 15
 
 5 6 6 6 6
 
 4 4 5 5 5
 
 3 3 3 3 3
 
 II
 
 16 17 18 x9
 
 9 9 io xo xo
 
 7 8 8 8 8
 
 6 6 6 6 7
 
 16 17 18 19
 
 6 7 7 7 7
 
 5 5 5 6 6
 
 4 4 4 4 4
 
 12
 
 8 9 9 9 io
 
 7 7 7 8 8
 
 5 5 5 6 6
 
 5 5 6 6 6
 
 4 4 4 5 5
 
 2
 
 12
 
 3 3 3 3
 
 x8 19
 
 lo io zo
 
 6 7 7 7 5
 
 5 5 5 6 6 6
 
 13
 
 2
 
 14
 
 2 2
 
 =5
 
 5
 
 2 2
 
 2
 
 20
 
 2
 
 2
 
 5 6
 
 2 2
 
 7 8 9
 
 2 2
 
 2
 
 10
 
 3 3
 
 2
 
 12
 
 17 x8 19
 
 4
 
 4
 
 2
 
 4
 
 5 6 7 8 9
 
 3 3 3 3
 
 zo
 
 5 6
 
 6
 
 2
 
 3 3 3 3 3
 
 2
 
 6
 
 2 2
 
 2 2 2
 
 6 7
 
 2 2 2 2
 
 7
 
 2 2 2
 
 2 2
 
 14
 
 3 3 3
 
 2 2
 
 15 16
 
 4 4
 
 3 3
 
 2
 
 12 13
 
 20
 
 6 7 8 9 zo II
 
 3 3 4 4 4
 
 II
 
 n2= I° II
 
 18 19
 
 20
 
 5
 
 2
 
 P
 
 2
 
 2
 
 3 3 3 3
 
 4 5
 
 o•x
 
 II
 
 16
 
 4
 
 I
 
 I0
 
 15
 
 4
 
 5
 
 3 3 3 3 3
 
 13 14
 
 3
 
 P
 
 0' I
 
 4 4 4 4
 
 II
 
 3
 
 I
 
 2 2
 
 15 x6 17 2
 
 5
 
 2
 
 7
 
 2
 
 7 8 9
 
 20
 
 17
 
 4
 
 3
 
 2
 
 8 9 xo
 
 18 19
 
 4 4
 
 3 3
 
 2
 
 II
 
 2
 
 12
 
 20
 
 4 3 3 3 3
 
 3
 
 2
 
 5 6 7 8 9
 
 4
 
 2
 
 8
 
 2
 
 x6
 
 2
 
 17
 
 6 7 7 7 7
 
 x8
 
 8
 
 8
 
 13
 
 2
 
 14
 
 2
 
 15
 
 3
 
 2
 
 8
 
 61
 
 20
 
 2 2
 
 9
 
 9
 
 2
 
 I0
 
 2
 
 II
 
 2
 
 9
 
 2 3 3 3
 
 12
 
 13 14 15 x6 9
 
 17 x8 19 20
 
 2
 
 I0
 
 II
 
 15 16 17
 
 x8 19 20 II
 
 12
 
 2 2
 
 20 12 13 14
 
 xs 16
 
 9
 
 7 8 8
 
 20
 
 II
 
 13
 
 13
 
 9
 
 8 8 9 9 7
 
 4 4 4 4 4
 
 13
 
 14
 
 15 x6 17 x8
 
 9 io io Jo ix
 
 8 8 8 9 9
 
 6 6 6 7 7
 
 4
 
 13
 
 19
 
 II
 
 9
 
 7
 
 /7
 
 TABLE 18. PERCENTAGE POINTS OF THE DISTRIBUTION OF THE NUMBER OF RUNS LOWER PERCENTAGE POINTS
 
 P
 
 nI= 13
 
 722 = 20 14 15
 
 16 17 14
 
 18
 
 15
 
 19 20 15
 
 5
 
 I
 
 0•I
 
 II 10 I0 II II
 
 10 8 8 9 9
 
 8 6 7 7 7
 
 II I2 12
 
 9 10 10 9 9
 
 7 8 8 7 7
 
 II
 
 16
 
 II
 
 P
 
 =
 
 15
 
 5
 
 I
 
 o•x
 
 II
 
 I0 I0
 
 8 8 8 8 8
 
 th = /7 18 19 20
 
 I2 12 I2
 
 IO
 
 16
 
 16
 
 II
 
 10
 
 16
 
 17 18
 
 I2 12 13 13 12
 
 o To
 
 19 20 17
 
 17
 
 II
 
 nI = 17
 
 II II
 
 I0
 
 5
 
 19
 
 n2 =
 
 18 18
 
 8 8 9 9 8
 
 P
 
 19 20
 
 I
 
 0•I
 
 13
 
 II
 
 13
 
 II
 
 9 9 9 9 9
 
 20
 
 13
 
 II
 
 18 19
 
 13
 
 II
 
 14
 
 I2
 
 20 19 20 20
 
 14 14 14 15
 
 12 12 12
 
 13
 
 I0 IO 10 II
 
 TABLE 19. UPPER PERCENTAGE POINTS OF THE TWO-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION .. d(P). When rejecting at the P per cent level if nin2 D(ni, n,)?.
 
 This table gives percentage points of
 
 D(ni, n2) = sup I Fi(x) F2(x)I, where F1(x) and F2(x) are the empirical distribution functions of two independent random samples of sizes n, and n2 respectively, nI < n2 < 20 and n, = n2 loo, from the same population with a continuous distribution function; the function tabulated d(P) is the smallest d such that Pr {nin2 D(ni, n2) d} Phoo. A dash indicates that there is no value with the required property. A test of the hypothesis that two random samples of sizes n, and n2 respectively have the same continuous distribution function is provided by
 
 — D(ni, n2) are n1and n2are large, percentage points of 4/n1n2 ni+ n2
 
 —
 
 5
 
 =
 
 2
 
 "2 =
 
 5
 
 6 7 8 9 2
 
 I0 II
 
 12 13 14 2
 
 16 17 x8 19 2
 
 20
 
 3
 
 3 4 5 6
 
 3
 
 3
 
 7 8 9 xo
 
 14 16 18
 
 P
 
 o•x ni.
 
 16 18
 
 24 26
 
 24
 
 26
 
 24 26 28
 
 26 28 3o
 
 z8 3o 32 34 36
 
 3o 32 34 36 38
 
 38
 
 38
 
 40
 
 40
 
 32 32
 
 34 9 12 15 15 18 2I 21
 
 12 13
 
 27 30
 
 14
 
 33 33 36
 
 =3
 
 I0
 
 5
 
 2'5
 
 I
 
 0•I
 
 36
 
 39 42 42 16
 
 42 45 45 48 16
 
 45 48 51 51 —
 
 48 51 54 57 —
 
 —
 
 16 18 21
 
 20 20 24
 
 20 24 28
 
 —
 
 —
 
 24 27
 
 28 28
 
 28 32
 
 32 36
 
 14
 
 28 29 36 35 38
 
 3o 33 36 39 42
 
 36 36 40 44 44
 
 15 16 17 18 19
 
 40 44 44 46 49
 
 44 48 48 5o 53
 
 45 52
 
 20
 
 52
 
 6o
 
 64
 
 5 6 7 8
 
 20
 
 25
 
 25
 
 24 25 27
 
 24 28 3o
 
 3o 35 35 36 40
 
 35 40 39 43 45
 
 n2 = 17 18 19 20
 
 18 20 22 24
 
 II
 
 16
 
 I
 
 10 12
 
 24 27
 
 15
 
 2'5
 
 approximately given by those in Table 23 with n = co. Formulae for the calculation of this table are given by P. J. Kim and R. I. Jennrich, ' Tables of the exact sampling distribution of the two-sample Kolmogorov—Smirnov criterion D,„„, m < n', Selected Tables in Mathematical Statistics, Vol. 1 (1973), American Mathematical Society, Providence, R.I.
 
 20 22
 
 4
 
 4
 
 4
 
 5 6 7 8 9
 
 4
 
 xo II 12 13
 
 15 18
 
 18
 
 21 21 24 27 30
 
 2I 24 27 30 30
 
 27 3o 33
 
 3o 33 36 36 39
 
 33 36 39 39 42
 
 36 39 42 42 45
 
 4
 
 4 5
 
 5
 
 9 to II 12
 
 13 6z
 
 24 28
 
 36 40
 
 44 48 48
 
 — 52 56
 
 52 56 6o 6o 64
 
 6o 64 68 72 76 76
 
 3o 3o 32
 
 68 25 3o 35 35
 
 36 40 44 45 47
 
 40 45 45 5o 52
 
 45 5o 55 6o 65
 
 52
 
 54 57
 
 TABLE 19. UPPER PERCENTAGE POINTS OF THE TWO-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION P nI
 
 =5
 
 5
 
 5
 
 n2 = 1 4 15 x6 17 x8
 
 42
 
 46
 
 51
 
 56
 
 70
 
 50
 
 52
 
 55 54 55 6o
 
 55 59 6o 65
 
 6o 64 68 70
 
 70 75 8o 85
 
 19
 
 56 6o
 
 61 65
 
 66 75
 
 30 28
 
 30
 
 36
 
 30
 
 30 34
 
 35 36
 
 71 8o 36 36 40
 
 85 90 — — 48
 
 39 40 43 48
 
 13
 
 46
 
 52
 
 44 48 54 54
 
 45 48 54 6o 6o
 
 54 6o 66 66 72
 
 10
 
 12
 
 33 36 38 48
 
 14
 
 48
 
 51 54 56 66
 
 54 57 6o 6z 72
 
 58 63 64 67 78
 
 64 69 72 73 84
 
 78 84 84 85 96
 
 10
 
 x5 x6 17 x8
 
 II
 
 20
 
 6
 
 6
 
 6 7 8 9 I0
 
 Ix
 
 6
 
 6 7
 
 7
 
 9 9
 
 n1 =
 
 9
 
 xs 17 9
 
 76
 
 83
 
 96
 
 34
 
 36
 
 40 42
 
 41 45
 
 88 42 48 49
 
 Ioo 49 56 63
 
 xo
 
 40
 
 46
 
 49
 
 53
 
 63
 
 II 12
 
 44 46 50 56
 
 48 53 56 63
 
 52
 
 56 58 70
 
 59 6o 65 77
 
 7o 72 78 84
 
 56 59 61
 
 62 68
 
 68 73 77
 
 75 77 84
 
 90 96 98
 
 65 69
 
 72 76
 
 So 84
 
 87 91
 
 107
 
 93 56 55 6o 64
 
 112
 
 64 64 7o 77
 
 x3
 
 13
 
 64
 
 72
 
 79
 
 8 9
 
 40
 
 48
 
 40 44 48
 
 46 48 53
 
 86 48 48 54 58
 
 5z 54 58 6o
 
 6o 62 64 67
 
 64 65 70 74
 
 68 72 76 81
 
 8o
 
 72
 
 8o
 
 8o
 
 88
 
 104
 
 x7 18 19
 
 68
 
 77
 
 8o
 
 88
 
 72
 
 8o
 
 86
 
 94
 
 III 112
 
 74
 
 8z
 
 90
 
 98
 
 117
 
 20
 
 8o 54
 
 88 54
 
 96 63
 
 104 63
 
 124 72
 
 To
 
 50
 
 II
 
 52 57
 
 53 59
 
 6o 63
 
 63 70
 
 8o 81
 
 63
 
 69
 
 75
 
 87
 
 9
 
 12
 
 72• 76 81 85 90
 
 t•x
 
 78 84 90 94 99
 
 91 98 105 no 117
 
 90
 
 99
 
 io8
 
 126
 
 98 Ioo 70 68
 
 107 III 8o 77
 
 126 133 90 89
 
 6o 64 68 75
 
 66 70 74 8o
 
 72 77 82 90
 
 8o 84 90 Ioo
 
 96 Ioo io6 115
 
 76
 
 84
 
 go
 
 Ioo
 
 x18
 
 18 19
 
 79 8z 85
 
 89 92 94
 
 96 xoo 103
 
 io6 108 113
 
 126 132 133
 
 20
 
 I00
 
 II0
 
 120
 
 130
 
 150
 
 ix
 
 66
 
 77
 
 77
 
 88
 
 99
 
 xo
 
 12
 
 17
 
 12
 
 64
 
 72
 
 13 14 15 16
 
 67
 
 75 82 84
 
 76 84 87 94
 
 86 91 96
 
 99 1 08 115
 
 102
 
 120
 
 89
 
 96
 
 io6
 
 127 132 140
 
 73 76 8o
 
 92
 
 102
 
 III
 
 122
 
 12
 
 20 12
 
 96 72
 
 107 84
 
 116 96
 
 127 96
 
 146 154 120
 
 12
 
 13
 
 71
 
 95
 
 117
 
 78
 
 81 86
 
 84
 
 14
 
 94
 
 104
 
 120
 
 15 16 17
 
 84
 
 93
 
 99
 
 io8
 
 129
 
 88 go
 
 96 100
 
 104
 
 io8
 
 116 119
 
 136 141
 
 x8 x9
 
 96 99
 
 io8 1o8
 
 20
 
 104
 
 116
 
 13 14
 
 91 78
 
 91 89
 
 15 x6
 
 87 91
 
 101
 
 17
 
 iz
 
 88
 
 90 97
 
 85
 
 93
 
 102
 
 II0
 
 88
 
 97
 
 107
 
 118
 
 96
 
 Ito
 
 126
 
 15o
 
 120 124 104
 
 130 140 117
 
 156
 
 Ioo
 
 104
 
 164 130 129
 
 104 III
 
 115 121
 
 137 143
 
 114
 
 127
 
 152
 
 131 138
 
 156 164
 
 18 19
 
 96 99
 
 105 110
 
 104
 
 114
 
 120 126
 
 13
 
 20
 
 108
 
 14
 
 x4 15 x6 17
 
 98
 
 120 112
 
 130 II2
 
 143 126
 
 154
 
 140
 
 14
 
 18 19 20
 
 63
 
 65 70 75 78 82
 
 x
 
 17 x8 x9
 
 Ica
 
 20
 
 12
 
 Ix
 
 59 63 69 69 74
 
 2'5
 
 89 93 70 6o
 
 15 16
 
 78 42
 
 5
 
 81
 
 x3 14
 
 xx
 
 lo
 
 8o 84 6o 57
 
 II
 
 70
 
 x5 16 17 18 x9
 
 x8 x9 20
 
 xo
 
 72 42
 
 7 8 9
 
 n2 = 13 14 16
 
 64
 
 13 14 x5 x6 8
 
 42
 
 O•I
 
 66 35
 
 I0 II
 
 8
 
 50
 
 I
 
 19
 
 14
 
 7 8
 
 48
 
 2'5
 
 20
 
 13
 
 7
 
 P
 
 Jo
 
 169
 
 92
 
 98
 
 no
 
 123
 
 96 Ioo
 
 106 III
 
 116
 
 126
 
 152
 
 122
 
 134
 
 159
 
 104
 
 116
 
 126
 
 140
 
 166
 
 II0 114
 
 121 126
 
 133 138
 
 148 152
 
 176 180
 
 TABLE 19. UPPER PERCENTAGE POINTS OF THE TWO-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION P ni = 15 n2 = 15 16 17 18 19
 
 110
 
 5
 
 2'5
 
 I
 
 0'1
 
 105 POI
 
 120 114
 
 135 133
 
 165 162
 
 105 III
 
 116 123
 
 135 119 129 135
 
 142
 
 165
 
 147
 
 114
 
 127
 
 141
 
 152
 
 P
 
 xo
 
 5
 
 2.5
 
 I
 
 128
 
 140 136 133
 
 156 153 148
 
 168
 
 200
 
 170 164
 
 204 187
 
 141
 
 166
 
 174
 
 n j. = 16 n2 = 20 17 17 18 19
 
 136 118 126
 
 180
 
 20
 
 130
 
 146
 
 151 160
 
 175
 
 200 209
 
 18
 
 18
 
 144
 
 162
 
 162
 
 18o
 
 216
 
 19
 
 133
 
 20
 
 136 152
 
 142 152 171
 
 159 166 190
 
 176 182 190
 
 212 214 228
 
 144
 
 16o
 
 169
 
 187
 
 225
 
 840 854 868 882 896
 
 900
 
 1020
 
 1080
 
 1320
 
 915 992 ioo8 1024
 
 1037 1054 1071 io88
 
 1098 1178 1197 1216
 
 1342 1364 1386 1408
 
 910
 
 1040
 
 1495
 
 1056 1072
 
 1105 1122
 
 1235
 
 990 1005
 
 4206
 
 112273 54
 
 1088 1104
 
 1224 1242
 
 1292 1380
 
 1564 1587
 
 1190 1207 1224
 
 1260 1278 1296
 
 1400 1420 1440
 
 1610 1704 1728
 
 15
 
 20
 
 125
 
 135
 
 150
 
 160
 
 195
 
 x6
 
 16 17 18 19
 
 zi2 109 116
 
 128 124 128
 
 144 136 140
 
 16o 143 154
 
 176 174 186
 
 19
 
 120
 
 133
 
 145
 
 160
 
 190
 
 20
 
 ni = n2 = 20
 
 160 168 198
 
 180 189 198 230
 
 200 210 220 230 264
 
 220 231 242 253 288
 
 260
 
 21 22 23 24
 
 273 286 299 336
 
 ni = n2 = 6o 6z 62 63 64
 
 275 z86
 
 300
 
 350
 
 65
 
 312
 
 364
 
 324 364 377
 
 405 420 435
 
 66 67 68 69
 
 1020
 
 1035
 
 450 496
 
 70 71
 
 1050 1065 1080
 
 207 216
 
 240
 
 25 26 27 28 29
 
 225 234
 
 2 90
 
 308 319
 
 297 336 348
 
 30
 
 300 310
 
 330 341
 
 360 372
 
 390 403
 
 31
 
 243 280
 
 250 260 270
 
 o•x
 
 19
 
 ;54 518 1
 
 32
 
 320
 
 352
 
 384
 
 416
 
 512
 
 72
 
 33 34
 
 330 374
 
 396 408
 
 396 442
 
 462 476
 
 528 544
 
 73 74
 
 1095
 
 1241
 
 1314
 
 1460
 
 1752
 
 II I0
 
 1258
 
 1332
 
 1480
 
 1776
 
 1125 1216 1232 1248
 
 1800
 
 35
 
 385
 
 420
 
 455
 
 490
 
 595
 
 75
 
 36
 
 396
 
 432
 
 468
 
 504
 
 612
 
 76
 
 37 38 39
 
 407 418 429
 
 444 456 468
 
 481 494 546
 
 518 570 585
 
 629 646 702
 
 77 78 79
 
 560 574 588 6oz 616
 
 600 615 630 688 704
 
 720 738 756 774 836
 
 8o 8i
 
 1280
 
 1440
 
 1296
 
 1458
 
 82
 
 1312
 
 1476
 
 83 84
 
 1328 1344
 
 1264
 
 1275
 
 1425
 
 1500
 
 1292
 
 1444
 
 1596
 
 1824
 
 1309 1326 1422
 
 1463 1482 1501
 
 1617 1638
 
 1925
 
 1659
 
 1975
 
 1520
 
 1680
 
 2000
 
 1539
 
 1701
 
 2025
 
 1558
 
 1722
 
 2050
 
 1494 1512
 
 1660 1680
 
 1743 1848
 
 2075 2184
 
 1700 1720
 
 1870 1892
 
 1740 1760 1780
 
 1914 1936 1958
 
 2210 2236 2262
 
 1729 1748 1767 1786
 
 1800 1820 1932 1953 1974
 
 1980 2002 2416 2139 2162
 
 2484 2511 2538
 
 1995 2016 2037 2058
 
 2185 2208 2231 2254
 
 2565 2592 2716 2744
 
 40
 
 440
 
 520
 
 41 42 43 44
 
 492 504 516 528
 
 533 546 559 572
 
 45 46 47 48 49
 
 540
 
 585
 
 675
 
 720
 
 855
 
 85
 
 1360
 
 1530
 
 552 564 576 637
 
 644
 
 690 705
 
 736 752
 
 874
 
 893
 
 720
 
 768
 
 912
 
 735
 
 833
 
 980
 
 86 87 88 89
 
 1462 1479 1496 1513
 
 1548 1566 1672 1691
 
 90 91 92
 
 1530 :5 546.4 7
 
 93 94
 
 1581 1598
 
 658 672 686
 
 50
 
 650
 
 700
 
 750
 
 51
 
 663 676 689
 
 714 728 742
 
 765 832 848
 
 850 867 884 901
 
 1020 1040 1060
 
 702
 
 810
 
 864
 
 918
 
 1134
 
 55
 
 715
 
 56 57
 
 728 798
 
 825 84o 855
 
 88o 896 912
 
 990 1008 1026
 
 1155 1176 1197
 
 95 96
 
 1615 1632
 
 52
 
 53 54
 
 1000
 
 1710
 
 1950
 
 2288 2 314 2430 2457
 
 58
 
 812
 
 870
 
 928
 
 1044
 
 1218
 
 1764
 
 59
 
 8z6
 
 885
 
 1003
 
 1062
 
 1298
 
 9 99
 
 1805 1824 1843 1960
 
 1782
 
 1980
 
 2079
 
 2277
 
 2772
 
 6o
 
 84o
 
 900
 
 1020
 
 1080
 
 1320
 
 I00
 
 I 800
 
 2000
 
 2100
 
 2300
 
 2800
 
 64
 
 TABLE 20. PERCENTAGE POINTS OF WILCOXON'S SIGNED-RANK DISTRIBUTION cent level if W+ x(P); a similar test against u > o is provided by rejecting at the P per cent level if W- 5x(P), and, against # o, one rejects at the 2/:' per cent level if W, the smaller of W+ and W-, is less than or equal to x(P). When n > 85, W-F is approximately normally distributed. Formulae for the calculation of this table are given by F. Wilcoxon, S. K. Katti and R. A. Wilcox, ' Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test', Selected Tables in Mathematical Statistics, Vol. I (1973), American Mathematical Society, Providence, R.I.
 
 This table gives lower percentage points of W+, the sum of the ranks of the positive observations in a ranking in order of increasing absolute magnitude of a random sample of size n from a continuous distribution, symmetric about zero. The function tabulated x(P) is the largest x such that Pr {W+ < x} P/Ioo. A dash indicates that there is no value with the required property. W-, the sum of the ranks of the negative observations, has the same distribution as W+, with mean ln(n+ 1) and variance -Nn(n + 1) (n + ). A test of the hypothesis that a random sample of size n has arisen from a continuous distribution symmetric about p = o against the alternative that j < o is provided by rejecting at the P per P n= 5
 
 6 7 8 9 10 II
 
 12 13 14
 
 zs
 
 5 0 2
 
 3 5 8 10 13 17 2I 25
 
 2'5 0 2
 
 3 5 8 10
 
 17 21
 
 0'5
 
 I
 
 I
 
 o
 
 3
 
 I
 
 5 7 9
 
 3 5 7 9
 
 I
 
 n = 45
 
 371
 
 46 47 48 49
 
 389 407 426 446
 
 343 361 378 396 415
 
 312 328 345 362 379
 
 322 339 355
 
 249 263 277 292 307
 
 so 51 52 53 54
 
 466 486 507 529 550
 
 434 453 473 494 514
 
 397 416 434 454 473
 
 373 390 408 427 445
 
 323 339 355 372 389
 
 12 15
 
 12
 
 573 595 618 642 666
 
 536 557 579 602 625
 
 493 514 535 556 578
 
 465 484 504 525 546
 
 407 425 443 462 482
 
 I
 
 2
 
 4 6
 
 19 23
 
 17 18 19 20 21 22 23 24
 
 6o 67 75 83 91
 
 25
 
 loo
 
 26 27
 
 110
 
 119
 
 107
 
 92
 
 83
 
 64
 
 28
 
 130
 
 116
 
 IoI
 
 91
 
 29
 
 140
 
 126
 
 I TO
 
 100
 
 71 79
 
 120 130 140 151 162
 
 109 118 128 138 148
 
 159 171 182
 
 0'5 291 307
 
 0.1
 
 32 37
 
 15 19 23 27 32
 
 8 I 14 18 21
 
 55 56 57 58 59
 
 52 58 65 73 8,
 
 43 49 55 62 69
 
 37 42 48 54 61
 
 26 30 35 40 45
 
 6o 61 62 63 64
 
 690 715 741 767 793
 
 648 672 697 721 747
 
 600 623 646 669 693
 
 567 589 61i 634 657
 
 501 521 542 563 584
 
 89 98
 
 76 84
 
 68 75
 
 51 58
 
 65 66 67 68 69
 
 8zo 847 875 903 931
 
 772
 
 879
 
 718 742 768 793 819
 
 681 705 729 754 779
 
 6o6 628 651 674 697
 
 86 94 103
 
 70
 
 960 990 1020
 
 907 936
 
 846 873
 
 805 831
 
 964
 
 112 121
 
 73 74
 
 1050
 
 994
 
 901 928
 
 io81
 
 1023
 
 957
 
 884 912
 
 721 745 770 795 821
 
 131
 
 75
 
 1112
 
 141
 
 76
 
 1144
 
 151 162 173
 
 77 78 79
 
 1209
 
 1053 1084 1115 1147 "79
 
 986 1015 1044 1075 1105
 
 940 968 997 '026 1056
 
 847 873 900 927 955
 
 185
 
 1276 1310 1345 1380 1415
 
 1211 1244 1277 1311
 
 1136
 
 Io86 1116 "47
 
 1345
 
 1168 1200 1232 1265
 
 1178 1210
 
 983 MI 1040 1070 1099
 
 1451
 
 1380
 
 1298
 
 1242
 
 1130
 
 27
 
 151
 
 137
 
 163
 
 147
 
 175 187 200
 
 159
 
 35 36 37 38 39
 
 213 227
 
 195 208 221 235 249
 
 173
 
 40
 
 264 279 294
 
 238 252
 
 43 44
 
 286 302 319 336 353
 
 310 327
 
 45
 
 371
 
 343
 
 41 42
 
 2'5
 
 0
 
 25 29 34 40 46
 
 241 256 271
 
 5
 
 O
 
 30 35 41 47 53
 
 3o 31 32 33 34
 
 P
 
 O'I
 
 170 182
 
 185 198 211
 
 224
 
 194 207
 
 71
 
 72
 
 266 281 296
 
 220 233 247 261 276
 
 209 222 235
 
 8o 81 8z 83 84
 
 312
 
 291
 
 249
 
 85
 
 197
 
 65
 
 1176 1242
 
 798 825 852
 
 858
 
 TABLE 21. PERCENTAGE POINTS OF THE MANN-WHITNEY DISTRIBUTION x(P), and a similar test against level P per cent if UB /LA < ,I.tB is provided by rejecting at the P per cent level if UA x(P). For a test against both alternatives one rejects at the 2P per cent level if U, the smaller of UA and UB, is less than or equal to x(P). If n1and n2 are large UA is approximately normally distributed. Note also that UA +UB = n1n2.
 
