Handbook of graph theory

  • 14 292 3
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up

Handbook of graph theory

DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN HANDBOOK OF GRAPH THEORY EDITED BY JONATHAN

1,765 602 9MB

Pages 1155 Page size 504 x 720 pts Year 2008

Report DMCA / Copyright

DOWNLOAD FILE

Recommend Papers

File loading please wait...
Citation preview

DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

HANDBOOK OF

GRAPH THEORY EDITED BY

JONATHAN L. GROSS JAY YELLEN

CRC PR E S S Boca Raton London New York Washington, D.C.

DISCRETE MATHEMATICS and ITS APPLICATIONS Series Editor

Kenneth H. Rosen, Ph.D. AT&T Laboratories Middletown, New Jersey

Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs Charalambos A. Charalambides, Enumerative Combinatorics Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications with Maple Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search Charles C. Lindner and Christopher A. Rodgers, Design Theory Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography Richard A. Mollin, Algebraic Number Theory Richard A. Mollin, Fundamental Number Theory with Applications Richard A. Mollin, An Introduction to Crytography Richard A. Mollin, Quadratics

Continued Titles Richard A. Mollin, RSA and Public-Key Cryptography Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary Approach Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding Design Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography

8522 disclaimer.fm Page 1 Tuesday, November 4, 2003 12:31 PM

Library of Congress Cataloging-in-Publication Data Handbook of graph theory / editors-in-chief, Jonathan L. Gross, Jay Yellen. p. cm. — (Discrete mathematics and its applications) Includes bibliographical references and index. ISBN 1-58488-090-2 (alk. paper) 1. Graph theory—Handbooks, manuals, etc. I. Gross, Jonathan L. II. Yellen, Jay. QA166.H36 2003 511'.5—dc22

2003065270

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microÞlming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of speciÞc clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58488-090-2/04/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. SpeciÞc permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identiÞcation and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

No claim to original U.S. Government works International Standard Book Number 1-58488-090-2 Library of Congress Card Number 2003065270 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

PREFACE                                      

  !                              "                         "        

           #                 $ 

       

 % &    Format

'     (     

        )                         $ * (      )  +  (        

  

 "          $  ,-  +      .     /          

!      )       (      .       0                     '            

 )               '                       !      

       1      (            "                  Terminology and Notations

2                       3   4                .          )                  (                                     5              

         0     (                   6                            '                    7            '            )       8              /                                         7    "              )         )    * 

          '      2( 

                    

   9            ( )                :  Æ         6               7   *     ( ;

6         )              2   ) . Feedback

"        (          

  (        

 

 Acknowledgements

+   (   ( 5    *   +

=  0 8

#   ! ($    32 & 4 '2 2  .  $ /0

=  >

#   !   $   

? /F 

  #   !  $ /

3     / #   #   ! *$ / !

2 

 / '  

#   !  - %1$ 

? E

#   ! / $  

? @ 

#   ! $ 

 

  #  

2 

 @

< E (

  5 = 

 "  

/  ==

E   %E"& "   

#   ! &$  /      !  

      3           >  

)  "*+   $  +  **+ *   ,"   *+   $  ++ **+ *   ,"      +  *$    ,"   ,-     +$   **    , +  6 ,

References 5A;7   "  " H/4 " CA; 5CA7  #I "    

"   " CCA 5?C@7    ? ? !"    "   -  "   4" CC@ +2  -  " J= J# " C:C,

Section 1.1

Fundamentals of Graph Theory

19

5DCC7 K ?   K D"  

     "  J" CCC 54C7 2 4"  

" J  " CC +2  -  " % /=" C@C, 5 C 7 L    8 H   "   

    " K =  M " CC  5667 =  "  

" # " 666 5=6 7   ="    

"  -  " J /4" 66  +2  -  " CC@,

20

1.2

Chapter 1

INTRODUCTION TO GRAPHS

FAMILIES OF GRAPHS AND DIGRAPHS 

               !      ' /       

/            .   ;  ;  DEFINITIONS



) %              #        +   ,    "     &          +2   "       &½      , ' ,  $         "       #  ,$  