 Consider two independent random samples of sizes n1and n2 respectively (n1 < n2) from two continuous populations, A and B. Let all n, + n2 observations be ranked in increasing order and let RA and RB denote the sums of the ranks of the observations in samples A and B respectively. This table gives lower percentage points of UA = RA -ini(ni+ 1); the function tabulated x(P) is the largest x such that, on the assumption that populations A and B are identical, Pr {UA x} < P/too. A dash indicates that there is no value with the required property. On the same assumption, UB = RB — in2(n2+ t) has the same distribution as UA, with mean ini n2 and variance 12-n1n2(n1+ n2 + 1). A test of the hypothesis that the two populations are identical, and in particular that their respective means /tit, itB are equal, against the alternative itA > AB is provided by rejecting at
 
 P =
 
 2
 
 2
 
 5
 
 2'5
 
 I
 
 0'5
 
 Formulae for the calculation of this distribution (which is also referred to as the Wilcoxon rank—sum or Wilcoxon/ Mann—Whitney distribution) are given by F. Wilcoxon, S. K. Katti and R. A. Wilcox, ' Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test', Selected Tables in Mathematical Statistics, Vol. I (1973), American Mathematical Society, Providence, R.I.
 
 0'1
 
 12 13 14
 
 I0
 
 15 16 I7 x8 19
 
 O
 
 I
 
 O I
 
 15 16 17 18 19
 
 3
 
 I
 
 0
 
 3
 
 I
 
 0
 
 3
 
 2
 
 0
 
 2 2
 
 0 I
 
 0
 
 2
 
 I
 
 0
 
 20
 
 4
 
 3 4 5 6
 
 0
 
 7 8 9 To II
 
 12 13 14
 
 15 16 17 18 I9 20 4 5 6 7 8 9
 
 4 5
 
 4 4
 
 2
 
 4
 
 5 6 7 8 9
 
 0
 
 3
 
 4
 
 7 8 9 to II
 
 II
 
 =4
 
 3
 
 3
 
 n2 = ro
 
 O
 
 O
 
 2
 
 3
 
 2.5
 
 6 7 8 9
 
 12
 
 3
 
 5
 
 n2 = 5
 
 II
 
 2
 
 P
 
 5
 
 0
 
 I
 
 o
 
 2
 
 I
 
 —
 
 12
 
 I0
 
 14
 
 II
 
 I
 
 0.5
 
 3
 
 2
 
 O
 
 4
 
 2
 
 O
 
 5 5 6
 
 3 3 4
 
 O
 
 7 7 8 9 9
 
 5 5 6 6 7
 
 15
 
 II
 
 16
 
 12
 
 17
 
 13
 
 20 5 6 7 8
 
 18 4
 
 14 2
 
 to
 
 8
 
 I
 
 O
 
 5 6 8
 
 3 5 6
 
 2 3 4
 
 I 2
 
 9 ro II
 
 9 II
 
 7 8 9
 
 5 6 7 8 9
 
 3 4 5 6 7
 
 12
 
 12 13
 
 15
 
 12
 
 16 18
 
 13
 
 I0
 
 15
 
 14
 
 II
 
 II
 
 2
 
 I
 
 O
 
 2
 
 O
 
 2
 
 I
 
 O
 
 19
 
 15
 
 12
 
 3 3
 
 I
 
 O
 
 20
 
 17
 
 13
 
 7 8 9 to
 
 I
 
 O
 
 22
 
 18
 
 14
 
 II
 
 5 6 7 7 8
 
 4 4 5 5 6
 
 2
 
 I
 
 2
 
 I
 
 2
 
 I
 
 3 3
 
 2
 
 15 i6 3 4 6
 
 9 9
 
 4 4 4 5
 
 2
 
 O
 
 2
 
 O
 
 3 3
 
 0
 
 II
 
 6 7 7 8
 
 I
 
 O
 
 IO
 
 18 5 6
 
 2
 
 6
 
 I
 
 0
 
 2
 
 I
 
 O
 
 3 4 4
 
 I
 
 O
 
 2
 
 I
 
 3
 
 I
 
 6 7 8 9 ro II 12 13
 
 0
 
 6
 
 2
 
 3 4 5 6
 
 19 20
 
 66
 
 14 15 16 17 18
 
 23
 
 19
 
 25 7 8 to
 
 20
 
 12 14
 
 IO
 
 i6 17 19
 
 13 14 16
 
 5 6 8
 
 II
 
 21
 
 17
 
 23
 
 19
 
 25
 
 21
 
 26
 
 22
 
 28
 
 24
 
 I I I 2 2
 
 3 3 3
 
 I
 
 3 4 4 5
 
 5
 
 0•x
 
 I2 13
 
 0 I I 2 2
 
 3 3 4 5 5 6 7 7
 
 2
 
 3 4
 
 O
 
 7 8 9 II
 
 5 6 7 9
 
 12
 
 I0
 
 2 3 4 4 5
 
 15 16 8 19
 
 12
 
 II 13 15 16
 
 I
 
 6 7 8 9 to
 
 TABLE 21. PERCENTAGE POINTS OF THE MANN-WHITNEY DISTRIBUTION P n1 = 6
 
 7
 
 7
 
 2'5
 
 I
 
 0'5
 
 n2 = 19
 
 30
 
 25
 
 20
 
 17
 
 II
 
 20
 
 32 II
 
 27
 
 22
 
 18
 
 I2
 
 8 10
 
 14
 
 15
 
 50
 
 12
 
 4 6 7
 
 2
 
 15
 
 6 7 9
 
 I
 
 13
 
 3
 
 x6
 
 17 19
 
 14 16
 
 17
 
 13
 
 21 24
 
 14
 
 z6
 
 18 20 22
 
 15
 
 28
 
 16
 
 30
 
 17
 
 7 8 9 10 II 12
 
 7
 
 x8 19
 
 7 8
 
 20
 
 8 9 I0 II
 
 8
 
 P
 
 5
 
 II
 
 9
 
 12 14 16
 
 10 12
 
 O•I
 
 n1 = II
 
 5
 
 2'5
 
 I
 
 0'5
 
 38 42 46 54
 
 33 37 40 44 47
 
 28 31 34 37 41
 
 24 27 30 33 36
 
 57 61 65 69 42
 
 51 55 58 62 37
 
 44 47 50 53 31
 
 39 42 45 48 27
 
 29 32 34 37
 
 47 51 55 6o 64
 
 41 45 49 53 57
 
 35 38 42 46 49
 
 31 34 37 41 44
 
 23 25 28 31 34
 
 18 19
 
 68
 
 61
 
 53
 
 47
 
 37
 
 72
 
 65
 
 56
 
 51
 
 40
 
 20
 
 13
 
 77 51
 
 14
 
 56
 
 69 45 50
 
 6o 39 43
 
 54 34 38
 
 42 z6 29
 
 i5
 
 61 65 70 75 8o
 
 54 59 63 67 72
 
 47 51 55 59 63
 
 42 45 49 53 57
 
 32 35 38 42 45
 
 84 61 66 71 77
 
 76 55 59 64 69
 
 67 47 51 56 6o
 
 6o 42 46 50 54
 
 48 32 36 39 43
 
 20
 
 82 87 92
 
 74 78 83
 
 65 69 73
 
 15 16
 
 72
 
 64
 
 56
 
 77
 
 70
 
 61
 
 58 63 67 51 55
 
 46 50 54 40 43
 
 18 19
 
 83 88 94
 
 75 8o 85 90 75
 
 66 70 75 8o 66
 
 6o 64 69 73 6o
 
 47 51 55 59 48
 
 81 86 92 98 87
 
 71 76 8z 87 77
 
 65 70 74 79 70
 
 52 56 6o 65 57
 
 93 99 105 99 io6
 
 82 88 93 88 94
 
 75 81 86 81 87
 
 61 66 70 66 71
 
 112 113 119 127
 
 I00 101
 
 92
 
 76
 
 107
 
 93 99
 
 114
 
 105
 
 77 82 88
 
 n2 = I2
 
 13
 
 II
 
 17
 
 13 15
 
 5 6 7 8 9
 
 12
 
 12
 
 24
 
 19
 
 16
 
 zo
 
 12
 
 13
 
 26
 
 21
 
 18
 
 II
 
 14
 
 33 35 37
 
 28 30 3z
 
 23
 
 19
 
 13
 
 15
 
 24
 
 21 22
 
 14
 
 x6
 
 15
 
 17
 
 39 15 18
 
 34 13 15 17
 
 z8 9 II 13
 
 24
 
 16
 
 19
 
 15
 
 7 9 II 13
 
 4 5 6 8
 
 22
 
 17 20 22
 
 20 23
 
 z6
 
 18 19 20
 
 12
 
 13
 
 15
 
 9 II
 
 16
 
 12
 
 17
 
 24 26
 
 17 18 20 22
 
 14 15
 
 19
 
 34 36 38 41
 
 28 3o 32 34
 
 24 z6 28 30
 
 17 18 20 21
 
 15
 
 21
 
 17
 
 14
 
 II
 
 7
 
 17
 
 24 27
 
 20 23
 
 13 16
 
 8 10
 
 26 28
 
 14
 
 36
 
 31
 
 26
 
 18 20 22
 
 12
 
 13
 
 30 33
 
 16 18 21
 
 15 x6 17 x8 19
 
 39 42 45 48 51
 
 34 37 39 42 45
 
 28 31 33 36 38
 
 24 27 29 31 33
 
 23 25
 
 9
 
 20
 
 54
 
 10
 
 I0
 
 27
 
 40 19
 
 36 16
 
 26 10
 
 II
 
 22 24
 
 18 21
 
 12
 
 29
 
 13
 
 31 34 37
 
 48 23 26 33
 
 27
 
 24
 
 17
 
 17
 
 14
 
 41
 
 30 33 36 38 41
 
 26 29 31 34 37
 
 17
 
 44 48 51 55
 
 36 39 42 45 48
 
 19
 
 15
 
 23 25 27
 
 44 47
 
 39 42
 
 29 32
 
 25
 
 21
 
 15
 
 26 z8 31 33 36
 
 24 26 29 31
 
 20
 
 39 41 44 47
 
 9 xo
 
 12
 
 13 14 15
 
 16 8
 
 17 18 19
 
 9 9
 
 II 12
 
 9
 
 12
 
 xo
 
 16 17
 
 18 10 XX
 
 19
 
 58
 
 52
 
 20
 
 6z 34
 
 55 30
 
 II
 
 23
 
 13
 
 18
 
 13
 
 20
 
 14
 
 14
 
 x6
 
 14
 
 x8 19
 
 15
 
 14
 
 15
 
 15
 
 17 19 21
 
 17
 
 20
 
 I00
 
 i6
 
 16
 
 83
 
 x6
 
 17 z8 19
 
 89 95 101
 
 20
 
 I07
 
 17
 
 96
 
 14
 
 21
 
 18
 
 18
 
 102
 
 19
 
 109
 
 20
 
 115
 
 x8
 
 109 116
 
 19
 
 18
 
 20
 
 19
 
 19
 
 20
 
 67
 
 20
 
 123 123 130
 
 20
 
 138
 
 0•I
 
 17 20 22 24 27
 
 20
 
 TABLE 22A. EXPECTED VALUES OF NORMAL ORDER STATISTICS (NORMAL SCORES) The values E(n, r) are often referred to as normal scores; they have a number of applications in statistics. In carrying out calculations for some of these applications the sums of squares of normal scores are often required: they are provided in Table 22 B.
 
 Suppose that n independent observations, normally distributed with zero mean and unit variance, are arranged in decreasing order, and let the rth value in this ordering be denoted by Z(r). This table gives expected values E(n, r) of Z(r) for r 5 En+ r); when r > En+ I) use
 
 E(n, r) = - E(n, n+ 1- r). n= r= I
 
 I
 
 2
 
 3
 
 0'0000
 
 0.5642
 
 2
 
 6
 
 4
 
 5
 
 0.8463
 
 1. 0294
 
 1.163o
 
 1•2672
 
 •3522
 
 •0000
 
 0'2970
 
 0'4950
 
 0.6418 02015
 
 0 '7574
 
 0.0000
 
 3 4
 
 7
 
 0.3527 0.0000
 
 8
 
 9
 
 xo
 
 1 4136 0'8522 0%4728 0'1525
 
 1 '4850 0'9323 0*5720 0•2745
 
 1.5388 P0014 0'6561 0*3758
 
 0'0000
 
 0'1227
 
 5
 
 n=
 
 II
 
 12
 
 13
 
 14
 
 15
 
 16
 
 17
 
 18
 
 19
 
 20
 
 1'8445
 
 1.8675 P4076 ply's, 0.9210
 
 Y = I
 
 1'5864
 
 1'6292
 
 1.6680
 
 1.7034
 
 P7359
 
 P7660
 
 2
 
 •0619
 
 1•1157
 
 P1641
 
 P2079
 
 P2479
 
 3 4
 
 0.7288
 
 0.7928 0.5368
 
 0.8498 0.6029
 
 0.9011 0•6618
 
 0 '9477
 
 0.4620
 
 0.7149
 
 1.2847 0.9903 0.7632
 
 P7939 1.3,88 1.0295 0.8074
 
 1.8200 1•3504 1.0657 0.8481
 
 P3799 P0995 0.8859
 
 5 6
 
 0'2249 -0000
 
 0'3122 •1026
 
 0'3883 •1905 •0000
 
 0•4556 .2673 •0882
 
 0'5157
 
 0'5700
 
 0'6195
 
 •3962
 
 '4513
 
 '2338 •0773
 
 '2952
 
 0.6648 •5016 •3508 •2077 •o688
 
 0.7066 '5477 .4016 •2637 •1307
 
 0 '7454
 
 '3353 •1653 •0000
 
 0.0000
 
 0.0620
 
 7 8
 
 •1460 •0000
 
 9 I0
 
 n=
 
 •5903 •4483 •3149 •1870
 
 21
 
 22
 
 23
 
 24
 
 25
 
 26
 
 27
 
 28
 
 29
 
 30
 
 1.8892
 
 1.9097 1.4582
 
 P9292
 
 1'9477
 
 •5034
 
 P9653 .5243
 
 P9822 '5442
 
 P9983 .5633
 
 2'0285
 
 .4814
 
 2'0428 1'6156
 
 1.1582
 
 r=x 2
 
 1'4336
 
 3 4
 
 i•16o5
 
 1.1882
 
 •21414
 
 '2392
 
 •2628
 
 '2851
 
 '3064
 
 2'0137 1.5815 1 '3267
 
 0.9538
 
 0.9846
 
 •0136
 
 •0409
 
 •0668
 
 .0914
 
 •1147
 
 1.1370
 
 5 6
 
 0.7815
 
 0.8153
 
 0'8470
 
 7 8
 
 '491 5 •3620 •2384
 
 0.9570 •82o2 •6973 •5841 .4780
 
 P0261
 
 •7012 .5690 .4461
 
 0.9317 '7929 •6679 .5527 '4444
 
 1•0041
 
 •6667 .5316
 
 0.9050 •7641 •6369 '5193 •4086
 
 0'9812
 
 .6298
 
 •8462 .7251 -6138 •5098
 
 0.8708 0.7515 0.6420 0.5398
 
 0.894.4 0.7767 0.6689 0.5683
 
 04110 •3160 •2239 -1336 •0444
 
 0.4430 •3501 •26o2 .1724 •0859
 
 0 '4733
 
 0'0000
 
 0'0415
 
 9 10 II 12
 
 13
 
 '4056 •2858
 
 •3297
 
 0.8768 '7335 •6040 '4839 •3705
 
 0•1184
 
 0.1700
 
 0.2175
 
 0.2616
 
 0.3027
 
 0.3410
 
 0.3771
 
 •0000
 
 '0564
 
 •1081
 
 '1558 •0518
 
 '2001 •0995
 
 •2413
 
 •2798
 
 •1439 •0478
 
 •1852 •0922
 
 '0000
 
 •0000
 
 •0000
 
 14
 
 15
 
 68
 
 1.5989 1'3462
 
 1•3648 1.1786
 
 •3824 •2945 •2088 •1247
 
 TABLE 22A. EXPECTED VALUES OF NORMAL ORDER STATISTICS (NORMAL SCORES) =
 
 31
 
 32
 
 33
 
 34
 
 35
 
 36
 
 37
 
 38
 
 39
 
 40
 
 T = I
 
 2.0565
 
 2.0697
 
 2'0824
 
 2'0947
 
 2'1066
 
 2'1181
 
 2. 1293
 
 2'401
 
 2'1506
 
 2
 
 1'6317
 
 1• 647 I
 
 1.6620
 
 P6764
 
 1.6902
 
 1.7036
 
 1.7166
 
 P7291
 
 P7413
 
 z• 1608 1.7531
 
 3 4
 
 1•3827
 
 1'3998
 
 1 '4323
 
 1 '4476
 
 1'1980
 
 1.2167
 
 1.4164 1.2347
 
 1•2520
 
 1•2686
 
 1.4624 1.2847
 
 1.4768 1.3002
 
 1.4906 1.3151
 
 1'5040 1.3296
 
 1 '3437
 
 5 6 7 8 9
 
 1.0471 0.9169 0.8007
 
 x.o865 0.9590
 
 1.1051 0.9789
 
 p1230
 
 1'1402
 
 0 '9384
 
 0 '9979
 
 1.0162
 
 1.1568 r0339
 
 0.8455 0.7420 0.6460
 
 0.8666 0.7643 0.6695
 
 0.8868 0.7857 0.6921
 
 0.9063
 
 0'9250
 
 1.1883 1.0674 0.9604
 
 1.2033 1.0833 0'9772
 
 0.8063 0.7138
 
 0r8261 0.7346
 
 0.8451
 
 0.8634
 
 0'5955
 
 0.8236 0.7187 0.6213
 
 1.1728 x.0509 0.9430 0'7547
 
 0'7740
 
 0.881 0.7926
 
 10
 
 0.5021
 
 0.5294
 
 0 '5555
 
 0'6271
 
 0.6490
 
 0'6701
 
 0.6904
 
 0'7099
 
 '4129 '3269
 
 *44 I 8
 
 '4694
 
 13 14
 
 '2432 .1613
 
 '3575 '2757 •1957
 
 •3867 •3065 .2283
 
 0.5804 '4957 '4144 '3358 •2592
 
 0.6043
 
 II 12
 
 •5208 •4409 •3637 •2886
 
 '5449 •4662 •3903 •3166
 
 .5679 '4904 '4158 '3434
 
 •5900 •5136 .4401 .3689
 
 •6113 '5359 4635 '3934
 
 -6318 '5574 '4859 '4169
 
 15
 
 0.0804 •0000
 
 0.1169 •0389
 
 0.1515 .0755 •0000
 
 0.1841 •xi0r -0366
 
 0.2151 •1428 -0712 -0000
 
 0'2446
 
 0'2727
 
 0 '2995
 
 •1739
 
 •2034
 
 •2316
 
 0.3252 •2585
 
 0.3498 •2842
 
 •1040 •0346
 
 •1 351 '0674 '0000
 
 '1647 '0985 •0328
 
 '1929 '1282 •0640
 
 •2199
 
 0'0000
 
 0'0312
 
 x6 17 18
 
 0.6944
 
 1.0672
 
 19 20
 
 n=
 
 1•5170
 
 •1564 •0936
 
 41
 
 42
 
 43
 
 44
 
 45
 
 46
 
 47
 
 48
 
 49
 
 50
 
 r=I
 
 2.1707
 
 2'1803
 
 2'1897
 
 2.2077
 
 2.2164
 
 2'2249
 
 2'2331
 
 I .7646 1•5296
 
 1'7757
 
 1.7865
 
 1.8073
 
 p8173
 
 •827,
 
 1.8366
 
 2'2412 1'8458
 
 2'2491
 
 2
 
 2.1988 P7971
 
 1.5419 1•3705
 
 1.5538 1•3833
 
 1.5653
 
 1. 5875
 
 1. 6187
 
 1•4196
 
 1.5982 1.4311
 
 1.6086
 
 P3957
 
 1'5766 I.4078
 
 1'4422
 
 1'4531
 
 1.6286 1. 4637
 
 1.2456 1•1281 1•0245 0.9308 0.8447
 
 1.2588 P1421 p0392 0.9463
 
 1.2717 1.1558 1.0536 0.9614
 
 1.2842 1.1690 1.0675 0.9760
 
 1.2964 p1819 1.0810 0.9902
 
 1.3083 1.1944 1'0942 I.0040
 
 0.8610
 
 0.8767
 
 0.8920
 
 0.9068
 
 0'9213
 
 1.3198 1.2066 1.107o 1.0174 0 '9353
 
 1'3311 1'2185 P1195 I'0304 0.9489
 
 0.7645 •6889 •6171 '5483 •4820
 
 0.7815 •7067 -6356 -5676 -5022
 
 0'7979
 
 0.8139 '7405 -6709 -6044 '5405
 
 0.8294 .7566 .6877 •6219 '5586
 
 0.8444 -7723 '7040 •6388 '5763
 
 0.8590 -7875 .7198 •6552 '5933
 
 0.8732 -8023 .7351 -6712 '6099
 
 0.4389 '3772 •3170
 
 0'4591
 
 0.4787 '4187 -3602 •3029 •2465
 
 0.4976 '4383 •3806 '3241 •2686
 
 0 '5159
 
 0 '5336
 
 '4573 '4003 '3446 •2899
 
 '4757 '4194 '3644 •3105
 
 0.5508 '4935 '4379 •3836 '3304
 
 0. 1910 •1360
 
 0'2140 •1599
 
 0'2361
 
 0'2575
 
 0'2781
 
 •0814
 
 •1064
 
 '1830 '1303
 
 •2051 '1534
 
 •2265 '1756
 
 '0271
 
 '0531
 
 *0781
 
 •1020
 
 '1251
 
 •0000
 
 •0260
 
 -0509
 
 '0749
 
 0.0000
 
 0'0250
 
 3 4
 
 1 '3573
 
 7
 
 1.2178 1•0987 0 '9935
 
 8 9
 
 0.81 06
 
 1.2319 1.1136 1.0092 0.9148 0.8279
 
 10 II 12
 
 0.7287
 
 0 '7469
 
 •6515 -5780
 
 '6705
 
 13 14
 
 •5075 '4394
 
 •5283 •4611
 
 15 16 1.7 18 19
 
 0'3734
 
 •3089 .2457 •1835 •1219
 
 0.3960 •3326 '2704 -2093 '1490
 
 0.4178 '3553 ' 2942 '2341
 
 '2579
 
 •1749
 
 •1997
 
 20 21 22 23 24
 
 0'0608
 
 0.0892
 
 0•1163
 
 O'1422
 
 '0000
 
 '0297
 
 '0580
 
 '085,
 
 '0000
 
 '0283
 
 5 6
 
 0.8982
 
 '5979
 
 .7238 .6535 •5863 •5217
 
 •3983 '3390 •2808 •2236 0.1671 •IIII '0555 '0000
 
 25
 
 69
 
 1 '8549
 
 TABLE 22B. SUMS OF SQUARES OF NORMAL SCORES This table gives values of S(n) = E [E(n, r)]2. r=1
 
 S(n)
 
 n
 
 S(n)
 
 3 4
 
 o•0000 0•6366 1.432 2'296
 
 xo xx 12 13 14
 
 7.914 8.879 9.848 1o•82o 11.795
 
 5 6 7 8 9
 
 3'195 4.117 5'053 5'999 6.954
 
 15 16 17
 
 10
 
 7.9x 4
 
 n
 
 2
 
 n
 
 S(n)
 
 n
 
 S(n)
 
 n
 
 S(n)
 
 43 44
 
 37479 38'473 39-466 40.460 41'454
 
 20
 
 17'678
 
 30
 
 27'558
 
 40
 
 2x
 
 18.663
 
 3x 32 33 34
 
 28'549 29'540 30'531 3P523
 
 41
 
 32'515 33'507 34'500 35'493 36'486
 
 45 46 47 48 49
 
 42.448 43'443 44'437 45'432 46.427
 
 37'479
 
 50
 
 47'422
 
 22
 
 19.649
 
 23 24
 
 20'635 21.623
 
 12.771 I3.750 14'730
 
 25 26
 
 18
 
 15-711
 
 28
 
 22.610 23'599 24'588 25'577
 
 19
 
 16 '694
 
 29
 
 26'567
 
 35 36 37 38 39
 
 20
 
 17.678
 
 30
 
 27'558
 
 40
 
 27
 
 42
 
 TABLE 23. UPPER PERCENTAGE POINTS OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV DISTRIBUTION n'D(n) d(P). The distribution of n1D(n) tends to a limit as n tends to infinity and the percentage points of this distribution are given under n = co. This table was calculated using formulae given by J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function (1973), Society for Industrial and Applied Mathematics, Philadelphia, Pa., Section 2.4.
 
 If F„(x) is the empirical distribution function of a random sample of size n from a population with continuous distribution function F(x), the table gives percentage points of D(n) = sup IFn(X)-F(X)1;the function tabulated is d(P) such that the probability that niD(n) exceeds d(P) is P/Ioo. A test of the hypothesis that the sample has arisen from F(x) is provided by rejecting at the P per cent level if 10
 
 5
 
 2'5
 
 I
 
 0•I
 
 P
 
 10
 
 5
 
 2.5
 
 x
 
 o•x
 
 0.950 r098
 
 0.975 1'191
 
 0.9875 P256
 
 0.995 P314
 
 n = 20
 
 P184
 
 3 4
 
 1'102 1' 130
 
 1•226 1'248
 
 1•330 1'348
 
 1436 1468
 
 0.9995 P383 1. 595
 
 21 22 23
 
 •185 •186 •187
 
 24
 
 •188
 
 P315 •316 '317 •318 '319
 
 1.434 '435 '436 '438 '439
 
 1.576 •578 '579 •58o -582
 
 1.882 .884 .887 •889 •890
 
 5
 
 P139
 
 P260
 
 P370 •382 •391 •399 '404
 
 1'495 '510 •523 .532 '540
 
 P747 '775 '797 .813 •825
 
 25 26 27
 
 1•188 •189 •190
 
 P320
 
 28
 
 •190
 
 29
 
 •1 9 1
 
 '322 •323 •323
 
 P440 '440 '441 '442 '443
 
 P583 •584 '585 •586 '587
 
 1.892 *894 *895 •897 .898
 
 1 '546
 
 1 '835
 
 '551 •556 '559 .563
 
 '844 *851 -856 .862
 
 30
 
 P192 .196
 
 P324 •329 •332 .335 •337
 
 1•444 '449 '453 '456 '458
 
 P588 '594 .598 -601 •604
 
 P899 .908 '914 •918 •921
 
 r565 •568 .570 .572 '574
 
 1866 •87o '874 .877 .88o
 
 P338 '339 •340 '346 '358
 
 1'459 '461 '462 '467 '480
 
 x•605 •6o7 •6o8 '614 '628
 
 1.923 •925 •927 '935 '949
 
 P n=I 2
 
 6
 
 •146
 
 -272
 
 7
 
 •154
 
 '279 •285 •290
 
 8
 
 59
 
 • 1
 
 9
 
 •162
 
 xo
 
 1. x 66
 
 I/ 12
 
 •169 •171
 
 13 14
 
 •174 •176
 
 •303 •3 05
 
 P409 '41 3 '417 '420 '423
 
 15
 
 P177 •179 •180 •182 •183
 
 P308 •309 •311 •313 .314
 
 P425 '427 '429 '431 '432
 
 x6 17 18 19
 
 P294 '298 •301
 
 1'701
 
 40 50
 
 •1 99
 
 6o
 
 •20I
 
 70
 
 •203
 
 8o
 
 P205
 
 90 100 200
 
 '206 '207
 
 00 20
 
 1'184
 
 p315
 
 p434
 
 p576
 
 P882
 
 70
 
 '212 •224
 
 •321
 
 TABLE 24. UPPER PERCENTAGE POINTS OF FRIEDMAN'S DISTRIBUTION Consider nk observations, one for each combination of n blocks and k treatments, and set out the observations in an n x k table, the columns relating to treatments and the rows to blocks. Let the observations in each row be ranked from I to k, and let Ri (j = I, 2, k) denote the sum of the ranks in the jth column. This table gives percentage points of Friedman's statistic
 
 M
 
 12
 
 k
 
 3n(k + 1)
 
 nk( + 1) =
 
 on the assumption of no difference between the treatments; the function tabulated x(P) is the smallest value x such that, on this assumption, Pr {M x} < Pima. A dash indicates that there is no value with the required property. A test of the hypothesis of no difference between the treatments is provided by rejecting at the P per cent level if M x(P). The limiting distribution of M as n tends to infinity is the X'-distribution with k - I degrees of freedom (see Table 8) and the percentage points are given under n =
 
 k=3 P
 
 lo
 
 5
 
 n=3
 
 6•000 6•000
 
 6•000 6.50o
 
 8.000
 
 8•000
 
 5.200 5'333 5'429 5.25o 5'556
 
 6.400 7.000 7'143 6.25o 6.222
 
 7.600 8.333 7'714 7'750 8.000
 
 8.400 9.000 8.857 9•000 9'556
 
 10'00 12'00 12'29 12'25 12'67
 
 9
 
 5-000 5.091 5.167 4'769 5'143
 
 6.2oo
 
 7.800 7.818 8.000 7'538 7'429
 
 9.600
 
 12.6o 13.27 12.67
 
 I0 II 12
 
 12'46 13'29
 
 13 14
 
 4 5
 
 6 7 8 9 I0
 
 II 12
 
 13
 
 14
 
 6'545
 
 6.500 6.615 6.143
 
 2.5
 
 6.400 6.5oo 6.118 6.333 6.421
 
 7.600
 
 4'900 4'95 2 4'727 4'957 5.083
 
 6'300 6•095 6'091
 
 7'500 7'524 7'364 7.913
 
 25 z6 27 z8 29
 
 4'88o
 
 6.080 6.077 6•000 6.5oo 6.276
 
 7'440 7'462 7'407 7'71 4 7.517
 
 3o 31 32 33 34
 
 4'867 4'839 4'750 4'788 416 5
 
 6•zoo 6.000 6•063 6•061 6•059
 
 7400 7548 7.563 7.515
 
 4'605
 
 5.991
 
 4'933 17
 
 20 21 22 23 24
 
 4'875 5.059 4'778 5.053
 
 4'846 4'741 4'571 5. 034
 
 6'348 6'250
 
 7.625 7'41 2
 
 7'444 7.684
 
 7'750
 
 I
 
 9'455
 
 9'500 9.385 9'143
 
 o.z
 
 5 n =3 4
 
 6-600 6.3oo
 
 740o 7.800
 
 8.2oo 8.400
 
 9•o00 9.60o
 
 5 6
 
 6.36o 6.400 6.429 6.3oo 6•zoo
 
 7.800 7.600 7.800 7.650
 
 8.76o 8.800 9.000 cr000
 
 7.667
 
 8.867
 
 9'960 10'20 10'54 10'50 10'73
 
 1 3'46 13'80 14'07
 
 6.36o 6.273 6.300 6.138
 
 7.680 7.691 7.700 7.800
 
 10•68
 
 14'52
 
 7'714
 
 10•75 10•80 10'85 10'89
 
 1 4.80
 
 6. 343
 
 9.000 9.000 9.100 9.092 9.086
 
 7.720 7.800 7.800 7'733 7.863
 
 9.160 9.150 9.212 9.200 9-253
 
 10'92 10'95 11'05 10•93 11'02
 
 7.800 7'815
 
 9.240 9'348
 
 I 1'10
 
 15'36
 
 11'34
 
 16-27
 
 7 8
 
 8.933 9'375 9. 294 9.000 9'579
 
 12.93 13.50 13.06 13.00 1 3'37
 
 18 19
 
 6.280 6.300 6.318 6-333 6'347
 
 9.300
 
 13.3o
 
 20
 
 6.240
 
 9.238
 
 13. 24
 
 CO
 
 6'251
 
 9.091 9'391 9.250
 
 13.13 13.08
 
 8.960 9.308
 
 1. 10 12•60 12'80
 
 1 4'56
 
 14'91 15.09 15.08 15.15 15.28 15.27 1 5'44
 
 1 3'45
 
 5 n=3 4
 
 13'52 13'23
 
 9'407
 
 13'41
 
 9'172
 
 13'50 13.52
 
 9. 214
 
 k= 4 2.5
 
 5 6 7
 
 7467 7.600
 
 8.533 8.800
 
 7680
 
 8.96o 9.067 9'143 9'200
 
 k=5 2.5 9.600 9.800
 
 I
 
 43•x
 
 i0•13 11.20
 
 13'20
 
 '0.40 10'51 10'60
 
 11'68 11'87 12'11 12'30
 
 14'40 15.2o 15.66 16•oo
 
 10'24
 
 I I .47
 
 13'40
 
 8
 
 13'42 13.69
 
 9
 
 7733
 
 9'244
 
 10.67
 
 12'44
 
 16.36
 
 1 3'52 13'41
 
 00
 
 7'779
 
 9.488
 
 11.14
 
 I3.28
 
 18.47
 
 7'471
 
 9.267 9.290 9.25o 9.152 9.176
 
 7'733 7'771 7.700
 
 7'378
 
 9.210
 
 13.82
 
 k=6
 
 c1:4
 
 71
 
 P
 
 zo
 
 5
 
 n= 3 4
 
 8.714 9.000
 
 9.857 10.29
 
 io.81 11.43
 
 11.76 i2-71
 
 13.29 15.29
 
 5 6
 
 9•00o 9.048
 
 10.49 1(3.57
 
 11'74
 
 16'43
 
 00
 
 9'236
 
 11'07
 
 13'23 13'62 15'09
 
 2.5
 
 12'00 12'83
 
 I
 
 O•I
 
 1705 20'52
 
 TABLE 25. UPPER PERCENTAGE POINTS OF THE KRUSKAL-WALLIS DISTRIBUTION Consider k random samples of sizes n,, n2, ..., nk respectively, n1 n 2 ... nk, and let N = n1+ n2 + ... nk. Let all the N observations be ranked in increasing order of size, and let R, (j = I, 2, ..., k) denote the sum of the ranks of the observations belonging to the jth sample. This table gives percentage points of the Kruskal-Wallis statistic k
 
 12
 
 H
 
 N(N+ r)j
 
 tinuous population; the function tabulated, x(P), is the smallest x such that, on this assumption, Pr {H P/ioo. A dash indicates that there is no value with the required property. The limiting distribution of H as N tends to infinity and each ratio n;IN tends to a ppsitive number is the x2-distribution with k I degrees of freedom (see Table 8), and the percentk). A test of age points are given under n;= oo (j = 1, 2, the hypothesis that all k samples are from the same continuous population is provided by rejecting at the P per cent level if H x(P). -
 
 R2
 
 E
 
 3(N+ I)
 
 on the assumption that all k samples are from the same con-
 
 k n1, n2, ns 2,
 
 =
 
 re.
 
 =3 5
 
 I
 
 cvx
 
 ni, n2,
 
 123
 
 6, 5, 6, 6,
 
 5
 
 540 4:007
 
 5:7 92 459 4
 
 6, 6, 6 6, 4 3 2
 
 4'438 4'558 4'548
 
 5.410 5.625 5'724
 
 6, 5 6, 6 I,
 
 44 4...2L47 32
 
 7 5:8o65i
 
 2,
 
 I
 
 4'200
 
 2, 2
 
 4'526
 
 4'571 4'556
 
 5'143 5'361
 
 5.556
 
 3, 4, 4, 4, 4,
 
 3, 3
 
 4'622 4'500 4'458 4'056 4'511
 
 5.600
 
 5.956
 
 5'333 5.208 5'444
 
 5.500 5'833 6.000
 
 6.444
 
 6, 6, 7, 7, 7,
 
 4, 4, 4, 4, 4,
 
 3, 4, 4, 4, 4,
 
 3
 
 4'709 4'167 4'555 4'545 4'654
 
 5'791 4.967 5'455 5'598 5.692
 
 6 '155 6.167 6.327 6 '394 6.6i5
 
 6 '745 6. 667 7.036 7'144 7.654
 
 7, 7, 7, 7, 7,
 
 5, 2,
 
 I
 
 4.200 4'373 4'018
 
 6.000 6.044 6-004
 
 6. 533
 
 4'533
 
 5.000 5.160 4.960 5.251 5.648 4'985 5.273 5.656 5.657 5.127
 
 5'858 6.068 6.410 6 '673 6•000
 
 6 '955
 
 6.346 6.549 6•760 6.740 5.600 5'745 5'945 6.136 6.436 5-856
 
 5,
 
 3, I 3, 2
 
 I
 
 2
 
 3 4
 
 2, 2
 
 5, 3, I 3, 2 5, 3, 3
 
 5,
 
 I
 
 4.714
 
 4'65 1
 
 4, 4, 4, 4,
 
 3 4
 
 5, 5,
 
 I
 
 3'987 4'541 4'549 4'668 4'109
 
 5, 5, 5, 5, 6,
 
 5, 5, 5, 5,
 
 2 3 4 5
 
 4'623 4'545 4'523 4'560
 
 2,
 
 I
 
 4'200
 
 5'338 5'705 5.666 5.780 4.822
 
 6, 6, 6, 6, 6,
 
 2,
 
 3, 3, 3, 4,
 
 2 I 2
 
 4'545 3'909 4'682 4'500 4'038
 
 5'345 4'855 5.348 5'615 4'947
 
 6, 6, 6, 6, 6,
 
 4, 4, 4, 5, 5,
 
 4'494 4'604 4'595 4'128 4'596
 
 5.340 5.610 5.681 4'990 5.338
 
 4'535
 
 5.602
 
 4'522
 
 5•66 1
 
 5, 5, 5, 5,
 
 2
 
 3 I 2
 
 3 4 z 2
 
 6, 5, 3 6, 5, 4
 
 I
 
 -
 
 7.200
 
 8.909 9-269
 
 =3 5
 
 3, I 3, 2
 
 7
 
 P=
 
 Ic•
 
 4'571 4 5 6 42080
 
 2, I 2, 2
 
 k
 
 .o. 2'5
 
 2 I 2
 
 3, 3, 3, 3,
 
 2, 2, 2,
 
 P
 
 4.706 5'143
 
 2
 
 3, 3 4, I 4, 2
 
 6.848 6.889 5'727 5.818 5-758 6.201 6.449
 
 I
 
 0.1
 
 8.028 7.121 7.467 7.725 8•000
 
 10.29 9.692 9.752 10.15 10'34
 
 8.124
 
 10'52
 
 8'222
 
 10-89
 
 7.000 7.030
 
 -
 
 6.184
 
 6.839 7.228 6.986 7.321
 
 8. 654 9.262 9.198
 
 5 .'6520 3
 
 6:7 5078 7
 
 7 7:5 14 0
 
 4:0 415
 
 5 :0 39 634
 
 1 :9 2:3
 
 06510 7:4
 
 3, I 3,
 
 2'5 6.788 5-923 6.2to 6.725 6.812
 
 7 4 5'3952
 
 3 4.'5 1 2 4'603 4'121 4'549
 
 4'986
 
 5191
 
 5'376
 
 4:55 6 2 27
 
 5.620
 
 4, 3 4, 4 5, I
 
 8-727
 
 7, 7, 7, 7, 7,
 
 5, 3
 
 4'535
 
 5'607
 
 6.627
 
 7.697
 
 9. 67o 9'841 9.178 9.640 9.874
 
 7.205 7'445 7'760 7.309
 
 8.591 8'795 9.168 -
 
 7, 7, 7, 7, 7,
 
 5, 5, 6, 6, 6,
 
 4 5 I
 
 4'542 4'571 4'033
 
 6'738 6.835 6.067 6'223 6.694
 
 7.931 8.108 7'254 7- 490 7.756
 
 io•16 10'45 9'747 10.06 to.26
 
 7.338 7'578 7.823 8•000 -
 
 8.938 9'284 9.606 9.920 -
 
 7, 7, 7, 7, 7,
 
 6, 6, 6, 7, 7,
 
 2
 
 6.970 7.410 7.106
 
 8.692 -
 
 7, 7, 7, 7, 7,
 
 7, 7, 7, 7, 7,
 
 6.667 5.951 6.196
 
 7.340 7.500 7'795 7.182 7.376
 
 8.827 9.170 9.681 9.189
 
 6.667 6.750
 
 7'590
 
 7.936
 
 9.669 9.961
 
 6'315
 
 6.186 6%538
 
 6-909 7.079
 
 -
 
 6'655 6 '873
 
 5, 2
 
 2
 
 4'500
 
 3
 
 4'550
 
 5'733 5-708 5.067 5'357 5.680
 
 4 5 6
 
 4'562 4'560 4'530 3'986 4'491
 
 5.706 5170 5'730 4.986 5-398
 
 6.787 6 '857 6.897 6.057 6.328
 
 8.039 8'157 8.257 7.157 7.491
 
 10.46 10'75 11.00 9.871 10 '24
 
 3 4 5 6 7
 
 4'613 4'563 4'546
 
 5.688 5.766 5.746 5'793 5.818
 
 6.708 6.788 6.886 6.927 6.954
 
 7.810 8.142 8.257 8-345 8.378
 
 10 '45 10.69 10.92 11.13 11.32
 
 8, x, I
 
 4'418 4.011 4.010 4'451
 
 4.909 5.356 4.881 5.316
 
 5.420 5:0 86 14 7 6 6.195
 
 4...050 31
 
 5(D364 9134 7
 
 6.588 g.•189 835
 
 8,
 
 2,
 
 I
 
 I
 
 8, 2, 2 8, 3, x 8, 3, 2
 
 4'568
 
 4'594
 
 4.587
 
 8, 3, 3
 
 8, 4, 1 8, 4, 2
 
 72
 
 6 6..8 60 64 3
 
 7.022
 
 8.791
 
 6 7...3 3 97 50 3
 
 89%940 921 36
 
 TABLE 25. UPPER PERCENTAGE POINTS OF THE KRUSKAL-WALLIS DISTRIBUTION k=3 P = to
 
 nb n2, n5 8, 8, 8, 8, 8,
 
 k =4 -
 
 5
 
 2.5
 
 I
 
 0• I
 
 ni, n2, n3, n4
 
 9'742 icror 9'579 9.781
 
 4, 4, I, 4, 4, 2, I
 
 P=
 
 3 4 I 2 3
 
 4'529 4'561 3.967 4'466 4'514
 
 5.623 5'779 4'869 5'415 5.614
 
 6.562 6750
 
 5.864 6.260 6. 614
 
 7'585 7853 7.110 7'440 7.706
 
 8, 5, 4 5 8, 6, 8, 6, 2 8, 6, 3
 
 4'549 4'555 4'015 4'463 4'575
 
 5.718 5.769 5.015 5'404 5.678
 
 6.782 6. 843 5'933 6. 294 6658
 
 7'992 8.146 7.256 7'522 7'796
 
 10. 29
 
 8, 8, 8, 8, 8,
 
 6, 4 6, 5 6, 6 7, 7, 2
 
 4.563 4'550 4. 599 4'045 4'451
 
 5'743 5.750 5'770 5'041 5'403
 
 6'795 6.867 6.932 6'047 6 '339
 
 8-045 8.226 8.313 7.308 7. 571
 
 10.63 10.89 11.10 10.03 10.36
 
 8, 8, 8, 8, 8,
 
 7, 7, 7, 7, 7,
 
 3 4 5 6 7
 
 4'556 4'548 4'551 4'553 4'585
 
 5.698 5'759 5.782 5.781 5.802
 
 6.671 6.837 6. 884 6.917 6.98o
 
 7.827
 
 8.1,8 8. 242 8.333 8.363
 
 10•54 10.84 11.03 44.28 11.42
 
 2, 2,
 
 2, 2,
 
 I, 2,
 
 I, I,
 
 I I
 
 2, 2,
 
 2, 2,
 
 2, 2,
 
 2, 2,
 
 I 2
 
 3,
 
 2,
 
 X,
 
 X,
 
 X
 
 8, 8, 8, 8, 8,
 
 8, 8, 2 8, 3 8, 4 8, 5
 
 4'044 4'509 4'555 4'579 4'573
 
 5-039 5.408 5.734 5'743 5761
 
 6'oo5
 
 io•16 10.46 10.69 10.97 1.18
 
 3, 3, 3,
 
 2, 2,
 
 2,
 
 I,
 
 I
 
 2,
 
 I
 
 2,
 
 2,
 
 2, 2,
 
 6.920
 
 7'314 7.654 7889 8.468 8.297
 
 8, 8, 6 8, 8, 7 8, 8, 8
 
 4'572 4'571 4'595 4.582
 
 5'779 5'791 5.805 5.845
 
 6.953 6.98o 6995 7'041
 
 8'3 67 8.41 9 8.465 8.564
 
 11.37 44.55
 
 4, 4, 5, 5, 5,
 
 8, 5,
 
 9, 9, 9
 
 4' 60 5
 
 00, 00, OD
 
 5'991
 
 6.351 6.682 6.886
 
 7'378
 
 9. 210
 
 10'04
 
 10.64
 
 9'840 io.n I0 '37
 
 n4
 
 2,
 
 3,
 
 2, 2, 2,
 
 2, 2, I,
 
 I 2 I
 
 3, 3,
 
 2, 2, 2, 2,
 
 I
 
 2,
 
 3, 3, 3, 3, 3, 3,
 
 2
 
 I,
 
 3, 2, I 3, 2, 2 3, 3, 3, 3, 2
 
 3, 3, 3, 3 4, 2, I, 4,
 
 2,
 
 2,
 
 4, 2, 2, 2 4, 3, I, I 4, 4, 4, 4, 4,
 
 3, 3, 3, 3, 3,
 
 2, I 2,
 
 2
 
 3, I 3, 2 3, 3
 
 P= 5'357 5.667 5.143 5.556 5'644
 
 5
 
 25
 
 I
 
 5'679 6.467
 
 6.667
 
 6.667
 
 5.833 6.333
 
 6.250 6.978
 
 6 '333 6. 244 6 '527 6 .600 6.727
 
 6'333 6.689 7'055 7.036 7.515
 
 7.200 7.636 7.400 8.015
 
 6.026
 
 7'ooO
 
 7.667
 
 8.538
 
 5.250 5'533 5'755 5.067
 
 5.833 6.133 6'545 6.178
 
 6.533 7'064 6.741
 
 7.000 7'391 7.067
 
 5'591 5'750 5.689 5.872 6•016
 
 6-309
 
 6'955
 
 6.621 6.545 6.795 6. 984
 
 7.326 7.326
 
 7'455 7.871 7'758 8.333 8.659
 
 7'564 7'775
 
 2.5
 
 I
 
 0•I
 
 5'945 6.386 6.731 6.635 6'874
 
 6'955 7.159 7.538 7.500 7'747
 
 7.909 7.909 8.346 8.23, 8.621
 
 8.909 9'462 9.327 9'945
 
 8876 8.588 8.874 9'075 9.287
 
 10'47 9.758 10.43 10'93 1I-36
 
 4: 4,3 2: 3, 4, 4, 3,
 
 2 I 2
 
 5.182 5.568 5.808 5.692 5'901
 
 4, 4, 4, 4, 4,
 
 3 I 2 3 4
 
 6.019 5.654 5'914 6.042 6•088
 
 7.038 6.725 6 '957 7.142 7.235
 
 7.929 7.648 7'914 8'079 8.228
 
 oo, 00, oo, oo
 
 6.251
 
 7'815
 
 9'348
 
 4, 4, 4, 4, 4,
 
 3, 4, 4, 4, 4,
 
 n4, n2, n3, n4, n5
 
 3, 3,
 
 41.95
 
 5.786 6.250 6.600
 
 11.34
 
 6'982 6'139
 
 6.511 6.709 6955 6.311 6.6o0
 
 2
 
 I,
 
 I
 
 5
 
 2'5
 
 6.750 7.333 7.964
 
 7.533 8.291
 
 6'583
 
 --
 
 --
 
 6.800 7'309
 
 7.200 7'745
 
 7'600
 
 7.682
 
 8.182
 
 7.1n 7.200
 
 7.467 7.618
 
 8.538 8-06 z 8'449 8.8,3 8.703 9.o38 9'233
 
 2,
 
 I 2
 
 6.788 7.026 6.788
 
 2,
 
 I
 
 6'910
 
 2,
 
 2
 
 7'121
 
 7'591 7'910 7'576 7'769 8.044
 
 3, 3, 3, 3, I 3, 3, 3, 3, 2 3, 3, 3, 3, 3
 
 7.077 7.210 7'333
 
 8.0o0 8.2oo 8.333
 
 CO, 00, 2), CO, 00
 
 7'779
 
 9'488
 
 3, 2, 3, 2, 3, 3, 3, 3, 3, 3,
 
 I
 
 6.750 7.133 7.418
 
 2,
 
 3, 3, 3, 3, 3,
 
 11'70
 
 2,
 
 P = zo
 
 I
 
 I, 3, 3, I,
 
 16.27
 
 0'I
 
 -
 
 8.12,
 
 -
 
 --
 
 8'127 8.682 8.073
 
 9'364 -
 
 8.576 9.115 8'424 9.051 9.505
 
 9.303 10403 9'455 9'974
 
 9'451 9.876
 
 10'59
 
 10-64
 
 13'82
 
 0.1
 
 k= P=
 
 2-5
 
 -
 
 I
 
 7.600 8•348 8'455
 
 7.800 8.345 8.864
 
 8'455
 
 2,
 
 2
 
 8.154
 
 8.846
 
 9.385
 
 I,
 
 I
 
 7'467 7'945 8.348 8'731 9'033
 
 7.667 8.236 8.727 9.248 9.648
 
 7.909 8.303
 
 8'564
 
 I,
 
 2,
 
 I,
 
 I,
 
 2,
 
 2, 2,
 
 2, 2,
 
 I, 2,
 
 2,
 
 2,
 
 2,
 
 2,
 
 I,
 
 2, 2,
 
 2, 2,
 
 2, 2,
 
 I I I
 
 Io
 
 • 17
 
 10'20
 
 11'67
 
 13.28
 
 18'47
 
 6
 
 5
 
 I,
 
 2,
 
 11.14
 
 6.833 7.267 7.527 7.909
 
 /42,
 
 7'133
 
 5'333 5.689 5'745 5.655 5.879
 
 5
 
 k=5
 
 k=4 nb nz, n3,
 
 70
 
 0. I
 
 8.648 9'227 9'846
 
 9'773 I 0'54
 
 8.509 9.136 9.692
 
 9.682 I0'38
 
 9'o30
 
 3, 2, 3, 2, 3, 2, 3, 2, 3, 2,
 
 9.513 -
 
 2,
 
 I, 2,
 
 I I
 
 7.133 7418 7.727 7.987
 
 2,
 
 2,
 
 2
 
 8'198
 
 I,
 
 I,
 
 2, 2,
 
 I, I, I 2,
 
 2, 2,
 
 3, I, I, I, I moo 3, 2, I, I, I 7.697 3, 2, 2, I, I 7'872 3, 2, 2, 2, I 8.077 3, 3,2, 2, 2, 2 8.305
 