Section 1.2

Families of Graphs and Digraphs

25



) %        #        .        &            '            ,  $"       & 

) %   )      #     )  + 

 ,         &          

) %  )      )/            &        >    %         '  )       ½      "      &½ ¾

 "          ,"  &   EXAMPLES

) )

-   #  

-     #     #  "     #  #  

)

 

  /   &       /    

Figure 1.2.7

 &" +""  &  .  *     

FACTS

(

) 5     3  7 %   #                 + "  5DCC"  ;7,

( ) %   )/#       )/  ( ) 2 )  "  #        )/   HJ/ k-Connectivity and k-Edge-Connectivity

  #   3      $$    *$$              :  .        DEFINITIONS



)        "  - + ,"      #         /     



)            "  - + ,      #          / 

26

Chapter 1

INTRODUCTION TO GRAPHS

   #  0 1           - "    -  .     -  - "  

)

%      -  )    )    -9 "  )/     )           /       



) %    /   -  )          "    )         )/ /      



) %     )   + )  ,             )          



) %     )    + )   ,             )          Minimum Genus

  #   3          DEFINITIONS



)      +      ,        #     #      #  / + : ,    /  

 )

%    6   

1.2.4 Criterion Qualification %                      "  " #             .   DEFINITIONS



) %         !       .  +               .   ,



) %            +             ;   .   ,



) % )/      )       #          + ; ,



) % )/     )           .    +  ,

 /



) % )/ /     )       / /           +  ,



)     0+ ,            B      0+ ,   &              . %"       #       .           0+ ,

Section 1.2

27

Families of Graphs and Digraphs



) %             .   #        + Ü, EXAMPLE

) Figure 1.2.8

  "  

FACTS

() ¯

5?    3 7      9 )     

¯ 5L7      #      #       .       ¯ 5:67 H       2   C     #  

Figure 1.2.9

()

   !& ! 

%           

EXAMPLE

)

Figure 1.2.10

 "!" %"  " ! '"&





28

Chapter 1

INTRODUCTION TO GRAPHS

References 5:67 ? =  !"  3     "   

 C + C:6,"

CP ; 5DCC7 K ?   K D"  

     "  J" CCC 5L7 K L3" Q   R IQ  =    I."     ;6 + C," :;PAC 5= CA7      K = "   !  " (. F   J" CCA

Section 1.3

1.3

29

History of Graph Theory

HISTORY OF GRAPH THEORY    

 !"   #

 #              ;  %   

Introduction %             A:A" /    #  #!  :;  ? - + :6:/A,        LS  # #  #     3                2    #   5 ?= CA7  5= CC7

1.3.1 Traversability        #  #!  -T !   LS  # #  # + :;,"   #9           "         #     J  L ! + A6@/C;,    =     4  + A6;/@;,          " The Königsberg Bridges Problem

 #.      "  "    2   " !     /   !       #   LS # .  O   "    !  #    Ü   .            "  C

c

d g

A

c

D

a B

Figure 1.3.1

b

 '    78   

30

Chapter 1

INTRODUCTION TO GRAPHS

FACTS 5 ?= CA"  7

() ( @ %  :; ? -     0     #/          1   %       J# "  "          !    #  () ' :@" -            " /              #              () - 5-) :@7        #       "    #        0  #   /          1 %   :@"      : "     #             :;  () -T       "  #  #"          

       LS #      # 

() -           #" #    #         9     %" " "  +  ,      %  %   &   +      #  #  %    #  %  ,"     % "  "     & &  4   #         9 . " #     LS # #  #     () '     #" - #   #  # 

  .    %" " "          #  #           /     0 !  1"      ./       9     #   

() -T              ) ¯ '          &   #

    #  #   "  

¯ '  #  #     .   "   &   #            ¯ '" "          #  #   "   9  &  #                   / "  

       " 

() -    "    #       "  

   #"            # " #    %             #  4 3 54 ) A:7  A: Diagram-Tracing Puzzles

%          * $ "%%  "    9             # #   !  33  #  #!       P  ."     %  .