 3, 3, 3, 3,
 
 8.909 9.482 9'455
 
 8.667
 
 10'22
 
 11'11
 
 8'564 9'045
 
 8'615
 
 9.128
 
 8'923
 
 9'549
 
 10-15
 
 n -oi
 
 9.190
 
 9.914
 
 10-61
 
 11'68
 
 15.09
 
 20*52
 
 9.628
 
 10.31
 
 10'02 CO, 00, 00 , 00, CO, 00
 
 73
 
 9.236
 
 11.07
 
 12.83
 
 • TABLE 26. HYPERGEOMETRIC PROBABILITIES Suppose that of N objects, R are of type A and N— R of type B, with R N—R. Suppose that n of the objects, n < N—n, are selected at random without replacement and X are found to be of type A. Then X follows a hypergeometric distribution with the probability that X = r given by
 
 Here the rows correspond to types A and B and the columns to ' selected' and not selected' respectively, and the marginal totals are given. Fisher's exact test of no association between rows and columns, or of homogeneity of types A and B, is provided by rejecting the null hypothesis at the P per cent level if the sum of the probabilities for all tables with at least as extreme values of X as that observed is less than or equal to Pj roo. More extreme' means having smaller probability than the observed value r of X, given the same marginal totals. This test may be either one- or two-sided, as shown below.
 
 p(rjN, R, n) =
 
 (':)(Nn — T(Nn) This table gives these probabilities for N < 57 and n < R (if not, use the result that p(rIN, R, n) = p(rIN, n, R)). For N > 57 these probabilities may be calculated by using binomial coefficients (Table 3) or logarithms of factorials (Table 6). When N is large and RI N < c•r, X is approximately binomially distributed with index R and parameter p = n/N (see Table r); similarly, if N is large and n/N < o•1, X is approximately binomially distributed with index n and parameter p = R/N. If N is large and neither R/N nor n/N
 
 Example. I 5 4 4 5 9
 
 (X+.', — nR I N)I[R(N — R) n(N — n)I Nz(N — 1)11 is approximately normally distributed with zero mean and unit variance; a continuity correction of 2 , as with the binomial distribution, has been used. A representation of the data in the form of a 2 x z contingency table is useful:
 
 ✓ R— r R n—r N—R—n+r N — R n N—n N N
 
 2 I I = 0 0'5000 I '5000
 
 5 =
 
 I 2
 
 Rn 2 2
 
 I
 
 0'7500
 
 •6000 .r000
 
 I
 
 .1429
 
 I
 
 •2500
 
 0.8333 •1667
 
 O I
 
 O 06667
 
 4 O I
 
 2 0'5000 •5000
 
 4
 
 2 2
 
 O
 
 0•1667
 
 x
 
 •6667
 
 2
 
 '1667
 
 N R n
 
 2 I
 
 = 0
 
 6 2 x I
 
 8
 
 0-8571
 
 4 I I 0'7500 '2500
 
 I I
 
 = 0
 
 6 x O
 
 7
 
 N R n
 
 0'3000
 
 3
 
 O 06667 I '3333
 
 N R n
 
 7
 
 2 I
 
 8
 
 2 2
 
 O I
 
 01143 2857
 
 O I
 
 0.5357
 
 2
 
 -0357
 
 7
 
 2 2
 
 •4286
 
 2 2
 
 I
 
 0.0714 '4286
 
 2
 
 '4286
 
 0
 
 3
 
 8 3
 
 2
 
 I
 
 *4762
 
 O
 
 06250
 
 2
 
 •0476
 
 I
 
 •3750
 
 3 4
 
 O
 
 0'4000
 
 I
 
 '5333
 
 2
 
 •0667
 
 7 3
 
 8 3
 
 03571 '5357
 
 2
 
 '1071
 
 001 43 •2286 '5143 •2286 •0143
 
 028 57
 
 6 3
 
 I
 
 . 571 4
 
 0
 
 O I
 
 2
 
 •1429
 
 I
 
 2
 
 5 x
 
 O
 
 O cr8000 I .2000
 
 •
 
 -6000
 
 2
 
 '2000
 
 0'2000
 
 5 2 I
 
 6 3 3
 
 O o.6000 I •4000
 
 O I
 
 0 0500
 
 2
 
 '4500 *4500
 
 3
 
 •0500
 
 8 3 3
 
 o•1786
 
 2
 
 7 3 3 6 3
 
 9 I z
 
 O 0.8889 I
 
 'III'
 
 2
 
 O
 
 o•5000 -5000
 
 2
 
 O 0.1543 I '5143 2
 
 '3429
 
 3
 
 •o2.86
 
 8
 
 O 0.8750 •125o I
 
 3
 
 '5357 2679 •0179
 
 8 4 O o.s000 I -5000 8 4 2 O 0. 2143 I '5714 2
 
 74
 
 '2 1 43
 
 2
 
 0
 
 0.4167
 
 I
 
 •5000
 
 2
 
 '0833
 
 9
 
 2 I
 
 O 0.7778 I '2222
 
 O
 
 0'2381
 
 I
 
 2
 
 '5357 ' 2143
 
 3
 
 '0119
 
 9 4 I O I
 
 2 2
 
 O I
 
 0.5833 '3889
 
 2
 
 'oz78
 
 0.5556 '4444 2
 
 O I
 
 0'2778 *5556
 
 2
 
 '1667
 
 9 4 3 I
 
 2
 
 3
 
 9 3 I
 
 0
 
 O 06667
 
 I
 
 '3333
 
 I
 
 0
 
 O o 8000 '2000 I I0 2 2 O I
 
 0'6222
 
 2
 
 '0222
 
 '3556
 
 zo 3 I I
 
 '3000
 
 xo 3
 
 2
 
 O 04667 '4667 • 2
 
 '0667
 
 0'1190
 
 . 4762 •3571 '0476
 
 9 4 4
 
 I
 
 I0 I
 
 = 0 0'9000 I ' 100
 
 O 0.7000 9 4
 
 0
 
 9
 
 N R n
 
 I0 2 I
 
 .0714
 
 8 4 4 I
 
 O I
 
 9 3
 
 r=
 
 9 3 3
 
 O 04762
 
 7 3 I O 0. 5714 I •4286
 
 N R n
 
 8 4 3
 
 r=
 
 '3333
 
 6
 
 14
 
 From the tables p(1114, 6, 5) = •2098. A more extreme onesided value is r = o, giving a total probability of •2378, not significant evidence of association or of inhomogeneity. If a two-sided test is required, r = 4 and r = 5 have probabilities •0599 and •003o respectively, less than •2098; the total is now .3007. When N > 17 and nR/N is not too small, a (two-sided) test of the hypothesis of no association, or of homogeneity, is provided by rejecting at the P per cent level approximately if x2 = N[rN — nR] 21[R(N — R) n(N — n)] exceeds A(P) (see Table 8). (Cf. H. Cramer, Mathematical Methods of Statistics (1946), Princeton University Press, Princeton, N.J., Sections 30.5 and 30.6.)
 
 is less than o•1,
 
 N R n
 
 6 8
 
 013397 '3175 2 '4762 •i587 3 •0079 4
 
 xo 3 3 O I
 
 0'2917 •5250
 
 2
 
 -175o •0083
 
 3 I0 0 I
 
 4
 
 o.6000 '4000
 
 TABLE 26. HYPERGEOMETRIC PROBABILITIES N R n 10 4
 
 r=
 
 2
 
 N R n II 3
 
 2
 
 N R n 12 I I
 
 0
 
 0.3333
 
 1' = 0
 
 0.5091
 
 Y= 0
 
 I
 
 '5333
 
 I
 
 x
 
 2
 
 .1333
 
 2
 
 .4364 *0545
 
 0.9167 .0833
 
 12 2
 
 10 4 3 O I
 
 0.1667 - 5000
 
 2
 
 - 3000
 
 3 I0
 
 O
 
 '0333 4 4 0.0714
 
 xi 3 3 0 0.3394 I
 
 •5091
 
 z 3
 
 •1455 •006I
 
 Ix 4 1 I
 
 '1143 •0048
 
 xx
 
 io 5 x O I
 
 0.5000 -5000
 
 0.8333 •1667
 
 12 2 2
 
 o
 
 0.6818
 
 I 2
 
 '3030 '0152
 
 0 0.6364
 
 I '3810 2 -4286
 
 3 4
 
 0 I
 
 I
 
 •3636
 
 4 2
 
 0 0.3818 •5091 x 2
 
 '1091
 
 II 4 3
 
 12
 
 3 i
 
 o I
 
 0'7500 *2500
 
 12 0
 
 3
 
 2
 
 I
 
 0.5455 .4091
 
 2
 
 -0455
 
 o 0'2121 22 3 3 12 - 5091 I 0'2222 2 •2545 0 0.3818
 
 N R n
 
 N R n
 
 N R n
 
 N R n
 
 12
 
 13
 
 13 5 5
 
 14 3
 
 5 4
 
 Y= 0 I 2
 
 0'0707
 
 3 4
 
 ' 1414 •oioi
 
 '3535 '4242
 
 I
 
 .5556
 
 3
 
 •0242
 
 2 '2222 10
 
 5 3
 
 ix 4 4 0 0•1061
 
 O
 
 0.0833
 
 I 2
 
 '4167
 
 I 2
 
 •4167 •0833
 
 4
 
 3
 
 3
 
 '4242
 
 •3818 •0848 •0030
 
 1
 
 .4909
 
 2
 
 *1227
 
 3
 
 .0045
 
 12 4
 
 I
 
 0
 
 0.6667
 
 I
 
 '3333
 
 12 4 2 I0
 
 5 4
 
 O
 
 0'0238
 
 I
 
 •2381 .4762 - 2381 '0238
 
 2
 
 3 4
 
 xo 5 5 0
 
 0'0040
 
 x
 
 -0992.
 
 2
 
 •3968
 
 3 4 5
 
 -3968 .0992 .0040
 
 II I I O
 
 I
 
 0'0091 '0909
 
 II 2 I
 
 O 1
 
 0.8182 •1818
 
 II 2 2
 
 O •
 
 0. 6545 .3273
 
 2
 
 '0182
 
 II
 
 3 O 0.7273 I •2727
 
 II 5 I 0 I II
 
 0. 5455 •4545 5 2
 
 0
 
 0'2727
 
 I 2
 
 O I 2
 
 0'4242
 
 •4848 '0909
 
 5 5
 
 12
 
 .5455
 
 O x
 
 0. 2545 •5091
 
 '1818
 
 2
 
 '2182
 
 3
 
 •.0182
 
 II 5 3 O
 
 0.1212
 
 x
 
 -2210
 
 2
 
 3
 
 '441 9 '2652
 
 4
 
 ' 044 2
 
 5
 
 •0013
 
 I
 
 '4545
 
 0 0. 1414
 
 *3636
 
 3
 
 .0606
 
 I 2
 
 *3394
 
 3 4
 
 .0646 .0020
 
 II 5 4
 
 •4525
 
 O
 
 0.0455
 
 I
 
 •3030
 
 12
 
 5 I
 
 0 I
 
 0.5833
 
 2
 
 *4545
 
 3
 
 •1818
 
 4
 
 '0152 12
 
 6 x
 
 12 0 I
 
 0.5000 •5000
 
 6
 
 12
 
 Ix
 
 5 5
 
 O I 2
 
 0'0130 -1623 '4329
 
 3 4 5
 
 .3247 -0649 •0022
 
 O I 2
 
 2
 
 0.3182 .5303 .1515
 
 0 I
 
 0 2273 . '5455 ' 2273
 
 6
 
 12
 
 3
 
 0 0'0909
 
 x
 
 .4091
 
 2
 
 409 1
 
 3
 
 .0909
 
 12
 
 6
 
 4
 
 0
 
 0'0303
 
 I 2 3
 
 • 2424 .4545 . 2424 0303
 
 4
 
 0 I 2
 
 6
 
 5
 
 0'0076 •1136
 
 -3788 •3788 .1136 .0076
 
 3 4 5
 
 12 6 6 0 I 2
 
 0'0011 •0390
 
 3 4 5 6
 
 '4329 '2435 .0390 .00 1 1
 
 '2435
 
 13 I I O I
 
 0- 9231 -0769
 
 5 3
 
 O
 
 0.8462
 
 O
 
 0'1591
 
 I
 
 '1538
 
 •
 
 '4773 •3182. .0455
 
 2
 
 3
 
 r = 0 2704 4335 51 I .2.720 3
 
 13 3 I I
 
 '2308
 
 13 3
 
 2
 
 0 0. 5769 '3846 I '0385 2
 
 0 0.4196
 
 x
 
 -47zo
 
 2
 
 '1049
 
 3
 
 .0035
 
 13 4 I 0
 
 0'6923
 
 x
 
 •3077
 
 13 4 0 I 2
 
 2
 
 0 . 4615 •4615 '0769
 
 13 4 3
 
 13 2 I 12
 
 - 0128
 
 2
 
 '4167
 
 5
 
 •2821
 
 2
 
 x3 3 3
 
 12 4 4
 
 2
 
 1
 
 0 0-0265
 
 12 12 4 3
 
 7 = 0 0'7051
 
 4 5
 
 •2176 3 01 51 00
 
 0 0.7692
 
 xo 5 O
 
 2 2
 
 75
 
 13 6 I O I
 
 0'5385
 
 O I 2
 
 2
 
 0'2692 '1923
 
 x3 6
 
 3
 
 O I 2
 
 0'1224 *4406 '3671
 
 3
 
 -0699
 
 13 O I 2
 
 3 4
 
 6 4 0.0490 .2937 .4406 -1958 •0210
 
 x3 6
 
 5
 
 I
 
 - 1632
 
 3
 
 2 '4079
 
 I
 
 -4699
 
 2 '3021
 
 3 4 13 O I
 
 .0503 .00i4 5 i 0.6154
 
 3846
 
 13 5 0
 
 I 2
 
 3 4
 
 13 O I 2
 
 6 6 0'0041 '0734 - 3059
 
 '4079 '1836 •0245 6 •0006
 
 3 4 5
 
 '0714
 
 '3916 '1119 '0070
 
 0. 7143 - 2857
 
 14
 
 O I 2
 
 4 0'4945 .4396 •0659
 
 14 4 3
 
 0 I
 
 0.3297 '4945
 
 2
 
 '1648
 
 3
 
 •0110
 
 14 4 4 O I 2
 
 0'2098 .4795 - 2697
 
 3 •0400 4 •0010 14 5 I x
 
 0.9286
 
 2
 
 0 I
 
 .3571
 
 5 •0047
 
 I
 
 0.0979 .3916
 
 -0907
 
 •0027
 
 0 0.6429
 
 O
 
 O I
 
 2
 
 3
 
 •0816
 
 14
 
 13 5 4
 
 0'4533 '4533
 
 4
 
 5128 '1282
 
 2 '2797 .0350 3
 
 O I
 
 .3263
 
 2
 
 13 5 3 0 0.1958 -4895 I
 
 14 3 3
 
 3
 
 0.3590 •
 
 '0330
 
 .5385
 
 0.0163
 
 0 0- 1762
 
 • 3626
 
 14 4 I 13 6
 
 O
 
 13 4 4
 
 I 2
 
 '4615
 
 0 0'2937 -5035 I •1888 2
 
 •0140
 
 2
 
 r = 0 0. 6044
 
 14 2 I
 
 O I
 
 0.8571 •1429
 
 14 2 2 O I 2
 
 0/253 '2637 '0110
 
 14 3
 
 O 0.7857 '2143 I
 
 14 5 2 O I
 
 0.3956
 
 2
 
 '1099
 
 '4945
 
 14 5 3 O
 
 0'2308
 
 I 2 3
 
 *4945 '2473 -0275
 
 14 5 4
 
 O I 2
 
 0.1259 •4196
 
 3 4
 
 .0899
 
 '3596 '0050
 
 14 5 5
 
 O
 
 0'0629
 
 • 2
 
 '3 147 '4196
 
 3 4
 
 '0225
 
 5
 
 .1798
 
 •0005
 
 TABLE 26. HYPERGEOMETRIC PROBABILITIES N
 
 R n
 
 14
 
 6
 
 1
 
 N 14
 
 R n 7
 
 5
 
 N 15
 
 R n
 
 N
 
 R n
 
 N
 
 R n
 
 N
 
 R n
 
 N
 
 4
 
 15
 
 6
 
 x6
 
 x
 
 16
 
 5
 
 16
 
 3
 
 r= 0
 
 0'5714
 
 7' = 0
 
 0'0105
 
 r= 0
 
 0.3626
 
 I
 
 -4286
 
 x
 
 •1224
 
 I
 
 . 4835
 
 2
 
 '3671
 
 2
 
 3 4 5
 
 •3671 •1224
 
 3
 
 •1451 •0088
 
 •0105
 
 15
 
 14 o
 
 6 2 0.3077
 
 I
 
 •5275
 
 2
 
 .1648
 
 14
 
 6
 
 3
 
 0
 
 14 0
 
 7
 
 6
 
 •1510
 
 I
 
 2
 
 14
 
 7 7
 
 0
 
 0.0003
 
 1
 
 '3357
 
 2
 
 •4196
 
 3 4
 
 •1598
 
 I
 
 •0143
 
 •0150
 
 2
 
 '1285
 
 '2098
 
 2
 
 '4196
 
 3 4 5
 
 '2797 '0599
 
 14
 
 0030
 
 6
 
 6
 
 0
 
 0'0093
 
 I
 
 '1119
 
 IS
 
 •1285 0143 ;0003
 
 I
 
 1
 
 •-0667 2
 
 I
 
 0.8667 '1333
 
 2
 
 3497
 
 3 4
 
 '3730 '1399
 
 I
 
 5
 
 '0160
 
 15
 
 6
 
 *0003
 
 0
 
 0.7429
 
 I
 
 '2476 '0095
 
 14
 
 7
 
 1
 
 0
 
 0'5000
 
 I
 
 •5000
 
 14 0
 
 7
 
 2
 
 2 15
 
 2
 
 3
 
 2
 
 1
 
 0
 
 0.8000
 
 I
 
 •2000
 
 I
 
 0.2308 -5385
 
 15
 
 2
 
 '2308
 
 0
 
 0.6286
 
 I
 
 '3429
 
 2
 
 •0286
 
 14
 
 7
 
 3
 
 2
 
 0.0962, '4038 '4038
 
 3
 
 -0962
 
 0
 
 I
 
 14
 
 7
 
 4
 
 15 0
 
 3
 
 2
 
 3
 
 3
 
 -0022
 
 0'0350
 
 ' 2448
 
 15
 
 2
 
 ' 4406 ' 2448 ' 0350
 
 0 j
 
 15
 
 1
 
 0.6667
 
 1
 
 '3333
 
 15 0
 
 5
 
 2
 
 0 .4286
 
 I
 
 • 4762
 
 2
 
 '0952
 
 15
 
 5
 
 3
 
 0
 
 0'2637
 
 X
 
 '4945
 
 2
 
 '2198
 
 3
 
 '0220
 
 15
 
 5
 
 4
 
 0
 
 0'1538
 
 I
 
 '4396
 
 2
 
 '3297
 
 3 4
 
 . 0037
 
 15 0
 
 '0733
 
 5
 
 5
 
 0-0839
 
 I
 
 '3497
 
 2
 
 '3996
 
 3 4
 
 '1499 •0167
 
 5
 
 '0003
 
 15 0 I
 
 15 0
 
 6
 
 1
 
 0.6000 ' 4000
 
 6
 
 2
 
 0-3429
 
 I
 
 5143
 
 2
 
 ' 1429
 
 0'4835 '4352
 
 I
 
 3 4
 
 3
 
 I 2
 
 0
 
 5
 
 0
 
 x
 
 0.9333
 
 0
 
 15
 
 3569
 
 '3569
 
 0
 
 15
 
 16
 
 '3776 '3357
 
 '4079 . 2448 '0490 •0023
 
 0.0280
 
 6
 
 I
 
 3 4 5 6
 
 I
 
 6
 
 2
 
 '3297 ' 0549
 
 5
 
 '0020
 
 '0007
 
 2
 
 6
 
 0 I
 
 •0322
 
 '0490 '2448
 
 14 o
 
 15
 
 16
 
 3 4
 
 I
 
 3 4 5 6 7
 
 3 4 5
 
 '4835
 
 2
 
 00699
 
 -4196 '2398 '0450
 
 '2418
 
 •4615
 
 4
 
 2
 
 r= 0 I
 
 1
 
 0.1538
 
 6
 
 0'0420 *2517
 
 2
 
 I
 
 14 0
 
 4
 
 0 1
 
 0'0023
 
 0
 
 3
 
 4
 
 0'2418
 
 r=
 
 5
 
 '0791
 
 4
 
 I
 
 0.7333 '2667
 
 4
 
 2
 
 15
 
 6
 
 3
 
 0 1
 
 0.1846
 
 2
 
 *2 967
 
 3 x5
 
 o
 
 0.0168
 
 3 4 5 6 15
 
 '1079 •0108 •0002 7
 
 x
 
 0
 
 0 '5333
 
 I
 
 -4667
 
 15
 
 7
 
 0.2667
 
 2
 
 '2000
 
 7
 
 6¢
 
 0
 
 0'0923
 
 I
 
 .3692
 
 0
 
 0'5238
 
 2
 
 x
 
 •4190
 
 '3956
 
 2
 
 '0571
 
 3 4
 
 •0110
 
 '1319
 
 2
 
 I
 
 0'8750
 
 '1250
 
 3
 
 2
 
 0
 
 0•6500
 
 I
 
 ' 3 2 50
 
 '0250
 
 3
 
 3
 
 0
 
 05107
 
 I
 
 . 4179
 
 2
 
 •o696
 
 3
 
 .00'8
 
 .0769
 
 0
 
 0•7500
 
 I
 
 .2500
 
 •2872 4308 '2051
 
 3 4 15
 
 0
 
 •0256
 
 7 5 0•0186
 
 I
 
 1632
 
 2
 
 •3916 •3263
 
 3 4
 
 '0932 '0070
 
 5 x5 0 I
 
 7
 
 0.0056
 
 '0783
 
 -2937 -3916 . 1958
 
 2
 
 3 4 5 6
 
 .0336 •0014 7
 
 7
 
 2
 
 0'5500
 
 -4000
 
 2
 
 '0500
 
 0
 
 4 3 0.3929
 
 1
 
 '4714
 
 2
 
 •1286
 
 3
 
 •0071 4
 
 5
 
 5
 
 •3231 '4154
 
 •0002 6
 
 x
 
 16
 
 I
 
 '3750
 
 3 4 5
 
 '0721
 
 x6
 
 6
 
 2
 
 0
 
 01750
 
 I
 
 •5000
 
 2
 
 '1250
 
 16
 
 6
 
 3
 
 o
 
 0'2143
 
 x 2
 
 '4821 •2679
 
 3
 
 '0357
 
 16
 
 6
 
 4
 
 16
 
 •Ixoi '3304
 
 3 4 5 6
 
 .3671
 
 x6 0 I
 
 .0514
 
 2
 
 * 2313
 
 .1099
 
 3 4
 
 ' 2570
 
 3 4 16
 
 •0082
 
 6
 
 5
 
 o
 
 0.0577
 
 x
 
 •2885
 
 2
 
 '4121
 
 3 4 5
 
 .2060 0343 •0014 6
 
 6
 
 $
 
 6 7 16
 
 '3125
 
 16
 
 -1828
 
 16
 
 2
 
 '1964
 
 '0002
 
 3
 
 '01 79
 
 0 1
 
 '0843 .0075 •0001
 
 5
 
 3
 
 0- 2946
 
 49 11
 
 7
 
 8
 
 z
 
 •5000
 
 16 0
 
 8
 
 2
 
 0.2333 '5333 '2333
 
 8
 
 3
 
 0
 
 0'1000
 
 I 2
 
 '4000 '4000
 
 3
 
 •1000
 
 I
 
 0•5625
 
 x6
 
 x
 
 '4375
 
 0
 
 7
 
 '0001
 
 x
 
 0
 
 16
 
 •0664
 
 •0055
 
 0•5000
 
 16
 
 3 4 5 6
 
 3855
 
 0
 
 '3934 '2997
 
 .3807 -3046 .0914 •0087
 
 7
 
 -3709
 
 2
 
 •0833
 
 7
 
 0'0031
 
 •3956
 
 •0005
 
 '4583
 
 0009
 
 I 2
 
 •0264
 
 I
 
 '0236
 
 0- 1154
 
 3
 
 2
 
 '1573
 
 0
 
 4
 
 '0305
 
 6
 
 I
 
 I
 
 0'0012
 
 7
 
 2
 
 2
 
 I 2 3 4 5 6 7
 
 - 0048
 
 0'0105
 
 •1888
 
 2
 
 -2885
 
 0
 
 0•0262
 
 5
 
 .20'9 '4038
 
 x
 
 0.4583
 
 5
 
 0.0288
 
 0
 
 o
 
 7
 
 0 x
 
 '2176
 
 x
 
 '0192
 
 '0126
 
 '4835
 
 5
 
 .1731
 
 2
 
 4
 
 0•6875
 
 4
 
 0'0692
 
 I
 
 0 I
 
 7
 
 0
 
 2
 
 x6
 
 '4500
 
 0.6250
 
 16
 
 x
 
 0.1500
 
 0
 
 0•2720
 
 0
 
 76
 
 x6
 
 0
 
 16 15
 
 4
 
 z
 
 x
 
 x6
 
 6
 
 4
 
 0
 
 x6
 
 z6 16
 
 3 4
 
 3
 
 x
 
 •0625
 
 '3777 ' 1259
 
 i fs
 
 2
 
 3
 
 2
 
 '1875
 
 x6
 
 •0604 •0027
 
 3 4 5
 
 2
 
 4
 
 3 4
 
 '2333
 
 ' 4308 '3692
 
 7
 
 '3375
 
 '0083
 
 1
 
 0'0513
 
 2
 
 I
 
 0. 123I
 
 0
 
 '4533
 
 •3022
 
 2
 
 x
 
 3
 
 I
 
 '3777
 
 3
 
 7
 
 2
 
 0•1058
 
 0
 
 15
 
 0.1813
 
 R n
 
 r= 0 I
 
 0
 
 o
 
 2
 
 0'8125
 
 16
 
 r=
 
 4
 
 1
 
 2
 
 0.7583
 
 I
 
 2
 
 3
 
 0 '9375 '0625
 
 0
 
 x6
 
 '5333
 
 '4747 '0 440
 
 x6
 
 2
 
 0 x
 
 15
 
 0
 
 z
 
 2
 
 0
 
 0'3000
 
 z
 
 .525o
 
 2
 
 * 1750
 
 8
 
 4
 
 0'0385
 
 I
 
 •2462
 
 2
 
 '4308
 
 3 4
 
 •2462
 
 . 0385
 
 TABLE 26. HYPERGEOMETRIC PROBABILITIES N R n x6 8 5 r= o o.0128 I
 
 '1282
 
 2
 
 '3590 '3590 • I282 •oiz8
 
 3 4 5
 
 16 8 6 O
 
 0.0035
 
 I
 
 .0559
 
 2
 
 '2448
 
 3 4
 
 5
 
 -3916 '2448 ' 0559
 
 6
 
 '0035
 
 x6 8 7 O
 
 0'0007
 
 x
 
 •0196 .1371 '3427 '3427 ' 1371 .0196 •0007
 
 2
 
 3 4 5 6 7
 
 16 8 8 O I
 
 0'0001 '0050
 
 2
 
 '0609 '2437 '3807 '2437 '0609
 
 3 4 5 6 7 8
 
 '0050 '0001
 
 N R n 17 3 3 r = 0 0'5353 I
 
 O
 
 0'9412
 
 I
 
 •0588
 
 17
 
 I
 
 2
 
 '0618
 
 2
 
 3
 
 '0015
 
 17 4 2 0 0. 5735 I •3824 2
 
 '0441
 
 17
 
 4 3 O 0.4206 1 '4588 2
 
 ' 1147
 
 3
 
 '0059
 
 17 4 4 o 0-3004 x -48o7 .1966 2 3 .0218 '0004 4 17
 
 5
 
 1
 
 O
 
 0'7059
 
 I
 
 •2941
 
 x7 5
 
 2
 
 O 04853 I '4412 2 '0735 5 3 O 0.3235 '4853 I
 
 2 3
 
 '1765 •0147
 
 17
 
 5 4 O 0.2080 I
 
 '4622
 
 2 2
 
 2
 
 '2773
 
 O
 
 0'7721
 
 I
 
 '2206
 
 3 4
 
 '0504 '0021
 
 17
 
 2 '0074 17 17
 
 3 O 0.8235 x -1765
 
 17 3
 
 2
 
 O 0.6691 I '3088 2
 
 '0221
 
 2
 
 .4853 '1103
 
 17 6 3 17 4 1 o 0.7647 .2353 I
 
 2 I
 
 O 0.8824 I •1176
 
 17 6
 
 r = 0 04044
 
 '4015
 
 17
 
 17 I I
 
 N R n
 
 5 5
 
 O I
 
 0'1280 '4000
 
 2
 
 '3555 .1o67 '0097
 
 3 4 5
 
 '0002
 
 17 6 I o I
 
 6 0._47r •3529
 
 o 0.2426 i '4853 2
 
 3
 
 N R n
 
 N R n
 
 17 7 6
 
 x7 8 7
 
 r = 0 0'0170
 
 I 2
 
 3 4 5 6
 
 '1425 .3563 '3394 ' 1273 '0170
 
 •0006
 
 '2426
 
 .0294
 
 17 6 4
 
 17 7 7 0 o•oo62 .0756 I
 
 = 0 0'0019 I '0346
 
 2
 
 '1814
 
 3 •3628 4 '3023 •1037 5 '0130 6 7 •0004 17 8 8 0 0'0004 '0118
 
 0 0.1387
 
 2
 
 '2721
 
 I
 
 I
 
 '4160
 
 '3466
 
 '3779 .2160 •0486 .0036 •000i
 
 2 '0968
 
 2
 
 3 4 5 6 7
 
 3 '0924 4 •0063 17 6 5 0
 
 0.0747
 
 I 2
 
 '3200 '4000
 
 3 4 5
 
 ' 1 778
 
 -oz67 '0010
 
 17 6 6 O
 
 0'0373
 
 x
 
 '2240 '4000
 
 2
 
 •2666 3 4 •o667 5 '0053 6 •000l
 
 17 8 x 0 I
 
 0'5294 '4706
 
 x7 8 0 I
 
 2
 
 0.2647 • 5294
 
 2 '2059
 
 x7 8 3 0 O'1235
 
 I
 
 *4235
 
 2
 
 '3706
 
 3
 
 •o824
 
 17 8 4 17
 
 O I
 
 7 I
 
 o
 
 0'5882 '4118
 
 x
 
 17 7 2 O
 
 0'3309
 
 I
 
 '5147
 
 2 '1544 17
 
 7 3 O o.1765 •4632 I '3088 2 .0515 3
 
 17
 
 7 4 O 0.0882 I '3529 2
 
 '3971
 
 3 4
 
 .14.71 '0147
 
 2
 
 3 4
 
 0 0.0204 I '1629 2 '3801
 
 3 4 5
 
 3 4 5
 
 '3258 .1o18 '0090
 
 17 8 6 o x
 
 o-oo68 .0814 .2851 2 '3801 3 '2036 4 5 '0407 6 '0023
 
 7 5 O 0.0407 I
 
 '4235 .2118 '0294
 
 x7 8 5
 
 17
 
 2
 
 0'0529 '2824
 
 '2376 '4072
 
 '2545 •0566 '0034
 
 77
 
 3 .2.903 •3628 4 '1935 5 6 '041 5 '0030 7 8 •0000
 
 TABLE 27. RANDOM SAMPLING NUMBERS Each digit is an independent sample from a population in which the digits o to 9 are equally likely, that is, each has a probability of-116. 84 28 64 49 o6 75 09 73 49 64 93 39 89 77 86 95
 
 53 03 65 76 31 97 97 o8 4! 70 44 z6
 
 87 57 37 49 24 65 97 52 46 33 59 68
 
 75 09 93 64 33
 
 12
 
 83
 
 76
 
 z6 29 51
 
 45 70 14
 
 OI
 
 14
 
 04
 
 49 59 50 32 73 8z 98 27 74 00 78 6o
 
 36 88 8o 79 98 77 12 39 04 40 71 92
 
 23 92 z6 69 o8 73 19 16 79 86 16 99
 
 36 17 74 41 05 o8 82 42 72 92 41 6o 25 35 05 44 8o 31 79 46 65 8z 31 96 40 50 44 68
 
 36 78 65 96 81 75 74 o6 96 37 69 17 61 97 01 97 89 13 24 34 8o 31 81 o6 64 6z 77 58 33 57 36 65 92 02 65 63 22
 
 50
 
 4z 87 41 46 56 35 81 69 6o 05 88 34 29 75 98
 
 56 77 39 73 69 96 89 II 8o 49 36 ii 19 03 51 77
 
 22
 
 09
 
 30 77 03 46 65 68 93 61 54 z8 61 68
 
 12
 
 21
 
 76
 
 13
 
 39
 
 73 85
 
 59 68
 
 53 66
 
 04
 
 60
 
 30
 
 10
 
 44 89 55 67 57 21
 
 63 38
 
 8o 13 77 42 76 97 95 85 98 17
 
 46
 
 99 85 50 92 69 51 27 44 40 92
 
 20 40 19 72 89 73 52 12
 
 84 74 69 25 03 59 91
 
 02
 
 30 76 81 6z 49 07
 
 48 46 6z 68 12
 
 16 98 04 61 64 27 86 93 25 00
 
 20
 
 29 96
 
 75 68 48 82
 
 20
 
 14
 
 20
 
 10 73 62 73 19 92
 
 18 85 76 06 52 68
 
 91 86 46 70 67 68 00 76 64 85 26 32 71 57 99 51 81 14 35 II 15 17 24 78 76 49 97 56 11 76 04 47 18 85 z6 04 92 27 28 47 61 o8 89 81 zi
 
 o6 69 53 91
 
 87 22
 
 19 99 97
 
 63 55 38 31 97 56 43 15
 
 4 6o 52 5
 
 2 17 5
 
 09 14 61 09 91 93 19 58 85 24 35
 
 54 14 65 59 28 19 77
 
 12 z8
 
 zi
 
 09 57 74 70
 
 76 46 II 99 85 6o 39 22
 
 8z 72
 
 58 83 54
 
 z6 21
 
 64 40 56 72 0! 90 49 85 88 19 37 37 04 79 64 II 83 4 94 64 67 54 io 88
 
 16
 
 96 27 94 42
 
 16 53 z8 78 36
 
 92
 
 52
 
 12
 
 83 97 II s 15 3 1 -1 28 94 54 6o 39 16 16 33 33 46 6 3 37 15 89 94 15 97 16 54 32 76 86 21 25 i8 6o 48 64 6i 48 63 10 76 58 38 98 R 17 32 2 3 33 23 89 45 08 44 6o 15 84 (D 7II 44 39 98 68 io 66 69 87 95 87 65 70 5 85 83 12 33 43 24 96 56 97 63 97 17 83 00 6o 65 09 44 77 96 43 40 11 36 44 33 05 40 43 42 91 65 62 83 53 05 20 53 70 52 51 62 2 3 74 76 96 88 83 69 o8 24 6z 95 47 58 6z 35 22 35 72 22 73 91 58 76 56 87 00 6z io 22 06 84 03 83 87 00 87 76 6z 31 65 91 30 71 56 08 3 03 74 8 o 77 40 59 16 0 7 72 96 25 59 35 69 71 3! 20
 
 66 86 09 37 07 97
 
 91 18 92 47
 
 2 02 20 24 22 86 73 49 00 42 27 44 23
 
 83
 
 37 35
 
 37 96
 
 25 34
 
 88 84 00 33 35 30 61 34 35
 
 1 61 9 70 84 83 87 67 67 22 03 17
 
 24
 
 14
 
 6o 8o 42 08 57 24 58 44 33 75
 
 83 17 29 54 05 33 89 43 12 15
 
 78
 
 69 78 10 02 43 10
 
 6o 76 06 64
 
 41
 
 91 14 26
 
 98 34 65 28 37 6o 92
 
 8o 30
 
 9z
 
 91 30 17 41 57 41 46 II 68 77
 
 90
 
 69
 
 93 73 95 32 72 64 87
 
 68 52 52 oit 78 77 63
 
 29 21
 
 26
 
 90
 
 55 27 74 48 41 02 o6 42 87
 
 66 09
 
 87
 
 o8 8 92 67 o8 93 19 72 47 89 29 02
 
 62 99 81
 
 21
 
 17 68 03 12 8z 82 o6
 
 67
 
 40
 
 53 19 8z 41 93 94 16 61
 
 65 33 63 48 52 68 66 89 14 94 45 o6
 
 21
 
 04 07 6o
 
 38 88
 
 73
 
 22 21
 
 40
 
 22
 
 6z 64 03 95 45 of 34 76
 
 52
 
 42
 
 63 8 67
 
 72 79
 
 10
 
 36 33 04
 
 21
 
 o6
 
 14 63
 
 04
 
 97 99 94 13 30 95 II 49 90 86 51 55 90 19 39 67 88
 
 9 98
 
 4 67
 
 39 76 53 38 70 56
 
 90 07 47 04 48 83 90 36 97 56
 
 02
 
 74 55 67 43 72 63 40 03 07 47 02 62 20
 
 19
 
 45 23 8o 99
 
 16 89 52 85 91 00 z8
 
 86 39 33 73 48 14 91 z6
 
 75 58 30 54 52 of
 
 68 33 95 70 02
 
 00 20
 
 41 30 44 70
 
 72 49 7
 
 29 33
 
 48 47 52 88 7 46 5 36
 
 47 21 86 6i 0 8: 89
 
 22
 
 85 47 95 Jo
 
 22
 
 76 01 23 44 65 92 15 17 55 09 83 z6 o8 62 78 39 54 55 19 57
 
 02
 
 z6 44 58 40 o6 59 12
 
 04 17 69 65 31 65 58 01 85 90 74
 
 TABLE 28. RANDOM NORMAL DEVIATES Each number in this table is an independent sample from the normal distribution with zero mean and unit variance. 0.7691 -0.5256 0.9614 0.3003 1•1853
 
 1.0861 P5109 0-3639 1.7218 -1.7850
 
 0'2411 0'2614 1'0204 1'0167 PI2I1
 
 -0•2628 0'3413 0.8185 -0-1489 0.4711
 
 0.2836 - P7888 -0. 4654 0.7887 0.9046
 
 -0.9189
 
 -0.2884
 
 0.9222 0.0989 -0.8744
 
 -0'1051 -0'2588 -0'7164 0•1110 -0'3172
 
 -0'7442
 
 P9225 0.8966
 
 -0'2911
 
 - P4II9 - p2664 -0'4255 -0'2201
 
 1'5256
 
 0•6820
 
 0 '4547 0.0213
 
 0.8897 0.4814 -0.4014 -0.9607 P258o
 
 1.8266 0.8452 - p4908 0.2071
 
 -0 ' 40 70
 
 -0'5601
 
 -0'2685
 
 -
 
 -0'3797 -0.9013 1.6169
 
 -0.6995 -0.0617 1.2541 P4531 -0.8250
 
 0.8620 24288 0.0450 0.2532 -0.9363
 
 -0.8698 0.4890 -0.1291 0.1939 0.2668
 
 -0.1144 -0.0339 -0.1236 01285 -0.7122
 
 0.5823 0.7836 0.1600 1.0383 0•1671
 
 0.1137 0.4104 -0.3707 -0.4590
 
 -1.1334 0.2755 0.3674
 
 2'1522
 
 0'2133
 
 0'3379 0. 34-44 -0-3912 -0-5941 -0.0768
 
 - V06 37 -0 ' 0948
 
 0. 4198 -1•8812 0. 0778 0.8105
 
 23696 -0.3968 1.1401 -0.1992 0.7894
 
 -0.5056 -0.5669 0.7913 0- 9914 1.7055
 
 -1.9071 -0-3260 0.4862 -0.8312 -1-9095
 
 0.7738 -I-3150 P2719
 
 I•I404 0'1964 -0'2309 0'9651 - P1403
 
 P 6399 0.7164 1.9058 -0'5440 -1'3378 1'5939
 
 0.7378 p4320 0.5276 -2.1245 P6638 -0.0429 -0'1320 -0'2098 -0'1563 -0'8492 -1'8692
 
 -0'5447
 
 0.6299 -0.1507 - P1798 1.3921 I•1049
 
 P2474 P1397
 
 -
 
 P9211 0 '4393
 
 -0'4597
 
 0'7258
 
 I.4880 -0.4037 -1.1855 -0.0251 -0.4311
 
 PI002
 
 0'1176
 
 -0'6501
 
 1'7248 -1'0621 0'9133
 
 -0.456o 0.8729 0.3646 0.1885
 
 -0-9633 0.6117 1.0033 2.1098 0.8366
 
 P2725 1.0492 -1.1969 0.2146 -0'3594
 
 P2193 0'2024 0'4722 -0'2230 -0'4389
 
 - P5498 -I•5027 -16761 0. 1433 0 '7375
 
 -0.5608 -2'6278
 
 0.7064
 
 -0.5104 -0.6110
 
 0'2239 -0. 6841 0'2177
 
 0•5802 0.0556 2'0196
 
 -18613 0.8646 - V0438 0.2533 -0. 4953
 
 0'8258
 
 0.6571 0.0679 0.9970 0.6705 -0.1985
 
 -0'0917
 
 0•9517 0'7272 -0'2223
 
 0.5697 0.4869 -1.3296 -0.1765 -0.2777
 
 -0.7707 0.3990 0. 9649 -1'5953 -0.0382
 
 -0.2558 - P5290 -0.7695 0.0153 -2.6190
 
 -0.3052 - P2785 -0.3767 •o193 - P6919
 
 -0.1825
 
 0.2461 0.8169 0.0790 0.7225 0.9014
 
 -0'4089
 
 0.3838 0.5219 0 '3779 -1'9919
 
 -0.1679 -0.004I -0.3111 0.7127
 
 0.1428
 
 -0'3749
 
 0.0722 -o-7849
 
 -0'6237 1.5668 0.45 21
 
 0.1263 0.1663 -0.2830 1.2061 -1.4135
 
 P0313 1'8116 - P9062 2'2544 -0'6327
 
 0. 5464 -1.4139
 
 0.1833 -1.6417
 
 -0'4379
 
 -0'3937 -0.0851 -0.2088
 
 0.2889 -0. 1720
 
 0.3946 -0. 0909
 
 0'7673 - P9853
 
 p6459 0.8910 P1387 0.6764
 
 0. 2794
 
 0'8007
 
 -0/296 -0.5887
 
 0.2325
 
 - P0242 - P4929
 
 -0'1122
 
 -
 
 1.2370
 
 0'7125 P1813 -0'8344 -0'8015
 
 0.6259
 
 -1.4433
 
 -0'3211
 
 -1.2630
 
 0•7890 - P2187 -2.6399
 
 -0'7494
 
 -0.9592 - 1.1750 -1.2106
 
 -0-7991 1.0306
 
 -0'6252
 
 0'4124
 
 -
 
 -1.5349 0 '3377
 
 -0'7473
 
 0.4011 -0.2193
 
 -0'5749
 
 -0.4263 -0.1614 0.5114
 
 -0'3337
 
 -0. 5094 0.2414 -0.5231 1.8868 0. 6994
 
 0'2013 P3071 - P2255 -0•6109 -0'7522
 
 0.4899 0.9586 -1' 2 947 0.5067 0.5021
 
 1.3002
 
 0'4787 -11240 - 2'0142 -0/707 0'1095
 
 -0'0994
 
 1'0811 P5762 0/726 -0'8558 1'3333 -0.1512 -0-0416 P1621 -o.2743
 
 v7767 - p8o3I 2.1364 0.1295 0. 2454
 
 1.8961 0.3863 -0.0943 -0.7132 0.248,
 
 V1558
 
 -0-0814
 
 -0'7431
 
 P4721
 
 0.5274
 
 -0'3755
 
 -0-3730 0.1049 -0.1819 I.2704 0.6109
 
 -0.8716 0.36o2
 
 1'3133 0.4986 -12309 0.2453 -i•1675
 
 0•1115 0.6226
 
 -0'2521 -0•5518 -11584
 
 79
 
 -0.6933
 
 -
 
 -1.1761 -0.5156 -0.5671
 
 P2094 1'0500 0'6314 P5742
 
 0.6715
 
 -0'7459
 
 0. 1543 -0.1108 0.5970 0.0842 - P5805
 
 -0. 2542 -0-4762 0.9149 -0.8178 -0.5567
 
 0. 0945
 
 0.7350 - P6734 -1.8237
 
 -1'0210
 
 P6674 -0.8427 0.0398 0.5787
 
 1'5481
 
 0.2236
 
 -0.8393 -0.2523 1.4846 0.8527 0 '5541
 
 - 0 • 7841 -0'9212 -2'4283 0'0046
 
 -0.3490 -0.6525 -10642 -i.o6o6
 
 0 '4431
 
 0 '9379
 
 3'4347 0.7703 -0.6135 P3934
 
 P0013 0'8129
 
 -0.4194 -0.0173 0.5664 -0.7216 -0'3349
 
 0.8688 I.41 I0 -
 
 P40II 0'6272 P2943
 
 P4732 2'1097 0'5529 -0'1047
 
 0.6484 0.9714
 
 0.0982 -0.6845 P6357 P2928 0.1785
 
 -0.2936 -1.1208 0.7254 -1•1351 P4302
 
 0.6226 0.6017 1.1673
 
 -0.0962 -11846
 
 - P4375 po786
 
 0 '5354 0.6161
 
 0.6177 -0.4680 0.5638 0.3650 -0.1867
 
 1.0176 -0.6125
 
 -0.0772 0.9166 p4564 -0.2898 1.0821
 
 1.1889 p5315 -0.7601 -0.2105 -0.6962
 
 0 '4598
 
 - P7724
 
 0.5089 P3761
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER If r is an observation from a binomial distribution (Table 1) of known index n and unknown parameter p, then, for an assigned probability C per cent, the pair of entries gives a C per cent Bayesian confidence interval for p. That is, there is C per cent probability that p lies between the values given. The intervals are the shortest possible, compatible with the requirement on probability. The tabulation is restricted to r < Zn. If r > Zn replace r by n - r and take 1 minus the tabulated entries, in reverse order. Example 1. r = 7,n = 12. Use n = 12 and r = 5 in the Table, which at a confidence level of 95 per cent gives 0.1856 and 0•6768, yielding the interval 0.3232 to 0-8144. The intervals have been calculated using the reference prior which is uniform over the entire range (0,1) of p. The entries can be used for any beta prior with density proportional to pa(1-p)b , where a and b are non-negative integers, by replacing r with r + a and n with n + a + b. If r + a is outside the tabulated range, replace r + a with n - r + b and n with n + a+ b, and take 1 minus the entries, in reverse order. Example 2. r = 7, n = 12. If the prior has a = 2, b = 1, then r +a = 9, n+ a + b = 15 and n - r + b = 6. Use n = 15
 
 posterior probability density of p
 
 ,
 
 p
 
 (This shape applies only when 0 < r < n. When r = 0 or
 
 r = n, the intervals are one-sided.) and r = 6 in the Table, which at a confidence level of 95 per cent gives 0.1909 and 0.6381, yielding the interval 0.3619 to 0.8091. When n exceeds 30, C per cent limits for p are given approximately by
 