Section 1.3

31

History of Graph Theory

FACTS 5 ?= CA"  7

( ) ' A6C ? J  5J) A6C7                 #)

 

           "   9         $. #        #      # "           &         9         J         #    #      "               #  '     "  9               

( ) (  /  33     #   5) A7  K  ?   5? ) A:7      #! $      "       0 1     () ' AC" ( 9 !   #                    #      #         "    # 8   5) A: /7   #  

&

()    #   LS # #  #   / 

33     3       C  '     # = =   5) AC 7  

 %    #        #        2      # C g

c d e

A b

D f

a B

Figure 1.3.2

   " 78    

Hamiltonian Graphs

%    #    #    #          &     .       4 T $"         " + Ü;,"    & #    L !"       #    4 T        "   #  FACTS 5 ?= CA"  7

() %  .    #   /  "  "        ! T    # "        @ 9 &             #  #  #!    

32

Chapter 1

 "      5     2  A          H

H

H

H

H

H

C

C

C

C

H

H

H

H

H H

C

H

C H

H

H

C H

Figure 1.3.8

C H

H

H

% > !"  !"

Section 1.3

35

History of Graph Theory

()  5) A:7  /      Æ +!,

   # "           B    #   #    !   *      A 2  H#



       



;

C

 

A

() = L  >   #       #   # 

    #  9     "                 #  ' A:A"  5) A::/A7      & #     " !  ) -       # . # #   "       L!I        

     

  "   /  

( ) ' A:A"  5) A:A7                             ! 

 "         ( ) ?   

            C 6  C6 %  ?  K L   5? C7   3          "  JI T #/       #       

1.3.3 Topological Graphs -T    5-) :;67          "          '   .        ' C6"     3    # #      # L3  3 L ! + AC@/ CA6,"   ! P # # H  #" J "   P  .           Euler’s Polyhedron Formula

 !           " #        !      #   #    "    "  1      )



 G1 *

'  : " I     "   #      -T    #    4 "          "   #  !     

36

Chapter 1

INTRODUCTION TO GRAPHS

FACTS 5 ?= CA"  ;7 5CC7

()            "   H# :;6"  -    #    #  "    + ,  &  + , # " "  " '    #         #     #     .  #    #   "   G  *  G 

() -  #      ' :;     # /  " #           # %/8 ?   5?) :C7  :C"            () ' A " %/?  5) A 7 #     -T  # /

  &                      

() %    " /%/K ?   5?) A 7      

      .  "           #             4           -T    P         "       "    /        + "     RT   , 2    /  " ?      

  G1 * 6  .        "     #               " 

   G 1 *    #       &   &$"   9       1  $ $  $ + : ,

() ' A@ / " ?   5? ) A@ / 7       '

  ( "  ./

      ."           >   3  #  -T    !   # $    #9     '  " 4 J I !  ?   T       AC;/ C6         #   

()  !  J IT !   "       /

 # 8   J 4  5 46:7      + ,   / ) '   

 

 *   !  4      # (  54) AC 7    #     

 #        "     4  T      #         

() ' C 6" 4  3 5 67 .  4>T       / / # "    8S #  #   &  "    /   4   4  #      L  #" #      # J 2!  527  C"       .     ' C;" ' L  5L;7       / #  " "  @ ()  4     / #     C; #

       #    #   Æ"   66          8        / C@6"       C@A #     D  5 D@A7"   =  T 5@7 #       C@   $   "   "    # K ?  5:7       3 #           #&"    3       " + Ü:,"        +    = ! 5:7,

() '  9     CA6     " #

  5A;7  "    #  "    0#  # 1    + Ü::, 4 "    "  #  #  #      "     2 / # "       "   C:C 4 4 " K J 4!"    = 54=:C7 #     6 #  #    &  