 ± x(P)[i(1 - P)/n]1 where /5 = r/n, P = 1(100 C) and x(P) is the P percentage point of the normal distribution (Table 5). -
 
 CONFIDENCE LEVEL PER CENT
 
 90 n =1 r=0
 
 95
 
 99
 
 99'9
 
 0.0000
 
 0.6838
 
 0.0000
 
 0.7764
 
 0.0000
 
 0.9000
 
 0.0000
 
 0•9684
 
 0'0000
 
 0'5358
 
 0'0000
 
 0'6316
 
 0. 0000
 
 0'7846
 
 0•0000
 
 0'9000
 
 '1354
 
 .8646
 
 .0943
 
 .9057
 
 -0414
 
 '9586
 
 •0130
 
 •9870
 
 0.0000
 
 0'4377 •7122
 
 0.0000 -0438
 
 0.5271 •7723
 
 0.0000 .0159
 
 0•6838 •8668
 
 0.0000 -0037
 
 0'8222
 
 '0679
 
 r=0
 
 0. 0000
 
 0. 4507
 
 0.0000
 
 0. 6019
 
 0•0000
 
 0. 7488
 
 •0425 •1893
 
 0•3690 •6048
 
 0.0000
 
 I
 
 •0260
 
 •6701
 
 •0083
 
 •7820
 
 •0016
 
 '8788
 
 •8107
 
 •1466
 
 '8534
 
 •0828
 
 •9172
 
 -0375
 
 .9625
 
 0.0000
 
 0. 3187
 
 0.0000
 
 0. 3930
 
 0'0000
 
 •0302
 
 •5253
 
 -0178
 
 •5906
 
 •0052
 
 05358 •7083
 
 0.0000 .0009
 
 0•6838 •8186
 
 •I380
 
 •7
 
 •I 048
 
 •7613
 
 *0567
 
 '8441
 
 •0242
 
 .9133
 
 n
 
 =2
 
 r =0
 
 n
 
 =3 =
 
 n=
 
 0
 
 4 2
 
 n
 
 '9377
 
 =5 =0
 
 2
 
 8o
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT
 
 90
 
 r=0
 
 99
 
 95
 
 n=6 '4641
 
 0.0000 '0133
 
 •22 53
 
 •6317 '7747
 
 •0805 '1841
 
 •5273 -6846 •8159
 
 r= 0
 
 0•0000
 
 0'2505
 
 0.0000
 
 0'3123
 
 0•0000
 
 0 '4377
 
 I
 
 •0185
 
 •0105 •065o •1488
 
 '4759 •6210 '7459
 
 •0028 .0331 .0934
 
 .5913 •7174 .8227
 
 0.0000 •0004 •0129 .0495
 
 0.5783 •7113 •8115 '8912
 
 0. 0000
 
 I
 
 n=
 
 2
 
 '02 31 '1076
 
 3
 
 0.2803
 
 99'9
 
 0'3482
 
 0'0000
 
 0'4821
 
 0'0000
 
 o'6272
 
 •0037 •0421 •1177
 
 •6452 •7769 •8823
 
 -0006 •0171 •0639
 
 •7625 •8616 •9361
 
 7 2
 
 •0878
 
 3
 
 •1839
 
 '4155 •5677 •7008
 
 r= 0
 
 0'0000
 
 0'2257
 
 0'0000
 
 0'2831
 
 0'0000
 
 0'4005
 
 0.0000
 
 0'5358
 
 I
 
 •0154 -0739 '1549
 
 •3761 '5152 .6388
 
 •0086 '0542 •1245
 
 '4334 •5676 •6854
 
 .0022 -0271 •0769
 
 '5451
 
 '2514
 
 '7486
 
 '2120
 
 '7880
 
 •1461
 
 •6651 •7679 '8539
 
 •0003 -0103 •0400 .0884
 
 •6651 '7645 •8463 •9116
 
 r=0
 
 0.0000
 
 0'2057
 
 0.0000
 
 0.2589
 
 0.0000
 
 0•3690
 
 I
 
 '01 32 •0638 '1337
 
 '3435
 
 '4714 •5863
 
 '0073 •0464 •io68
 
 '3978 •5224 '6332
 
 •0018 •0229 '0652
 
 •5053 •6192 '7184
 
 '2165
 
 •6901
 
 •1816
 
 '7316
 
 '1237
 
 '8039
 
 0.0000 •0003 •0085 '0333 '0739
 
 0.4988 '62 37 •7212 •8032 •8714
 
 0'1889
 
 0•0000
 
 0'2384
 
 0.0000
 
 3 4
 
 '1175 •1899
 
 •0063 •0406 .0934 •1586
 
 •3675 '4837 •5880 •6818
 
 •0016 '0197 •0564 .1071
 
 0'0000 '0002
 
 0'4663
 
 •3160 '4344 '5416 .6393
 
 0•3421 '4706
 
 2
 
 0'0000 '0115 •0560
 
 '5788 -6741 '7578
 
 •0072 •0284 •0632
 
 -5866 •6817 •7627 •8320
 
 5
 
 0'2712
 
 0'7288
 
 0.2338
 
 0'7662
 
 0'1693
 
 0'8307
 
 0'1100
 
 0'8900
 
 r=0
 
 0'0000
 
 •0102
 
 0.1746 •2926
 
 0'0000
 
 I 2
 
 '0499
 
 3 4
 
 •1047 •1691
 
 5
 
 0'2411
 
 =8
 
 n
 
 2
 
 3 4 n
 
 =9 2
 
 3 4
 
 n
 
 = Io r=0 I
 
 n=
 
 II 0'2209
 
 0'0000
 
 01187
 
 0.0000
 
 .4027 .5030 '5951
 
 -0055 '0360 •0829 '1407
 
 '3415 '4502 '5485 '6377
 
 .0013 •0173 '0497 .0943
 
 '4402 '5431 '6344 '7156
 
 •0002 •0062 .0248 '0551
 
 0'4377 '5534 -6456 •7252 '7943
 
 0.6803
 
 0'2070
 
 0'7191
 
 0'1488
 
 0'7878
 
 0'0958
 
 0'8539
 
 See page 8o for explanation of the use of this table.
 
 81
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT
 
 90
 
 99
 
 95
 
 99'9
 
 rt = 12 r
 
 =0
 
 0•0000
 
 I
 
 •0091
 
 2
 
 '0449
 
 3 4
 
 '0944 •1524
 
 •5564
 
 5 6
 
 0.2169 •2870
 
 I
 
 0.1623 •2724
 
 0.0000 •0049
 
 0.2058 •3188
 
 0.0000 •0012
 
 '3753 '4695
 
 •0323 '0745 •1263
 
 •4210 '5138 •5987
 
 •0154 '0443 •0841
 
 0'6374 '7130
 
 0.1856 .2513
 
 0•6768 '7487
 
 0.0000 •0082
 
 0.1517 •2548
 
 0.0000 •0044
 
 2
 
 -0409
 
 3 4
 
 •1386
 
 '3514 '4400 •5223
 
 •2604
 
 0.0000
 
 0.2983
 
 0.0000
 
 0.4122
 
 '4134 •5113 '5987 •6773
 
 •0002 •0055 .0219 •0488
 
 •5234 •6128 •6905 '7588
 
 0.1326 •1887
 
 0 '7479
 
 •8113
 
 0.0848 •1290
 
 0.8188 •8710
 
 0.1926 •2990
 
 0.0000 . 001 I
 
 0.2803 '3896
 
 0.0000 •0001
 
 0.3895
 
 •0293 •0676 '1146
 
 '3953 •4832 '5639
 
 •0139 •0400 '0759
 
 •4829 •5666 '6424
 
 -0049 •0196 '0437
 
 0'5994 •6717
 
 0-1682
 
 0.6388
 
 0.1195
 
 •7082
 
 •1698
 
 0.7112 '7738
 
 0.0759 '11 54
 
 0'7855
 
 •2274
 
 n = 13 r
 
 =0
 
 5 6 n = 14 r=0 I
 
 .o859
 
 0.1971
 
 '4963 •5828 '6585 '7257
 
 '8384
 
 0'1423
 
 0'0000
 
 0.1810
 
 0.0000
 
 0.2644
 
 0.0000
 
 0.3691
 
 •0075
 
 '2394
 
 .0375 •0788
 
 .3303 '4140
 
 .0040 -0267 •0619
 
 •1271
 
 .4921
 
 '1048
 
 •2814 -3726 '4559 '5329
 
 .0009 -0126 '0364 •0691
 
 •3684 '4574 '5376 •6106
 
 -0001 '0044 •0177 '0396
 
 •4718 '5554 •6290 '6948
 
 o•i8o6
 
 0-1537 '2075 •2659
 
 0.6045 '6715 '7341
 
 0.1087 '1542 '20 51
 
 0.6775 •7388 '7949
 
 0.0687 •1043 '1457
 
 0 '7539
 
 -3000
 
 0•5654 '6346 •7000
 
 r=0
 
 0'0000
 
 0'1340
 
 0.0000 •0009
 
 0.3506
 
 •2257
 
 0.1708 •2658
 
 0.0000
 
 •0069
 
 0.0000 '0037
 
 0.2505
 
 i 2
 
 -0346
 
 -3116
 
 3 4
 
 •0728
 
 '3909
 
 '1173
 
 '4650
 
 •0246 -0570 '0966
 
 '3522 '4315 '5049
 
 '0115 .0334 '0634
 
 '3493 '4344 .5113 •5817
 
 •0001 '0040 •0162 •0361
 
 '4495 '5303 •6017 •6660
 
 0.1666
 
 0'5349 •6012 •6641
 
 0.1415
 
 0'5736 •6381
 
 0'0997 .1413
 
 0.6465
 
 0.0627
 
 . 1909
 
 •7063
 
 .0951
 
 '2442
 
 •6988
 
 •1876
 
 -7615
 
 •1327
 
 0.7242 '7770 •8246
 
 2
 
 3 4 5 6 7
 
 '2383
 
 •8070 '8543
 
 n = 15
 
 5 6 7
 
 •2197 •2762
 
 See page 8o for explanation of the use of this table.
 
 82
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90
 
 99
 
 95
 
 99'9
 
 n = 16 =
 
 0
 
 0.0000
 
 0.1267
 
 0.0000
 
 0.1616
 
 0.0000
 
 0.2373
 
 •oo64
 
 •2135
 
 2
 
 •0321
 
 •2949
 
 3 4
 
 •0676 .1090
 
 .3703
 
 •0034 •0228 •0528
 
 '4408
 
 •o895
 
 •2518 '3340 .4095 '4797
 
 •0008 •oio6 •0308 '0585
 
 •3320 '4135 '4874 '5552
 
 0.0000 •0001 .0037 •0148 .0332
 
 0'3339
 
 i
 
 5 6 7 8
 
 0.1546
 
 0.5075
 
 0.1311
 
 -2037 '2558 •3108
 
 '5710
 
 0'5455 •6076
 
 •6314 •6892
 
 •1767 •2258
 
 •2781
 
 •7219
 
 o•o920 •1303 •1728 -2193
 
 o•618o •6762 .7304 •7807
 
 0.0576 •0873 •1217 •i6o6
 
 0•6964 •7486 •7962 '8394
 
 It = 17 r= 0
 
 0.0000
 
 0.1201
 
 0.0000
 
 i
 
 •006o
 
 -0032 •0492 .0834
 
 0•1533 .2393 .3175 •3897 '4568
 
 o•0000 •0007 '0099 •0286 '0544
 
 0.2257 •3164 '3945 '4656 .5310
 
 o•0000 •0001 .0034 '01 37 .0307
 
 0.3187 •4105 •4860 '5533 '61 44
 
 0.5200 '5798 •6366 •6905
 
 0.0854 •1209 •i6oi •2030
 
 0.5917 •6483 .7013 '7508
 
 0.0533 •0807 •1124 •1481
 
 0.6703 •7217 -7690 -8124
 
 0.2152 •3021
 
 0.0000 •0001
 
 0.3048
 
 -0031 •0128 •0286
 
 .3934 '4665 .5317 '5912
 
 r
 
 2
 
 •0300
 
 3 4
 
 •0631 •1017
 
 •2025 .2799 •3516 '4189
 
 5 6 7 8
 
 0.1442
 
 0.4827
 
 0.1221
 
 '5435
 
 •0213
 
 •6664
 
 '4292 .5073 .5766 .6393
 
 •1899 •2383 •2893
 
 •6o17 '6574
 
 •1644 -2099 -2583
 
 0.1141 •1926 •2663
 
 0.0000 •0030 . 0199
 
 0.1459
 
 0.0000
 
 2
 
 0.0000 •0056 •0281
 
 •2279 '3026
 
 •0007 •0092
 
 3 4
 
 '0592 '0953
 
 '3348 '3991
 
 .0461 •0781
 
 '3716 -4360
 
 -0267 •0508
 
 '3771 *4455 •5086
 
 5 6 7 8 9
 
 0.1351
 
 0.4602
 
 0.1142
 
 0.4967
 
 0 '0797
 
 0'5674
 
 •1778 .2230 -2705 •3201
 
 •5185 '5745
 
 -1537 •1962
 
 •6282
 
 •2412
 
 •6799
 
 •2886
 
 '5543 •6092 -6615 . 7114
 
 •1127 '1492 •1889 •2316
 
 •6224 '6741 •7228 •7684
 
 0.0496 '0750 .1044 '1374 •1738
 
 0.6459 '6964 '7432 -7864 •8262
 
 r= 0
 
 0.0000
 
 0• I087
 
 0'0000
 
 0'1391
 
 I
 
 -0052
 
 •1836
 
 •0028
 
 •2175
 
 2
 
 •0264
 
 '2540
 
 •0187
 
 •2890
 
 '3551 •4170
 
 0•0000 •0006 •0086 '0251 .0476
 
 0.2057 •2891 •3612 •4271 •4880
 
 o.0000 •0001 •0029 -0119 •0267
 
 0.2920 '3776 '4484 •5117 -5696
 
 0'4754
 
 0.0747 .1056 '1397
 
 0'5449
 
 '5984 •6488
 
 0.0463 •0701 '0974
 
 o•6231 •6726 '7187
 
 •6964
 
 •1281
 
 •7615
 
 '7413
 
 -1619
 
 -8013
 
 n = 18 r=0 I
 
 n = 19
 
 3 4
 
 '0557 -0897
 
 '3194 •3810
 
 .0433 .0734
 
 5 6 7 8 9
 
 0•1271 •1672 •2096 •2540 .3004
 
 0.4396 . 4957 '5495 •6014 •6514
 
 0.1073 .1444 '1841
 
 '5309 •5839
 
 '2261
 
 •6346
 
 •1766
 
 •2704
 
 •6832
 
 •2164
 
 See page 8o for explanation of the use of this table.
 
 83
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90
 
 95
 
 99
 
 99'9
 
 n = 20 r=0
 
 0.0000
 
 0. 1039
 
 0.0000
 
 0.1329
 
 0.0000
 
 0'1969
 
 0'0000
 
 0.2803
 
 I
 
 •0049
 
 '1 754
 
 •0026
 
 2
 
 '0249 •0526
 
 •2428 '3055
 
 •0176
 
 '3645
 
 .0409 '0692
 
 •0006 •oo8i •0236 '0448
 
 •2771 •3466 •4101 '4690
 
 •000i •0027 •0112 •0251
 
 -3630 '4315
 
 -o847
 
 •2080 •2766 •3401 '3995
 
 '5494
 
 5 6 7 8 9
 
 0'1200
 
 0•4208
 
 0'1012
 
 0 '4557
 
 •I578 .1 977 •2395 -2828
 
 '4747 •5266 .5767 .6253
 
 .1361 •1734 •2129 '2544
 
 '5093 5606 •6097 •6569
 
 0.0703 '0993 •1312 •1659 '2030
 
 0.5241 .576o •6253 •6717 •7158
 
 0.0435 •0657 .0913 •1199 .1514
 
 0.6016 •6501 '6955 '7379 '7775
 
 io
 
 0'3281
 
 0.6719
 
 0'2978
 
 0•7022
 
 0.2425
 
 0'7575
 
 0.1856
 
 0•8144
 
 0
 
 0.0000
 
 0.0994
 
 0.0000
 
 0.1273
 
 I
 
 -0047
 
 •0025 •0167
 
 '1994 '2652
 
 0.0000 •0006
 
 -3262 '3834
 
 •0223 '0423
 
 0.1889 -2661 '3331 '3944 '4514
 
 0.0000 •0001 •0026 '0105 •0236
 
 0.2695 '3494 . 4159 '4757 •5306
 
 0.0664 '0937 •1238 •1563 '1912
 
 0.5048 '5552 •6030 •6485 '6917
 
 0.0409 •0619 •0859 •1128 .1423
 
 0.5815 -6290 '6735 •7153 '7546
 
 3 4
 
 '4931
 
 n = 21
 
 r=
 
 n=
 
 2
 
 •0236
 
 •1679 '2325
 
 3 4
 
 •0498 •0802
 
 •2926 '3494
 
 •0387 .0655
 
 5 6 7 8 9
 
 0.1136 ' 1493 ' 1870
 
 0.4035 '4554
 
 0.0957 '1287 '1639
 
 I0
 
 •0076
 
 •2265
 
 '5055 '5539
 
 •2675
 
 •6007
 
 •2402
 
 0.4376 '4894 '5389 •5866 •6324
 
 0.3099
 
 0.6461
 
 0.2809
 
 0•6766
 
 0.2281
 
 0.7328
 
 0.1742
 
 0.7914
 
 0
 
 0.0000
 
 •0044
 
 0'0000 '0005
 
 •0224
 
 '0473 •0762
 
 •2809 '3354
 
 •0621
 
 '2547 '3134 -3686
 
 -0072
 
 3 4
 
 0'0000 '0023 •0158 0367
 
 0'1221 '1914
 
 2
 
 0'0953 •1611 '2231
 
 0.1815
 
 I
 
 '2557 •3206 '3798 '4350
 
 0-0000 •0001 •0024 .0099 •0223
 
 0.2594 '3369 •4014 '4594 •5129
 
 5 6 7 8 9
 
 0.1079
 
 0.3875
 
 0.0908
 
 0.4209
 
 0.0628
 
 -1418 •1 775
 
 '4376 '4859
 
 '4709
 
 .5189 •5651 •6096
 
 •0887 •1171 '1478 •1807
 
 0.4868 '5358 -5823 -6267 -6690
 
 0.0387 •0584 •0811 •1064 -1341
 
 0.5626 •6091 -6528 '6939 •7328
 
 I0
 
 0.7094 '7479
 
 0-1641 '1963
 
 0.7693 •8037
 
 •2011
 
 22
 
 r=
 
 ii
 
 '0211
 
 -0401
 
 •2148
 
 '5327
 
 -2536
 
 -5781
 
 -1220 •1554 '1905 -2274
 
 0.2937 '3351
 
 0.6221
 
 0.2659
 
 0'6526
 
 0.2154
 
 '6649
 
 '3059
 
 '6941
 
 '2521
 
 See page 8o for explanation of the use of this table.
 
 84
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90 II =
 
 95
 
 99
 
 99'9
 
 23
 
 r=0
 
 0.0000
 
 I
 
 •0042
 
 2
 
 •0214
 
 0.0915 . 1547 •2144
 
 0.0000 •0022 .0150
 
 0.1173 •1840 •2450
 
 3 4
 
 .0451 -0726
 
 •2700
 
 .0349
 
 3016
 
 0.0000 •0005 •0069 •0200
 
 0.1746 •2465 •3089 •3663
 
 . 3225
 
 .0591
 
 '3548
 
 .0380
 
 *4197
 
 0.0000 •0001 •0023 •0094 •0211
 
 5 6 7 8 9
 
 0.1027
 
 0 '3728
 
 0.0864
 
 0.4053
 
 0.0597
 
 0.4700
 
 0.0367
 
 0'5448
 
 -1349 -1689 •2043
 
 '4211 *4678
 
 •1160 •1475
 
 '4537 •5005
 
 •5131
 
 •1810
 
 .5450
 
 '2411
 
 '5570
 
 •2160
 
 •5883
 
 '0842 -II 11 •1402 •1712
 
 .5176 •5629 •6062 •6476
 
 .0554 •0768 •1007 •1269
 
 •5903 •6331 .6736 .7119
 
 I0
 
 0.6872 •7251
 
 0.1551 •1854
 
 0.7481
 
 0.2791
 
 0.5998
 
 0.2524
 
 0.6302
 
 0.2041
 
 ii
 
 '3183
 
 •6413
 
 •2902
 
 •6707
 
 •2386
 
 /1 = 24 r=0
 
 0'woo
 
 0•0880
 
 0.0000
 
 0.1129
 
 0.0000
 
 I
 
 •0040
 
 •0021 •0143
 
 •1772
 
 •0005
 
 0.1682 '2377
 
 0.0000 •0001
 
 li
 
 0.2505 •3252 •3878
 
 *4442 '4963
 
 •7824
 
 2
 
 •0204
 
 •1489 •2063
 
 •2360
 
 •0065
 
 •2981
 
 •0022
 
 3 4
 
 '0430 •0692
 
 '2599 •3106
 
 .0333
 
 •2906
 
 •0191
 
 '0090
 
 •0564
 
 •3420
 
 •0362
 
 '3537 '4055
 
 0.2414 •3142 '3753 '4300
 
 •0201
 
 •4807
 
 5 6 7 8 9
 
 0.0980
 
 0.3591
 
 0.0824
 
 0'3909 '4377
 
 0.0568 '0799
 
 0.5280 '5725 '6145 '6543 •6920
 
 I() II
 
 •4828
 
 •1057
 
 '5447
 
 '5374
 
 '1724 '2056
 
 .5263 •5684
 
 '1333 •1627
 
 '5869 •6274
 
 0'0348 •0526 '0729 '0956 •1203
 
 0.2659
 
 0.5789
 
 0.2402
 
 12
 
 •3031 '3414
 
 -6193 •6586
 
 •2760 •3131
 
 0.6092 •6487 -6869
 
 0.1938 -2265 •2607
 
 0•6662 '7035 '7393
 
 0.1471 '1756 •2060
 
 0.7279 •7618 '7940
 
 = 25 r=0
 
 0'0000
 
 0'0848
 
 0.0000
 
 0'1088
 
 0'0000
 
 0' I 623
 
 0.0000
 
 0'2333
 
 '1435
 
 •0020
 
 •1708
 
 •0004
 
 '0195
 
 '1988
 
 •2276
 
 •0062
 
 •0411
 
 •2505
 
 •0318
 
 •2804
 
 •0182
 
 -0662
 
 '2995
 
 '0539
 
 '3301
 
 ' 0346
 
 •0001 •0021 •oo85 '0191
 
 •3040
 
 •0137
 
 '2295 •2880 '3419 '3921
 
 5 6 7 8 9
 
 0'0937
 
 0'3464
 
 0.0787
 
 0 '3775
 
 0'0542
 
 0'4395
 
 0.0332
 
 •4228
 
 •0764
 
 •4846
 
 •0501
 
 •ioo8 •1271 '1551
 
 •5276 -5688 -6084
 
 •0694 •0910 -1145
 
 0.5122 '5557 '5969 •6360 •6731
 
 0•1846 •2156 •2480
 
 0.6464 •6830 •7182
 
 0.1398 •1668 '1955
 
 0.7085 •7421 '7741
 
 I
 
 2
 
 3 4
 
 •1287
 
 •1610 '1 948 '2297
 
 '0038
 
 •4058 •4510 '4948
 
 •1106 •1407
 
 -1230 '1 539 -1861
 
 '3916
 
 •1056
 
 '4353 '4778
 
 '1344 '1646
 
 •2194
 
 •5191
 
 •1962
 
 '4665 •5088 '5497
 
 I0
 
 0.2538
 
 0.5594
 
 II
 
 .2893
 
 12
 
 '3257
 
 '5986 .6369
 
 0.2291 •2632 •2983
 
 0.5894 •6279 •6654
 
 0'4543
 
 '5011
 
 See page 8o for explanation of the use of this table.
 
 85
 
 •3631
 
 •4166 •4660
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT
 
 n
 
 90
 
 = 26 r=
 
 99
 
 95
 
 99.9
 
 0
 
 0'0000
 
 0.0817
 
 0.0000
 
 0.1050
 
 o•0000
 
 0.1568
 
 I
 
 -0037
 
 •1384
 
 •0019
 
 •1649
 
 '0004
 
 '2219
 
 •00005
 
 '2944
 
 2
 
 •0187
 
 3 4
 
 .0394 •0634
 
 •1919 •2418 •2892
 
 .0131 •0305 •0516
 
 -2198 •2709 '3190
 
 •0059 .0174 .0331
 
 •2786 •3308 '3796
 
 •0020 •008, •0183
 
 .3519 '4040 •4522
 
 5 6 7 8 9
 
 o•o898 '1179 "474
 
 0'3345
 
 0.0753 •1011 •1286
 
 0 '4973
 
 '1575 '1877
 
 '4696 •5115 .5517
 
 •2100
 
 '4618 '5019
 
 o•o518 '0731 •0963 .1214
 
 0'0317
 
 '1781
 
 0•3649 •4089 •4513 '4924
 
 0'4257
 
 •3783 •4206
 
 '5322
 
 •1481
 
 '5904
 
 '0478 •o663 •0868 •1091
 
 '5399 •5802 -6185 -6551
 
 10
 
 0•2429
 
 0'5411
 
 0'2190
 
 0'5708
 
 0•1762
 
 o'6276
 
 0.1332
 
 II
 
 '2767
 
 12
 
 -3114 '3470
 
 '5793 •6166 '6530
 
 '2515 •2850 •3195
 
 •6084 •6450 •6805
 
 •2057 •2365 -2686
 
 •6635 •6981 •7314
 
 -1589 -1861 •2148
 
 0.6899 •7232 '7549 •7852
 
 o•0000 •oo18 •0126 '0292 '0495
 
 0.1015 '1594 -2125 •2620 •3086
 
 o•0000 •0004 •0057 •0167 •0317
 
 0.1517 •2148 •2698 •3205 '3679
 
 o•0000 •00005 •0019 '0078 '0175
 
 0.2186 '2854 *3414 '3921 '4391
 
 0'3531
 
 0'0496
 
 0'4127
 
 0.0303
 
 0'4832
 
 -0700 '0922 '1162 .1417
 
 '4554 '4963 '5355 '5733
 
 '0457 •0634 •0829 '1043
 
 '5248 '5643 •6019 '6379
 
 13
 
 0.0000
 
 0.2257
 
 I 1 = 27
 
 r=0 2
 
 •0035 •0179
 
 3 4
 
 '0378 •0609
 
 0.0789 '1337 •1854 '2337 .2796
 
 5 6 7 8 9
 
 0.0861
 
 0.3235
 
 '1131 '1414 •1708
 
 '3658 •4069
 
 0'0723 *0970 ' 12 33
 
 -2014
 
 '4469 '4859
 
 '1509 •1798
 
 '3958 •4370 '4770 '5157
 
 10
 
 0.2328
 
 0.5239
 
 0.2098
 
 0'5534
 
 0.1685
 
 0.6098
 
 o.1272
 
 0.6722
 
 •2408
 
 '5900
 
 •1966
 
 '6450
 
 '1516
 
 '7051
 
 -2260 -2565
 
 •6790 •7118
 
 '1775 •2048
 
 '7365 •7665
 
 o•0000 •0004
 
 0•1468 .208 I
 
 0.0000
 
 0.2119 '2769
 
 I
 
 II
 
 0.0000
 
 •2651
 
 •5611
 
 12
 
 '2983
 
 '5974
 
 13
 
 •3323
 
 •6330
 
 •2728 .3057
 
 •6257 •6605
 
 28 r=0
 
 0.0000
 
 0.0763
 
 o•0000
 
 0.0981
 
 I
 
 •0034
 
 '1293 '1793
 
 '0018
 
 '1543 •2057
 
 ii =
 
 2
 
 •0172
 
 3 4
 
 •0364
 
 5 6 7 8 9
 
 0.0828 •1087 -1358 •1641 '1934
 
 'o585
 
 '00004
 
 '0055
 
 '2615
 
 •0018
 
 .0475
 
 '2537 '2989
 
 •o16o '0304
 
 •3107 '3569
 
 •0075 •0168
 
 '3314 •3809 •4268
 
 0'3131
 
 0'0694
 
 0'3421
 
 0'0476
 
 0'4005
 
 0'0290
 
 0'4698
 
 '3542 '3941 '4329 '4708
 
 '0931 •1184 '1449 '1724
 
 .3836 •4236 •4624 '5004
 
 •o672 •o885 •1114 •1358
 
 '4420 •4819 •5203 '5572
 
 '0438 •0607 '0794 '0998
 
 •51o6 '5493 •5862 •6215
 
 .226 I '2705
 
 •0121 •0281
 
 See page 8o for explanation of the use of this table.
 
 86
 
 TABLE 29. BAYESIAN CONFIDENCE LIMITS FOR A BINOMIAL PARAMETER CONFIDENCE LEVEL PER CENT 90
 
 95
 
 99
 
 99.9
 
 n=28 I' = IO
 
 0.2235
 
 0.5078
 
 0'2013
 
 '2 545 •2863 •3188
 
 '5439 '5794 '6140
 
 .2310 '2615 -2930
 
 '3520
 
 '6480
 
 '3253
 
 r=0
 
 0.0000
 
 I
 
 0'0739 •1253
 
 0'0000 '0017
 
 "737
 
 •0116
 
 3 4
 
 •0032 •0166 •0350 •0564
 
 5 6 7 8 9 10
 
 II 12
 
 13 14
 
 0'1615
 
 0'5929
 
 0.1217
 
 0.6553
 
 .5727 •6075 .6415 .6747
 
 -1884 •2164 .2455 •2757
 
 -6274 •6608 •6931 '7243
 
 '1450 •1697 '1957 .2229
 
 .6877 •7188 '7486 '7771
 
 0'0950
 
 0'0000
 
 0.1423
 
 0'0000
 
 0.2057
 
 •1494 •1993
 
 •0004 '0052
 
 •2018 '2 537
 
 0.5369
 
 n=29 2
 
 II
 
 •00004 •0017 -0072 -016i
 
 •2689 •3220 '3703 '4151
 
 '2190
 
 •0270
 
 •2458
 
 '0154
 
 '3016
 
 •2621
 
 -0458
 
 •2898
 
 •0292
 
 '3465
 
 0.0797 •1046 •1307 .1579 •186o
 
 0.3034
 
 0.0668 '0896
 
 0.3317 •3720
 
 0.0458 •0645
 
 0.3890 '4295
 
 0.0279 '0421
 
 •1138
 
 •4110
 
 '0850
 
 '4684
 
 '0582
 
 '5349
 
 '4197 •4566
 
 .1393 .1659
 
 '4488 '4855
 
 •1070 .1304
 
 -5058 '5419
 
 '0762 '0957
 
 '5711 .6058
 
 0'2150
 
 0.4926 '5278
 
 0.1935
 
 0-5213
 
 o-155o
 
 0.5769
 
 0.1167
 
 0.6391
 
 '5562
 
 •1807
 
 '6107
 
 '1390
 
 '6710
 
 '5623
 
 '2219 '2512
 
 '5903
 
 '6435 '6752 •7060
 
 •1626 '1873 •2133
 
 •7017 '7312 '7595
 
 0'0000
 
 0.1997
 
 '3433 '3820
 
 0'4572
 
 '4970
 
 12
 
 '2 447 '2752
 
 13 14
 
 •3063 '3382
 
 •5962 '6293
 
 •2814 '3123
 
 '6236 •6560
 
 •2075 '2 354 •2642
 
 0'0000
 
 0.1380
 
 •0004 -0050
 
 .1958 •2463
 
 •00004 -0017
 
 •0338 '0543
 
 0'0000 '0016 '0112 '0260
 
 '1449
 
 3 4
 
 0'0716 '1213 '1683 •2123
 
 0'0921
 
 2
 
 0.0000 •0031 •0160
 
 •2385
 
 '0148
 
 '2929
 
 •0069
 
 •3602
 
 '2541
 
 '0441
 
 •2812
 
 •0281
 
 -3366
 
 -0155
 
 •4040
 
 5 6 7 8 9
 
 0.0768 -ioo8 •1260
 
 0.2942 '3330
 
 0.3219 •3612 '3991 '4359 '4717
 
 0.0441 •0621 •0818 •1030 '1254
 
 0'3780 •4176 '4555 '4921 '5274
 
 0.0268 -0404 'o56o •0732 '0919
 
 0'4452
 
 n= 3o r=0
 
 r
 
 '1933
 
 •2613 •3131
 
 .1522
 
 '3707 '4073
 
 '1792
 
 '4432
 
 0.0644 •0863 '1097 .1342 '1597
 
 10
 
 0.2071
 
 0'4782
 
 0'1862
 
 0.5066
 
 0'1490
 
 '2 357
 
 12
 
 '2649
 
 13 14
 
 '2949 •3254
 
 '5126 '5462 '5793 -6116
 
 '2136 '2 417 •2706 -3002
 
 '5407 '5740 -6065 '6383
 
 '1737 -1994 •2261 '2536
 
 0.5616 '5948 •6270 •6582 •6885
 
 0.1120 '1334 •156o •1797 '2045
 
 0•6236
 
 II
 
 15
 
 0'3566
 
 0•6434
 
 0.3306
 
 0•6694
 
 0.2821
 
 0.7179
 
 0.2304
 
 0.7696
 
 See page 8o for explanation of the use of this table.
 
 87
 
 •4842 -5213 -5568 '5909
 
 -6551 •6854 •7146 '7426
 
 TABLE 30. BAYESIAN CONFIDENCE LIMITS FOR A POISSON MEAN If xi , x2,... , is a random sample of size n from a Poisson distribution (Table 2) of unknown mean kt, and r = xi, then, for an assigned probability C per cent, the pair of entries when divided by n gives a C per cent Bayesian confidence interval for lt. That is, there is C per cent probability that /2 lies between the values given. The intervals are the shortest possible, compatible with the requirement on probability. Example. r = 30, n = 10. With a confidence level of 95 per cent, the Table at r = 30 gives 19.66 and 40.91. On division by n = 10, the required interval is 1.966 to 4-091. The intervals have been calculated using the reference prior with density proportional to 12-1, and the posterior density is such that nit= 1A, (Table 8). The entries can be used for any gamma prior with density
 
 posterior probability density of p
 
 0 (This shape applies only when r > 2. When r 1, the intervals are one-sided.)
 
 When r exceeds 45, C per cent limits for it are given approximately by
 
 exp(-mµ)µs-i ms /(s - 1)!,
 
 r
 
 n
 
 r2 x(P)-
 
 where m and s are non-negative integers, by replacing n with m + n and r with r + s. No limits are available in the where P = z (100 - C) and x(P) is the P percentage point of the normal distribution (Table 5). extreme case r = 0. CONFIDENCE LEVEL PER CENT 90
 
 99
 
 95
 
 99.9
 
 r =1
 
 0.000
 
 2. 303
 
 0.000
 
 2
 
 0.084 0'441 0.937
 
 3'932 5'479 6.946
 
 0-042 0.304 0.713
 
 2.996 4'765 6.40i 7'948
 
 0.000 0.009 0.132 0.393
 
 4'605 6.638 8 '451 10.15
 
 0.176
 
 I'509
 
 1•207 1.758 2-350 2.974 3.623
 
 9'430 10•86 12.26 13-63 14'98
 
 0.749
 
 2-785 3'46 7 4'171
 
 8.355 9.723 11.06 12.37 13.66
 
 11.77 13.33 14-84 16.32 17.77
 
 0.399 0•691 1.040 1.433 I.862
 
 19.83 21.39
 
 13 14
 
 4'893 5.629 6.378 7.138 7.908
 
 4'94 16.20 1 7. 45 18.69 19.91
 
 4'292 4'979 5-681 6.395 7.122
 
 16.30 17.61 18.91 20.19
 
 19.19 20.60 21.98 23-35 24.71
 
 2.323 2-811 3.321 3.852 4.401
 
 22.93 2 4'44 25.92 27.39 28.84
 
 15 i6 17 i8 19
 
 8.686 9'472 10.26 I1.06 1I.87
 
 21'14
 
 22.35 23.55 2 4'75 25-95
 
 20 21 22
 
 12.68 1 3'49 14.31 15.14 15.96
 
 27.14 28.32 29.5o 30.68 31.85
 
 11.66 12 '44 13.22 14.01 14.81
 
 3 4 5 6 7 8 9 10 II 12
 
 23 24
 
 2.129
 
 P172
 
 1.646 2.158 2.702 3.272
 
 0.000 0.001 0.042
 
 6.908 9.233 1 P24 13• II
 
 14.88 16.58 18.22
 
 2146
 
 3.864 4.476 5.104 5'746
 
 7.858
 
 22.73
 
 6'402
 
 26.05
 
 8.603 9'355 10-12 10.89
 
 23.98 25.23 27.69
 
 7.069 7'747 8.434 9.131
 
 27.38 28.7o 30.01 31.32
 
 4'96 5 5'545 6.137 6'741 7'356
 
 30.27 31.69 33.10 34'50 35-88
 
 28.92 30.14 31•35 32.56 33'77
 
 9.835 10.55 1 P27 11.99 12.72
 
 32.61 33'90 35-18 36 - 45 37'72
 
 7.981 8.616 9-259 9910 10.57
 
 37-25 38.62 39'97 4P32 42.66
 
 26'46
 
 88
 
 TABLE 30. BAYESIAN CONFIDENCE LIMITS FOR A POISSON MEAN CONFIDENCE LEVEL PER CENT
 
 90
 
 95
 
 r = 25
 
 16.8o
 
 33.02
 
 15.61
 
 26 27 28
 
 17-63 18 '47 19.31
 
 29
 
 20.15
 
 34.18 35'35 36.50 37-66
 
 16.41 17.22 18•03 18.84
 
 30
 
 2P00 2P85
 
 31 32
 
 33 34
 
 99 34'97 36.16 37'35 38'54 39'73
 
 99.9 38.98 40'24 41'49 42'74 43'98
 
 13'46 14.20 14'95 15.70 16'46
 
 11 . 24 i1.91 12-59 13.27 13.96
 
 44'00 45'32 46'64 47'96 49'27
 
 38.81
 
 19'66
 
 40.91
 
 17.22
 
 45' 22
 
 14.66
 
 50.57
 
 39'96 41. II 42.26 43'40
 
 20. 48 22'13 22'96
 
 42 .09 43'27 44'44 45' 61
 
 17.98 18'75 1 9'52 20'30
 
 46'45 47' 68 48'91 50.14
 
 15.36 16•06 16.78 1 7'49
 
 51.87 53.16 54'45 55'74
 
 26'13
 
 44'54 45' 68
 
 46'78 47'94 49' 11 50.27 51'43
 
 2P08 2186 22.65 2 3'43 24'23
 
 51.36 52'57 53'79 55.00
 
 18.21 18-93 19.66 20.39
 
 57.02 58.30 59'57 6o'84
 
 56.21
 
 21'12
 
 62•10
 
 52'58 53'74 54'89
 
 25'02 25'82 26.62
 
 57'41 58.62 59.82
 
 21.86
 
 22.60 23.35
 
 63'37 64.63 65.88
 
 22.70 2 3'55 2 4'41
 
 21•31
 
 35 36 37 38 39
 
 26.99
 
 46.82
 
 27.86 28'72
 
 47'95 49'09
 
 23.79 24'63 25'46 26.30 2 7'14
 
 50.22 51.35 52'48
 
 27'98 28.83 29.68
 
 2 5'27
 
 40
 
 29'59
 
 41 42
 
 30.46 31'33
 
 43 44
 
 32'20
 
 53•60
 
 30'52
 
 56'04
 
 33.08
 
 54'73
 
 31-37
 
 57.19
 
 2 7'42 28.22
 
 61•02 62'21
 
 24'09 2 4'84
 
 68.38
 
 45
 
 33'95
 
 55'85
 
 32.23
 
 58'34
 
 29'03
 
 63'41
 
 25.59
 
 69.63
 
 67'13
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT For a normal distribution of (k + 1) quantities, let p2 be the square of the true multiple correlation coefficient between the first quantity and the remaining k (sometimes called 'explanatory variables'). p2 is the proportion of the variance of the first quantity that is accounted for by the remaining k. If R2 denotes the square of the corresponding sample multiple correlation coefficient from a random sample of size n (n > k + 1), then, for an assigned probability C per cent, the pair of entries gives a C per cent Bayesian confidence interval for p2. That is, there is C per cent probability that p2 lies between the values given. The entries have been calculated using a reference prior which is uniform over the entire range (0, 1) of p2. The intervals are the shortest possible, compatible with the requirement on probability. When R2 = 1, both the upper and lower limits may be taken to be 1. Interpolation in n and R2 will often be needed. When n is large, C per cent limits for p2are given approximately by R2 ± 2x(P)(1 - R2)(R2I n) 1
 
 posterior probability density of p2
 
 (In some cases this shape does not apply, and the intervals are one-sided.)
 
 where P = (100 C) and x(P) is the P percentage point of the normal distribution (Table 5). More accurate upper limits are found by harmonic interpolation (see page 96) in the function f (n) = Vh(U (n) R2), where U (n) is the upper limit for sample size n. For the lower limit, L(n), use the function f (n) = L(n)); in each case f (oo) = 2x(P)(1 - R2) f122.
 
 89
 
 -
 
 -
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
 
 k
 
 I
 
 CONFIDENCE LEVEL PER CENT
 
 90
 
 95
 
 n =3 R2 = o•oo
 
 0. 0000
 
 •I 0 '20 •30
 
 '0000 '0000 •0000
 
 '40
 
 99 0.7764 •7882
 
 0.0000 •0000
 
 99'9 0•9000 •9060
 
 0•6838 •6985
 
 0.0000 •0000
 
 0.0000 •0000
 
 '0000
 
 •8004
 
 '0000
 
 '9122
 
 •0000
 
 •0000
 
 •8132
 
 •0000
 
 •0000
 
 •7140 '7305 '7482
 
 '0000
 
 •8269
 
 '0000
 
 •9186 •9253
 
 •0000 •0000
 
 0.9683 -9704 •9725 '9746 •9768
 
 0'50
 
 0.0000
 
 0.7676
 
 0-0000
 
 •6o
 
 -0000
 
 '0000 '0000 •0000
 
 0•8416 •8579
 
 0.0000 •0000
 
 0.9325 -9402
 
 '8764 '8987
 
 •0000 '0000
 
 0.0000 •0000 •0000 •0000 -0000
 
 0'9793 •9817 •9845 -9878 -9919
 
 •70
 
 '0000
 
 •8o
 
 -0391
 
 '7892 '8142 '8810
 
 •90
 
 ' 11 55
 
 .9644
 
 0512
 
 •9672
 
 •0000
 
 '9592 •9724
 
 0-95
 
 0.1525
 
 0.9887
 
 0.0767
 
 0.9898
 
 0.0118
 
 0.9905
 
 0.0000
 
 0.9948
 
 R2= woo
 
 0.0000
 
 0'3421
 
 • I0
 
 '0000
 
 0'0000 '0000
 
 0'5671 '6621
 
 0'0000 •0000
 
 0'7152 '7864
 
 •0000
 
 '5938
 
 •0000
 
 •0000
 
 '4481 '5202 '5809
 
 0'4200 '5264
 
 •20 •30
 
 0'0000 '0000 '0000 '0000
 
 '6491
 
 '0000
 
 '40
 
 '0538
 
 .6754
 
 .0170
 
 '7139
 
 •0000
 
 -7163 •7591 •7968
 
 •0000 •0000 •0000
 
 •8238 •8525 -8772
 
 0.50
 
 0.1167
 
 •6o
 
 •1950 '2959 '4328
 
 0•7864 •8466 •8982
 
 •6357
 
 '9413 '9756
 
 0.8347 •8877 •9287 •9608
 
 '90
 
 '3471 '5563
 
 0.0029 •0384 -0931 •1867 .3781
 
 '9847
 
 0.0000 •0000 -0124 -0531 '1720
 
 0.8996 •9206
 
 '70
 
 o•o666 •1310 •2189
 
 '8o
 
 0.7518 -8183 '8770 '9275 '9690
 
 0.95
 
 0.7846
 
 0.9860
 
 0.7259
 
 0.9892
 
 0'5735
 
 0'9936
 
 0'3448
 
 0'9964
 
 n = 25 R2 = woo
 
 0.0000
 
 '9489
 
 n = HI
 
 '9491 '9744 '9909
 
 0-1623
 
 0.0000
 
 0'2058
 
 0'0000
 
 0'2983
 
 0'0000
 
 0'4122
 
 •JO '20 •30
 
 '0000
 
 '3128
 
 'moo
 
 -366o
 
 •4665
 
 •0262 '0817
 
 '4230
 
 '4655
 
 •0000 •0000
 
 '5747 •6512
 
 '40
 
 ' 1 544
 
 -5222 •6106
 
 •0090 '0530
 
 •0000 •0000
 
 0'50
 
 0.2439
 
 0.6906
 
 •6o /0
 
 '3507 '4762
 
 •8o
 
 '6232
 
 *90
 
 0.95
 
 '5536
 
 •5622
 
 '0129
 
 '6339
 
 '0000
 
 '7116
 
 •1158
 
 '6464
 
 '0535
 
 '7091
 
 '0090
 
 '7696
 
 '7637
 
 0.1980 •3009
 
 0.7215 -7890
 
 o•1166 •2058
 
 0.7746 -8320
 
 0.0445 •Io81
 
 0.8248 •8719
 
 •8306
 
 •4270
 
 •8500
 
 •3266
 
 '8921
 
 '5807
 
 '9052
 
 '4881
 
 '8824 '9268
 
 '7958
 
 '9485
 
 '7683
 
 '9551
 
 '7046
 
 0'8935
 
 0'9749
 
 0'8778
 
 0.9782
 
 0.8403
 
 '2101
 
 '9121
 
 '9659
 
 •3678 '6116
 
 '9463 '9754
 
 0.9836
 
 0.7821
 
 0.9883
 
 See page 89 for explanation of the use of this table. 90
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
 
 k =2 CONFIDENCE LEVEL PER CENT
 
 90
 
 95
 
 n =4
 
 122 = woo
 
 o-0000
 
 o•6o19
 
 0.0000
 
 •io
 
 •0000
 
 •6179
 
 •20
 
 '0000
 
 •6352
 
 •30 '40
 
 •0000 •0000
 
 •6541 •6751
 
 •0000 •0000 •0000 •0000
 
 0'50
 
 o'0000
 
 0.6986
 
 •6o
 
 •0000
 
 '7255
 
 99
 
 99'9 o•8415 •85o3 •8595 -8694 •8799
 
 0.0000 •0000 •0000 •0000 •0000
 
 0.9369
 
 '7434 •7611
 
 o'0000 •0000 •0000 •0000 •0000
 
 0.7807 •8028 •8284 •8597 •9I00
 
 0.0000 •0000 •0000 •0000 •0000
 
 0.8914 •9040 '9184 '9353 '9572
 
 o•0000 •0000 •0000 •0000 •0000
 
 0.9586 •9636 .9695 •9765 •9848
 
 0.6983 •7123 •7272
 
 '9408 '9448 '9491 '9535
 
 • 0
 
 •0000
 
 '7573
 
 •8o
 
 •0000
 
 •7969
 
 •90
 
 •0614
 
 -9055
 
 o'0000 •0000 •0000 •0000 •oo85
 
 0.95
 
 o•1189
 
 0'9690
 
 0'0540
 
 0'9707
 
 0.0000
 
 0'9720
 
 0'0000
 
 0'9905
 
 122 = woo
 
 0'0000
 
 0'0000 '0000
 
 0'0000
 
 0'5671
 
 0.0000
 
 0.7152
 
 '0000
 
 0'3421 '4101
 
 0'4200
 
 •IO
 
 '4904
 
 '20
 
 '4741
 
 •30
 
 •0000 'am
 
 '40
 
 •0000
 
 '5354 '5953
 
 •0000 •0000 •0000
 
 •5527 -6098 -6641
 
 •0000 •0000 •0000 •0000
 
 •6331 •6857 •7313 •7728
 
 •0000 •0000 •0000 •0000
 
 •7665 •8040 •8352 •8626
 
 0'50
 
 0'0363
 
 0'6854
 
 0.0000
 
 0'7170
 
 •6o
 
 •1122
 
 •7800
 
 -2107
 
 -8o
 
 '9656
 
 '8779 '9321 '9728
 
 0.8118 •8493 •9062 •9523 •9825
 
 o'0000 •0000 •0000 •0105
 
 •90
 
 '3487 '5639
 
 '8557 .9171
 
 0.0000 •0000 '0307 •1014 -2688
 
 0•8877 •9112
 
 • 0
 
 '0557 ' 1351 '2564 '4692
 
 •8073
 
 '0774
 
 '9887
 
 0'95
 
 0.7323
 
 0.9848
 
 0.6562
 
 0.9883
 
 0.4649
 
 0.9929
 
 0.2109
 
 0 '9959
 
 0'0000
 
 0'1623 '2822
 
 0'0000 '0000
 
 0'2058 •3364
 
 0'0000 '0000
 
 0'2983 •4400
 
 0'0000 '0000
 
 0.4122
 
 •3783
 
 •0000 '0242 •0849
 
 '4329 '5334 •6273
 
 •0000 •0000 -0272
 
 •5321 -6079 -6907
 
 •0000 •0000 •0000
 
 0.1667 '2708 •4000 '5589
 
 0.7079
 
 0.0866
 
 0'7628
 
 0'0211
 
 0'8134
 
 •8241
 
 •0786 ' 1772
 
 •8653 •9081
 
 '3352 •5866
 
 '9442 '9746
 
 0.9830
 
 0'7664
 
 0 '9879
 
 it = 10
 
 it = 25 R2 = woo '10 •20
 
 '0000 'moo
 
 •30 '40
 
 .0503 •1225
 
 0'50
 
 0'2130 '3221
 
 •6o
 
 '4938 . 5904
 
 0'6758
 
 •8o
 
 '4514 •6040
 
 '7530 •8234 •8878
 
 •90
 
 '7845
 
 '9465
 
 '7550
 
 '9535
 
 '1742 '2958 •4611 •6865
 
 0.95
 
 0.8873
 
 0 '9739
 
 0•8705
 
 0'9774
 
 o'8298
 
 io
 
 '7794 '8436 -9015
 
 '8774 -9240 -9647
 
 See page 89 for explanation of the use of this table.
 