Section 1.3

History of Graph Theory

39

1.3.4 Graph Colorings - !                 "   "  # / #      # 2     A; "   # + , 01 # %  L   A:C '    # L %  =  4!  C:@" #       !  L"    !>" 4   4"  "       #9   # H  #"    " J "  #   5 CC7 8  "        #                                "         5 AA67"          5 7    #          ) "               )"  $ $ "    

 

() ' C

" 2!  52

7    #     #  /  "       /           #      

   ;

() % C;6 4       #     # /    (  .  " 4 54@C7        #   

Section 1.3

41

History of Graph Theory

() ' C:@" %  4! 5%4::" %4L::7"      K L"

#    #   A   #   " #    /       9  #          /      #  

() % CC" #"  " "   5C:7 /

      F        #   #      #        "   3  %/ 4! "   #    #   @   #   

Other Graph Coloring Problems

%    !   / #"   #           

 #      

FACTS 5 ?= CA"  @7 52 = ::7 5KC;7

( ) '   A:C       " L 5L) A:C7     #                 &     >      /    !  # 4 =        C  #  #9 !   / #

( ) ' AA6"   5) A:A/A67    /   9               #           .

   

() ' C @"  LS 5LS @7        #    .     # 

  + Ü

,



()               &     >           C6"      !  = "     J          () ' C " ? ! 5 7      #     

 .       G "   + Ü; ,

 9       

() '  C;6" #     ./      #  % "        $ $  "

() ' C@"    ? "    "       " @6 + C@," ;;P;  5 @7 ( !" ( & I #I   I I "  " " & 2  + C @," :P;A 5 7  ? !" (         !" #  #   " : + C ," CP C: 5) A 7 %/? "    Q /  I "  ) #0    C + @, + A ," @APA@ 5) A;:7 % " (         " #   +,  + A;:," : P :@ 5) A:7 % " (      " #   +, : + A:," P@ 5) A:C7 % " (     " # %   " + + A:C," ;CP @ 

,

5) AAC7 % " %   " +  #      + AAC," :@P :A 5: 7 % !"  .   /   " ; P ;A  # .   "  

 !  " %8" H D!" C:  5) A7  " 5   7          #"   &  + A,"  6CP @ 5CC7 J   " #

" #  F   J" CCC 5 A 7   3 "    #          " 3  %   + CA ," PA 5 2K;7   3 "   2!   8 K"      /   / #" 3  %  + C;," CP 6 5 46:7 8   J 4  " %   " ) '   

 

 *   !  + C6:," ;P 6 5 8) A@67 %  8 " %        "        " # = = "  " 

  H @C + A@6," ;6 P;6

Section 1.3

45

History of Graph Theory

5 ;C7 - = &!" %     #  .   " &    + C;C," @CP :  5 ; 7  % "    # " #    " +, + C; ," @CPA  5  7 4 -  " J.  " "  @ +K C ," C ,"



6  +% 

5- @;7 K  -  " J"   $ "     : + C@;," CP@: 5-) :@7 ? -" + :@,   #         " 0     "    #   A + :; ," AP 6 5-) :;C7 ? -"   T 9    9      Q  "   " 4  ; + :;C,"  6P: 52 = ::7  2     K = " ) 0 !  " J " C:: 522;@7 ?  2    2!" 8.  $    A + C;@," CCP6

    !" 

52

7 J 2! "    #"       + C

,"

;P @ 527 J 2! " %  .  #"    #    + C," @P@C 5K:C7 8      K"         



 ! �    " = 4 2  " C:C 54F=:C7 4 4 " K J 4!    = " 6      #   &  "   

 +, : + C:C,"  P:6 54@ 7  -     4" 8 /   ! $ " "      C + C@ ," ;; P;;@ 5:7" K ? "            FE  

Transitive Closure

.   #  &  #  %# #   '       '   '             ) *  + >                            ) *  + #  &    ' , # #       ' $    $ 0  1                 ,  3  #  >  $        &    '          #       4>    '                                  ,           FACT

$   %! *+ *  ¾+   

$ (   

* 

¿+

  

         

REMARKS

%(                0>G 1

 