 91
 
 '9338 •9629
 
 '5525 •6341 •6983 '7532
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
 
 k =3 CONFIDENCE LEVEL PER CENT
 
 90
 
 99
 
 95
 
 n =5 R2 = woo
 
 o•0000
 
 0•5358
 
 •IO
 
 •0000
 
 '5532
 
 0.0000 •0000
 
 0•6316 •6477
 
 99'9
 
 o•0000 •000o
 
 0.7846 •7962
 
 o-0000 •0000
 
 •20
 
 •0000
 
 •5721
 
 '0000
 
 '6652
 
 '0000
 
 •8085
 
 '0000
 
 '30
 
 •000o
 
 '40
 
 •0000
 
 '5931 •6166
 
 •0000 •0000
 
 •6842 •7053
 
 •0000 •0000
 
 •8217 •836o
 
 •0000 •0000
 
 0'50
 
 0.0000
 
 0.6433
 
 •0000
 
 0•0000 •0000
 
 0.7289
 
 •6o •70
 
 '0000
 
 •0000 '0000
 
 '7874 '8262
 
 0.0000 •0000 •0000
 
 0•8517 -8691 •8890
 
 0.0000 •000o •0000
 
 •0000
 
 '9125
 
 0•900o -9061 •9126 •9196 •9266 0 '9344
 
 •8o
 
 '0000
 
 '6743 •7114 '7582
 
 '0000
 
 •9634
 
 •90
 
 •oun
 
 •8337
 
 •0000
 
 •8787
 
 •0000
 
 -9426
 
 •0000
 
 •9770
 
 0'95
 
 0 '0951
 
 0'9446
 
 0.0362
 
 0•9470
 
 0.0000
 
 0•9630
 
 0.0000
 
 0.9858
 
 n = 15 R2 = woo
 
 0.0000
 
 0.0000 •0000
 
 0.3123 •3892
 
 O•0000 •0000
 
 0 4377 •5186
 
 0.5784
 
 •0000
 
 '0000
 
 •6522
 
 •20
 
 •0000
 
 •30
 
 - 0000
 
 0'2505 •3204 •3930 '4662
 
 o•0000
 
 •I0
 
 '40
 
 -0000
 
 '5395
 
 •0000 -0000 •0000
 
 •4630 '5340 •6026
 
 •0000 -0000 -0000
 
 •5879 •6498 •707o
 
 •0000 •0000 •0000
 
 '7093 '7576 •8002
 
 0'50
 
 0.0648
 
 0.6565
 
 •1562
 
 '7522
 
 '70
 
 '2779
 
 •8o
 
 '4409
 
 '3635 -602!
 
 0.7602 •8230 •8901 '9381
 
 0•0000 -0000 .0045 •0628
 
 •6656
 
 0•6885 -7820 -8548 '9138 •9620
 
 0.0000 •0153 -0823 '2093
 
 •90
 
 •8309 '8976 '9539
 
 0.0231 '0973 •2053
 
 0.8388
 
 •6o
 
 '4537
 
 '9739
 
 '2546
 
 '9830
 
 0'95
 
 0'8139
 
 0.9783
 
 0.7720
 
 0.9823
 
 0.6638
 
 0.9882
 
 0.4879
 
 0.9926
 
 R2 = o•oo •IO
 
 0.0000
 
 0.1623
 
 0.0000
 
 0.2058
 
 o•0000
 
 0.2983
 
 •2580
 
 '0000
 
 •3123
 
 '0000
 
 •20
 
 •0000
 
 •3514
 
 •30
 
 '0190
 
 '40
 
 •0890
 
 '4556 '5667
 
 •0000 -0000 '0533
 
 '4075 '4941 •6038
 
 •000o •0000 •0033
 
 '4175 •5103 '5895 -6631
 
 o•0000 •0000 -0000 •0000 •0000
 
 0.4122
 
 •0000
 
 0'50
 
 0.1797
 
 0'6592
 
 0-1333
 
 '2909
 
 '7412
 
 '2382
 
 .70
 
 '4242
 
 0.7484 '8152 •8719
 
 0.0014 '0491 •1421
 
 '5827
 
 '90
 
 '7719
 
 '9444
 
 '3704 '5349 '7402
 
 0.0562 '1407 -2623
 
 '8o
 
 .8155 '8830
 
 0.6924 •7688 -8367
 
 0'7947
 
 •6o
 
 '8974 '9517
 
 '4314 •6664
 
 '9209 '9634
 
 '2995 '5586
 
 '9037 '9419 '9737
 
 0.95
 
 0.8804
 
 0'9729
 
 0.8621
 
 0.9766
 
 0.8179
 
 0.9824
 
 0'7484
 
 0'9875
 
 '7558
 
 *9430 •9529
 
 '8745 •9117 •9561
 
 n = 25
 
 See page 89 for explanation of the use of this table.
 
 92
 
 '5330 •6166 -6841 .7421
 
 '8572
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
 
 k= 4 CONFIDENCE LEVEL PER CENT
 
 90
 
 95
 
 n =6
 
 99
 
 99'9
 
 R2 = woo
 
 o-0000
 
 o. 482o
 
 o•0000
 
 0•5751
 
 0.0000
 
 0.7317
 
 •10
 
 •5928
 
 •0000
 
 -6121
 
 •0000 •0000
 
 '7458 '7609
 
 •30
 
 •0000
 
 -0000
 
 '7771
 
 •0000
 
 6334 •6571
 
 •0000
 
 '40
 
 •5011 •5203 •5427 •5681
 
 - 0000
 
 '20
 
 '0000 •0000
 
 •0000
 
 •7948
 
 •0000 •0000
 
 0•50
 
 0.0000
 
 0.5971
 
 •6312
 
 0.0000 •0000
 
 0.8143 •8360
 
 0.0000 •0000
 
 0.9092
 
 •0000
 
 0.0000 •0000
 
 0•6839
 
 •6o •70
 
 '0000
 
 •0000
 
 .9346
 
 •8o
 
 •0000
 
 '6724 •7249
 
 •90
 
 '0000
 
 0.95
 
 •0000
 
 0.0000 •0000 •0000
 
 o•86io •8696 •8786 •888o •8982
 
 •9212
 
 •0000
 
 •7147 •7512
 
 •8610
 
 •0000
 
 '7993
 
 -0000 -0000
 
 •7964 •8581
 
 •0000 •0000
 
 •8907 •9287
 
 •0000 •0000
 
 '9499 •9689
 
 0.0731
 
 0.9167
 
 o•o186
 
 o•9199
 
 0•0000
 
 0'9543
 
 0-0000
 
 0.9810
 
 R2 = woo
 
 0.0000
 
 0'4377
 
 '0000
 
 •30
 
 •0000
 
 '4343
 
 -000o
 
 •3732 •4377 -5047
 
 '40
 
 •0000
 
 '5061
 
 •0000
 
 '5731
 
 •0000 •0000 •0000 •0000
 
 •5032 -5661 •6264 •6846
 
 o-0000 •0000 •0000 •0000 •0000
 
 0.5784
 
 '20
 
 0.0000 •0000 •0000
 
 0.0000
 
 •0000
 
 0.2505 •3050 '3669
 
 0.3123
 
 •10
 
 0.50 •6o
 
 0-0110
 
 0.5916 .7160
 
 0.0000
 
 0•6424
 
 0.0000
 
 0'7406
 
 0.0000
 
 o•8258
 
 .0959
 
 '0442
 
 '7438
 
 •0000
 
 • 0
 
 '2130
 
 '8117
 
 '1409
 
 *8363
 
 •8o
 
 '3792
 
 •2952
 
 .9055
 
 '0347 •1384
 
 •90
 
 '6200
 
 •8882 .9505
 
 '7947 -8689 •9306
 
 '5463
 
 '9592
 
 '3770
 
 '9719
 
 •0000 •0000 •0218 •1662
 
 -8641 -9001 -9461 •9813
 
 0.95
 
 0.7850
 
 0.9769
 
 0'7345
 
 0.9812
 
 0.6035
 
 0'9874
 
 0'3957
 
 0.9921
 
 R2 = woo
 
 o•0000
 
 0.1623
 
 0.0000
 
 0'2058
 
 0'0000
 
 0.2983
 
 0.0000
 
 0'4122
 
 •IO '20
 
 '0000
 
 •2399 •3263
 
 -2937 •3835
 
 •30
 
 '0000
 
 '4148
 
 •0000
 
 •4709
 
 '40
 
 •0552
 
 •5367
 
 •0229
 
 •5720
 
 •0000 •0000 -0000 •0000
 
 '3993 •4892 •5702 •6438
 
 -0000 •0000 •0000 -0000
 
 •5170
 
 •0000
 
 •0000 •0000
 
 0•50
 
 0.1441
 
 0.0985 •2030
 
 0.0273
 
 0.7289
 
 0.0000
 
 0.7838
 
 •2570
 
 /0
 
 '3942
 
 0.640o •7282 •8068
 
 0.6741
 
 -60
 
 '7570 •8290 •8930
 
 •8049 •8657 .9175 -9620
 
 -0223 -1059 •2606 •5271
 
 '8456 -8985
 
 '9498
 
 -1054 •2259 •3985 '6436
 
 0 '9757
 
 0.8043
 
 0.9818
 
 0.7278
 
 0.9871
 
 n = 15 6394 •6927 •7408
 
 7849
 
 n=25
 
 •8o
 
 •5591
 
 '90
 
 '7578
 
 '8779 '9422
 
 '3379 .5082 .7235
 
 0•95
 
 o'8726
 
 0.9719
 
 o'8527
 
 See page 89 for explanation of the use of this table.
 
 93
 
 '5993 •6690 •7297
 
 '9393 '9727
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
 
 k=5 CONFIDENCE LEVEL PER CENT 90
 
 n=7 R2 =o-oo
 
 99
 
 95
 
 o•0000
 
 0 '4377
 
 •20
 
 '0000 '0000
 
 •30
 
 •0000
 
 '40
 
 •0000
 
 '4563 '4771 '5011 •5269
 
 0'50
 
 o-0000
 
 0.5576
 
 -6o
 
 •0000
 
 '70
 
 •0000
 
 -8o
 
 •0000
 
 •90
 
 0.0000 •0000 -0000 '0000 '0000
 
 0.5271
 
 99'9
 
 '5459 •5665 '5895 '6151
 
 0.0000 •0000 •0000 •0000 '0000
 
 0.6838 •6998
 
 •0000
 
 o'6444 -6783 '7188 •7695 •8392
 
 0.0000 •0000 •0000 •0000 •0000
 
 0'7795
 
 '5940 '6384 '6955 '7774
 
 0.0000 •0000 '0000 •000o •0000
 
 0-95
 
 0.0509
 
 0•8858
 
 0.0000
 
 0•8898
 
 n = 20 R2 = woo
 
 0.0000
 
 0.1969
 
 •10
 
 '0000
 
 •20 •30
 
 '0000
 
 '2525 '3190
 
 '40
 
 •0000
 
 '3943 '4755
 
 0.0000 •0000 •0000 •0000 •0000
 
 0'50
 
 0.0445
 
 0'5933
 
 -6o
 
 ' 1 433
 
 •70
 
 •2783
 
 -8o
 
 '4557
 
 •7074 -7986 '8758
 
 •90
 
 '6874
 
 0•95
 
 0.0000 -0000 •0000 •0000 •0000
 
 0.8222 •8327
 
 •8052 '8347 •8700 •9154
 
 0.0000 •0000 •0000 •0000 •0000
 
 0•8837 •8991 •9164 -9362 •9606
 
 0.0000
 
 0.9460
 
 0.0000
 
 0.9761
 
 0.2482 •3115 •3824 •4584 •5368
 
 0.0000 '0000 '0000 -0000 •0000
 
 0.3550 '4276 '5011
 
 0.0000 '0000 '0000 -0000 •0000
 
 0.4821
 
 0.6230
 
 '7791 '8620 '9199
 
 0.0000 •0000 •0063 '0897
 
 0.790o -8374 •8867
 
 '8931 '9514
 
 0-0000 •0104 '0896 '2432 '5121
 
 0.7072
 
 '9427
 
 0.0079 .0879 •2101 '3864 •6351
 
 '9647
 
 '3376
 
 '9416 '9757
 
 0.8310
 
 0'9726
 
 0'7986
 
 0.9769
 
 0.7165
 
 0.9835
 
 0.5824
 
 0.9889
 
 R2= woo
 
 0'0000
 
 '20 •30 •4°
 
 •woo
 
 0'1757 '2576 •3486
 
 '0000
 
 •0610
 
 *5157
 
 0'0000 '0000 •0000 •0000 '0291
 
 0.0000 '0000 -0000 •0000 •0000
 
 0•0000 •0000 •0000 •0000 •0000
 
 0.3596
 
 •0000
 
 0'1381 '2092 •2955 '3879
 
 0.257o
 
 -JO
 
 0'50
 
 0'1556
 
 0.1115 .2230 •3627
 
 0'0391 '1288
 
 -8o *90
 
 '7721
 
 '9373
 
 '5339 '7430
 
 '8835 '9448
 
 '2594 '4370 '6758
 
 0'7098 '7876 '8520 '9079 '9570
 
 0'0000 .0399 •1424 '3124 '5785
 
 0.7598
 
 '2735 '4139 '5788
 
 o•6210 .7119
 
 0. 6543
 
 •6o
 
 0.95
 
 0.8812
 
 0.9694
 
 0.8647
 
 0'9731
 
 0.8251
 
 0.9792
 
 0.7642
 
 0.9847
 
 •IO
 
 n=
 
 '0000
 
 '7378 '8236
 
 '7174 •7361 •7567
 
 '5718 •6409
 
 '8443 •8566 •8696
 
 '5557 '6222 •6830 •7387
 
 30
 
 /0
 
 '7939 •8687
 
 '4408 •5503
 
 '7399 .8155
 
 '3543 '4481 '5354 -6154
 
 See page 89 for explanation of the use of this table.
 
 94
 
 '4649 '5540 •6314 '6994
 
 •8310 -8858 .9304 •9681
 
 TABLE 31. BAYESIAN CONFIDENCE LIMITS FOR THE SQUARE OF A MULTIPLE CORRELATION COEFFICIENT
 
 k= 6 CONFIDENCE LEVEL PER CENT
 
 90
 
 99
 
 95
 
 n =8
 
 99'9
 
 R2= woo
 
 0.0000
 
 0'4005
 
 0.0000
 
 0'4861
 
 0'0000
 
 0'6406
 
 0'0000
 
 0'7845
 
 •0
 
 '0000
 
 •20
 
 •0000
 
 •0000 •0000
 
 -5056 •5271
 
 •0000 •0000
 
 •6584 •6776
 
 '0000 '0000
 
 '5511 •5783
 
 '0000
 
 '6986
 
 •7972 •8114 •8258
 
 •0000
 
 •7216
 
 •0000 •0000 •0000 •0000
 
 0.6094 •6457 •6896
 
 0 '7473
 
 o•0000 -0000 -0000 -0000 •0000
 
 0•8586
 
 •7763 •81oo •8504 •9027
 
 •30
 
 '0000
 
 '40
 
 -0000
 
 '4193 '4404 '4642 '4916
 
 0'50
 
 0'0000
 
 0.5234
 
 0.0000
 
 •6o
 
 •0000
 
 • 0
 
 •0000
 
 •8o
 
 -0000
 
 '5614 '6083 '6692
 
 '0000 '0000 '0000
 
 •90
 
 •0000
 
 '7575
 
 •0000
 
 •82I7
 
 o•0000 •0000 •0000 •0000 '0000
 
 0095
 
 0.0278
 
 0'8520
 
 0'0000
 
 o'8778
 
 0'0000
 
 0'9381
 
 0'0000
 
 0'9713
 
 n= 20 R2 = o•oo
 
 0-0000
 
 o.1969
 
 0'0000 •0000
 
 0.0000
 
 0.4821
 
 •0000
 
 0'2482 •3018
 
 03550
 
 •0
 
 0'0000 •0000
 
 '4173
 
 •0000
 
 -0000 -0000 •0000
 
 '4835 •5517 •6206
 
 •0000 •0000 '0000 •0000
 
 •5462 •6o8o •6691 •7238 0.7769 •8269
 
 '7449
 
 '8415
 
 '8774 •8984 •9227 •9524
 
 •20
 
 '0000
 
 •30
 
 '0000
 
 •2436 •30I3 •3698
 
 '40
 
 -0000
 
 '4477
 
 •0000
 
 •3644 '4350 •5114
 
 0•50
 
 0.0034 '0947
 
 0'5358
 
 •676o
 
 0.0000 •0451
 
 0.5914 •7045
 
 o-0000 •0000
 
 0•6887
 
 -6o • 0
 
 •2257
 
 •7821
 
 •1568
 
 •8079
 
 .0469
 
 '8444
 
 •80
 
 '4084
 
 '8674
 
 090
 
 '6556
 
 '9393
 
 '3334 '5967
 
 '8857 '9486
 
 ' 1834 '4584
 
 '9137 .9627
 
 0.0000 •0000 •0000 '0446 •2671
 
 0095
 
 0'8123
 
 0'9711
 
 0'7748
 
 0'9757
 
 0.6797
 
 0.9827
 
 0'5243
 
 0.9884
 
 n = 30 R2 = o•oo
 
 o-0000
 
 O.1381
 
 '0000 '0000
 
 0.1757 •2459 •3297
 
 0.0000 -0000 •0000
 
 0.2570 •3420
 
 •20 •30
 
 '1984 '2764 '3658
 
 0'0000 •0000 '0000 '0000
 
 •4200
 
 '0000
 
 '40
 
 •0327
 
 '4839
 
 •0047
 
 •5151
 
 •0000
 
 o•0000 •0000 -0000 •0000 '0000
 
 0.3596
 
 •0
 
 0•50
 
 0.0155 .0972 •2269 •4086
 
 0•0000 •0172 •1094
 
 0.7506 •8183 •8806
 
 '2785 '5525
 
 '9277 -9670
 
 0'7481
 
 0.9843
 
 •0000
 
 •0000
 
 0.1239
 
 0.6022
 
 o•o809
 
 0.6357
 
 •6o
 
 '2430
 
 '6993
 
 /0
 
 '3872
 
 •8o
 
 '5581
 
 '7855 •8637
 
 •90
 
 '7600
 
 '9350
 
 ' 1913 '3339 '5107 '7289
 
 '7284 •8080 '8791 .9428
 
 0.95
 
 0 '8747
 
 0.9683
 
 0-8569
 
 0'9722
 
 '7550
 
 '4305 '5175 '5998 0.6881
 
 '6569
 
 '7773 '8459 •9045 '9556
 
 o•8142
 
 0.9786
 
 See page 89 for explanation of the use of this table.
 
 95
 
 '8737 '9341 '9742
 
 '4531 '5389 •6169 •6871
 
 A NOTE ON INTERPOLATION Part of the tabulation of a function f(x) at intervals h of x is in the form given in the first two columns of the figure :
 
 For x = 0.034, p = (0.034-0.03)/0.01 = 0.4 and the linear interpolate is
 
 xo J o x, 4 x, f,
 
 0 '9790 + 0.4
 
 Ai
 
 The additional term for the quadratic interpolate is
 
 A", A;1
 
 —0.25 x 0.4 x o•6 x ( — 0'0090 — 0'0087) = 0'001i
 
 A°
 
 x, f, where ft = f(x) and x,„ = x,H-h. Interpolation of f(x) at values of x other than those tabulated uses the differences in the last three columns, where each entry is the value in the column immediately to the left and below minus the value to the left and above : thus, Ail =f 2 —fi and A; = These are usually written in units of the last place of decimals in f(x). Linear interpolation between x1 and x2 approximates f(x) by +PAil with p = (x—x1)/h. This simple rule uses only the values within the lines of the figure and is often adequate. Quadratic interpolation between x1and x2 approximates f(x) by +pA',4 -1p(i—p) (A';+
 
 and is not negligible, the quadratic interpolate being 0-9709. This is exact, as is expected since A;1 at 3 is well below 6o. The quadratic method uses fo ana f, (needed for A; and A;) and so fails if either is unavailable, for example at the ends of the range of x or when the interval of tabulation h changes. Modified quadratic forms between xl and x2 are
 
 +pevil
 
 20,
 
 Example. The F-distribution, P = to, v1 = i (Table 2(a), page 5o), interpolation in v2, now x.
 
 0'9929
 
 '03
 
 '9790
 
 —
 
 F(P)
 
 0
 
 2'706
 
 120
 
 1/120
 
 2•748
 
 6o 2/12 0
 
 2.791
 
 40 3/120
 
 2.835
 
 43
 
 +3 —8 7
 
 —316 ' 05
 
 '9245
 
 CONSTANTS e = 2.71828
 
 18285
 
 It = 3'141 59 26536
 
 T1E
 
 =
 
 0
 
 44
 
 h--,±0)/(th) =
 
 —90
 
 -9561
 
 I /v2
 
 Notice that the values of v2 chosen for tabulation are such that the intervals of i/v2 are constsnt, here The differences show that linear interpolation will be adequate. For •5 and the linear interv2 = 8o, p = ( polate is 2.748 + o.5 x 0.043 = 2•77o with the possibility of an error of I in the last place.
 
 139
 
 —229 -04
 
 v2
 
 oo
 
 42
 
 r = 2 (Table t,
 
 page 22), interpolation in p, now x.
 
 (f, missing),
 
 Ocassionally, harmonic interpolation is advisable. To do this the argument x is replaced by i/x and then linear (or quadratic) interpolation performed.
 
 2.
 
 Example. The binomial distribution, n =
 
 —p) A;
 
 f1 +0,4-1p(i —p) A; (fo missing).
 
 This is generally adequate provided Ail is less than 6o in units of the last place of decimals in the tabulation. Notice that the quadratic interpolate consists of the addition of an extra term to the linear one, so that a rough assessment of it will indicate whether the linear form is adequate. The maximum possible value of ip(t —p) is when p =
 
 0•02
 
 x ( — 0-0229) = 0-9698.
 
 0-39894 22804
 
 logio e = 043429 44819 loge Io = 2.30258 50930 10g,
 
 2n = 0.91893 85332
 
 CAMBRIDGE UNIVERSITY PRESS
 
 Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, no Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521484855 © Cambridge University Press 1984 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1984 Eighth printing 1994 Second edition 1995 Thirteenth printing 2009 Printed in the United Kingdom at the University Press, Cambridge A catalogue record for this publication is available from the British Library ISBN 978-0-521-48485-5 paperback