64

Chapter 2 GRAPH REPRESENTATION

Algorithm 2.1.4: # 

, #- ."!#(

(         ) *  +, #   ) 

0  1

   &    '

(         ' $ 0 1 #             , 3  # 

$ # 

$ 0  1     

!( $   %! *+  ! ()  !  ! ! ()  !  ! $ 0  1 () 0  12 !  ()  !  ! ! ()  !  ! ! ()  !  !  0  1 ) "#  0  1 () 0  1!0 12



%(

; $  0  1 )                 '   '

            '       , '        >         

%  0  1 ) %  ½0  1 ! %  ½0  1  %  ½0 1 #    !            .  ' 

   # #                   FE  

2.1.4 Applications to Pattern Matching      &           !                 %                           "            '           '                  #             

               4,   =8 **  +     !  *  +  









      #   



#       %        * + ) * +   * +     





> 

      



 #          !          

$( $( $ ( $ (

                      6                          #     ! 

           

       

 

The Characteristic and the Chromatic Polynomials DEFINITION



(           #              



  4          

, * +        



 * +

FACTS

$(

0   ,   % E   N          K    7    ! #        



"     #       #  

       !     

  !             ! 6 #  6 #  B #"!   #  )!     #   ! "    #       "        

&

2 $    %  "           ! 

             !         ! #       A             

   "  # 6     = >     L    

# 3     "   "   A    / !   - - 0!           )

&

FACTS

2 7" )              6 2 7" )   4  !   !   

   2 7"     )  ) 2   "    )  ) 2      )     " # 6      2      )             "   !  

1   !

     4½ ½E   

 /  0-        "      ."

170

Chapter 3

DIRECTED GRAPHS



 ,   "        

   /    $B ,,(0!

 #     1 FACTS

2 $B ,,( 3 + / 0        -    " --    -

  "     "    !  + / 0 /:  C0' /7   @    + / 0  $BU

&(   + / 0   ' $B ,,(0

2 $%+ I ,,( 7" -  ! H,,!        -      ! #      !

"             " -  

2 $I,( 7      / ? 0-     

      ?   #       !    #     2 $ &(          -    -    

-1 !      A " !             

 /  0   !       /  0      -      

 -      3   - -  !    "    "  !    -        1  -      Arc-Colorings and Monochromatic Paths CONJECTURE

0  ? +  / $  + H(02      "   %!      "   /%0    " -     " " %     

   /%0 " #        " "      !                "    REMARK

2   1           "         "             ! /0 5    C'  #     /0 5         &-             -   # -    #   / 0  / $  + H(0 3  

! 7U 

6  / 0 5  3    " 6 #   /%0  A   %         1     # /  $% &'(  $,,(   

         "  4 0 FACTS

2 $  + H( 3           # #  !    "        " "  5   !               / $H9(      0 2 $HH( 3           #       

     -     " -     #   

  !    "        " "  5   !              

Section 3.3

171

Tournaments

3.3.6 Domination 3        " 

         "         B #"!                      !        

       #      5 / 0 5 %   "   %             6 #!    #   "!     "   6 #    

"   %       /0      Ü& DEFINITIONS



2             "            "   



 "      "



2                        "-   !   1      #"           



2        /0   #      #

"       "!     



2                       !   5 / 0 EXAMPLE

2

%      " -   # "-         #      #"   "    /  0     -     # "      " " - !       "       /  0 " -  /   " 0  !   6          !

 " "          !           5 / 0 5  FACTS

2

$):(    "   %!      

       %¾¾ ¾! #   /  90         4    -        %  /  $BB,(0

2

$%&H(              6     #  #  

 "!      

 3  

!          -           !  6     #  #  

 "              

2

$%&&(                  

      6    !  !   

 #      "

         "     1               "         #     "     "  

            =#> "

       "        7      - ! "      !  4    #                 2  " 

    / 

   0! "        "    1        ! "    #  6 "  !    #   "       = >   "    /

     0! "     " 

"    = " > 

 ! "  

174

Chapter 3

DIRECTED GRAPHS

       " -   /  6 0!  "         

  /    4  0        K- %  F     $% &:( DEFINITIONS



2          /   "0      "     /   "0 !   "    1    " 



2      &    -  !

#    "  !   "-  !  "    "   &           1    -  



2     &       "   &    1        

         "  &!        "  /

       "      "     "  & @ "     "      0



2         "         /!      6          0!  

     " F    1           /!       1    0 REMARK



2 3  A    1    !     "         A   =  ">!    -            #     "  =" >  !     1      " F    1  "   3       "      !    1         EXAMPLE



2    : 

    1            " C-   ½ ! ¾ !  ¿  3   #   ½ ! ¾ !  ¿ !      ##          "       "  #      !           ! " "      " 

 !  "         " ! !  "          1     

            !   #  

 1   "     !  1     "!  !  1   "  

Figure 3.3.7

" + )     

Section 3.3

Tournaments

175

Tournaments That Are Majority Digraphs FACTS

2

$C&( 7" -   /! "      0    1        

   ?   !   !   ?   !   "

  % -/ 0    

       -"          1      

   -/ 0  # " !   */ 0    

       -         1      

   */ 0  # " 

2

 

  ! -/ 0 /CC ' * 0 $C&(!       "    -/ 0 ! /" ' * 0 $7 '9(

2

$ 'H(    */ 0  #  ! */ 0 5 */90 5 */C0 5 ! */ ? 0 */ 0 ? !  -/ 0 */ 0

2

$ &&( 3            1    !    ! ' ! !      

  -    !      " 

  8   "       

    !     /  0            8  #          3  !      (        

    " -  



Agendas DEFINITIONS



2           " /!      "   1    0



2      "   4 "     #! "   /½       0   "!  "        A " !   #         " !   #        " ! 



2 )"  1  -       /      0   " "   "   !        " "" 

 "  /!  /  0 " 0       "    1  " 

     3                 !      !       !               "   6         /      0 EXAMPLE

2

)"   /  "  0    1      #     H!  "                 "     #

176

Chapter 3

Figure 3.3.8

DIRECTED GRAPHS

-+ )           

FACT



2 $::(        !    "                       "   

        /     !  $& (0 Division Trees and Sophisticated Decisions DEFINITIONS



2 )"   /½  ¾    0!     /½  ¾     0  

 ! 

!   !        "

    - 4    /½  ¾     0E    

  /½  ¾     0E !   ,   ! "  "  # 

   4  /½  ¾    0!  /½  ¾ ¿       0!      # "  "  ? ! 

  /½  ¿       0!  

  /¾ ¿       0



2 %    1  -     /½  ¾      0      " "   "                     "   

"  /½  ¾     0   ! # 

       "  "     "      1      #  #  "    6     

    "   "  E  " !   ,  !  !     

   "   "    "      1      # 

      # "  "  ?          FACTS

2

$ HC(    "                  "        

"      4     "            " -    

2

8  "           "    /."  $::(  $H,(   "  $&(0

2

$&:(           #   "   

     "                      -     !   

!       

   EXAMPLES

2

 "      /   $ 0   #     & )"   1      #!       "    ,   " 

Section 3.3

177

Tournaments

      "

            !          

"         8         $ ! # 

    : 

Figure 3.3.9   /      + )  

2   1  9-    #     , 

    "  

    :    !             /   0!               

Figure 3.3.10 + ) #  Inductively Determining the Sophisticated Decision

 

#                         #      A  /

  2 /$ 0    -  " $ 0 FACT

2 $+H9( %    1  -     /½      0   

       "    6   "    3" A  4 $  $     $  

#2 $ 5 !      ! !

   $ 5  $

 





  #

2 /$ 0

 $       

References T T ! I  ! MH    '    "  !  ! $'9(  T $   !    

#             !  @  

'



 #

 

      



     



'       =  >                 !  @ 





'       = >          



  

   

FACTS



' A            !       

 

'

               

Vertex- and Edge-Connectivity

6   !  B                  ,-    ' -   DEFINITIONS



' 6        = >              ! 

          



' 6     = >              ! 

       

  +  #    !   C D       "        = >  = >



= >  = >    

EXAMPLE

'

(   !  #     ! 

 

?   ? 

196

Chapter 4

Figure 4.1.1



CONNECTIVITY and TRAVERSABILITY



? 



? 

FACTS

  '

?

? 1         

   

        

     ½   ½ 



    

½

? 1 

½

  

 $  

   #     



?

?



'

"

?

!  

'

"

?

    

 



"

  



 

 "      

 



 

   8    ! 





    

½ =

> ? 1

    

  !    ! 



'

6   







         

Relationships Among the Parameters

 

6

     

  !   ! 

Æ

 

Æ

=

> +  # 



 ="      

    

Æ

=

>

 >

FACTS

 

'

-+0 (   

'

 Æ



-* 730 (  



! 

?



?

 

Æ  ?







   1

 

  #   



DEFINITIONS



'   

     ! ? Æ 

 

'



  

!   

!

'

?

 



   

  !  

         







?

Æ

 

   





 

 

 



    

    !       

  

  

Some Simple Observations 6 !           ,  

FACTS



'

AB

 

       

              

Section 4.1



'

"





  

     



'

197

Connectivity: Properties and Structure





 

·½    

?

! 

      





E    





       !  



    





'

A  & !          

Internally-Disjoint Paths and Whitney’s Theorem DEFINITIONS



'



       

#            , 

#     



'

6  

 

=

½ ¾    

 5     

  >

    







    

 



    !         

  #   6

=

>

=

> ?

 



  ?



FACTS



'

-+  0   

  

 

'



         !

+  %             &

'



!  

 5      !    5   

  

!         &       !  

     

Strong Connectivity in Digraphs (           #   #& -:/70 -* F 730 -8 210

DEFINITIONS



'

"   

 



'



  



   

 



! &        





    

  

! &

    

   !  







     



'

(     

 

      



?



=

>

 ,          ! 

           



?

=

   

    

>           =

 >

   

! 

  

     



'

:

      6

     

 

=

>  =

 

      

      

>   C D

 

=

 

>   !   

198

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARKS

'

"  #            !     !  

   

   

 "     = > ? = >      

           !    = > ? = >

  Æ   Æ                  6       ,  Æ ?  Æ   Æ 

'

F           Æ   6 !     2  *         =   > (  9 FACT

'

-2* 910 (    



  Æ

       



      

   !   

    ! ? Æ 

? ? Æ

An Application to Interconnection Networks

6   !&                  = >    !       !             &    = >  -                  &           !&         8 *

    -8* 3/0 "     #         !&            6    B     = > 

      !&  Æ       

   B      = >     #         !&        

4.1.2 Characterizations +      !                             5       5        "             6         !      5       5    +  !       &               Menger’s Theorems DEFINITION



' :     !  5        =>         =>        ! 

         @ 

  (      5         => 

?      

   =>     

Section 4.1

199

Connectivity: Properties and Structure

  (  !      5    

   => 

  #   

FACTS

' '

?   => '      5  -$%  $90 (      5       => ? =>  '  =>                       $        ,         !  B   (   

   

'

 '

-$ 90 A          5    !  => ?  => =>

   

  (             =>         ! 

  =   >        @ 

 =>    #    ' -'.   

' '

    =A    $% > -A(47((470 => ? => (      

 = > ?   =>

REMARKS

'

.      $%      #          

'

6       $%  !    (  (&  -((470   & "-/&  F!& )!        Other Versions and Generalizations of Menger’s Theorem

"         !  #            $%    #  -. /90 -(/40 -$3 0     



    $%       -;10 DEFINITIONS

 

' 

2                      #          #        

'

         =  = >  >         #   

' '

      !   ?         

            

   #   = B

          #   >

'



 #        !      5 

  6  #    =   > 5       = >         = >        = >

200

Chapter 4

CONNECTIVITY and TRAVERSABILITY

FACTS

'

6           



   5 

'

"



  6  

 =

> ?

   

=

=



     

 

=

>

>

'

6   $        B       

"    #  #   ! 

'

 =

> ?

  =

> 

2  -2 70 5   (  4    C# D    

   

   ! 

=

  =

   

      #       5 

             



 B     # 

>

>

=

>   : G

 -:970 5  

   =

>

>  8 5 !    $ 

'

-$ 93$ 930

    =

>

=

>  

    =

>

=

> 

REMARK

'

6        $%  =(  3>        (  

  & 







      5  







   

Another Menger-Type Theorem

 

(      

          





   

=

>    #  

    5 

        B  

5   





=

    



 (     

>              



      





FACTS

'

6  #   !  !      B  

*!  

    ?

=

>

 =   



 > !  

         =

>

=

>

=

> ?

=

>

6  $     B

    (  /

 '

-AH 99:F 930 6  #       5  

   B           = @    











>   

 

Whitney’s Theorem "     #    !                  #     !    5    ! !      =(  >

    $%  !    

 &              



   !  ! 

    +   "                



  

FACTS

 '

-+  %  +0      

    

 

          



=                 





    

   5 



 >



 

Section 4.1

201

Connectivity: Properties and Structure

             #        5 

' =A    +  % >     

           

     =  > :                6  #       ½ ¾              ?             ½ ¾         5  =  !   #   >   = >   ?     ?     

' =6 (  : > :













Other Characterizations

              !   5   ( &  $  6 5 !     : G

   2 I  =! !&  >      (                     =(   > FACTS

!    E                  ½  ¾           ½ ¾        ½ E ¾ E E  ?        ½  ¾       = >         ?        = >       

' -:992 930   

!               

       ? =  >           ½  ¾           5      = > ½  ¾          

       

' -/90    

4.1.3 Structural Connectivity 

*           ,       

       

Cycles Containing Prescribed Vertices

6 ,        .   !     (  4 FACTS

' -. 710 :

  

  



      

6

    

     !     6            !   E               !    ?    ! 

            

' -+ $790 :

Cycles Containing Prescribed Edges — The Lovász-Woodall Conjecture

: G  -:9 0  +  -+990  5                      '' '  =   !    #  >                     

202

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARK



' : G  -:9 :990 , !  +01-(' .       ?  6 5 !   !      ? -A2 34:/10   ? 4 - /70 B  *I &   6  -* 630         

     = E >  =!           > $    5        J !           =   !         > FACT

'

     !                                    -J 1 J 1 J 1J 10 :

       6

               $  

      

Paths with Prescribed Initial and Final Vertices

2   !               #     5     =    >           $%  $%    !                 5  ,#              =    > F! !    #     !       DEFINITIONS

'                       B ½ ¾      ½ ¾        @    #         ?               #  5  '                             =   >  #                     





  5 

















'                ,               

  5    ! 



' 6               !           FACTS

'  '

  &    !  =  >         -: $ 910 -H910 =  > (     #     =>       =>     & 

 '

6  -631 0             

    & 6    ,                         -340

  (    =>           =>      ! &   &

Section 4.1

203

Connectivity: Properties and Structure

CONJECTURE

   = E > ? => ?  E 

-631 0 (    FACTS

' -;&3 ;&34;&390 "      ½ ¾     ½ ¾      =      >      !     7  =  >   =    >   #                       5  ' -*/0 (       = E >   E   =>   E  ' -;&33;&/1 0 (      

= E >    = E >   E  => =>    = E >   E  ' -610 A   =>    =,  (  /> !      #             & ' -/90 :        6      =½  ½ ½> =¾  ¾ ¾>     =     > ! ½  ¾      ½  ¾            

   ½  ¾        @      ? =   >  ?       #     5             = >  ?      = >





























Subgraphs

*            =(  9>                   =(  3> *!      #        FACT

' -$ 9 0 A             



 

 

REMARK

'         !     6   -6330 "   $                       

   

 

4.1.4 Analysis and Synthesis    B              !       = >      C D                           6%  !    !           !  &  +     

     !      

  (                       !            

204

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Contractions and Splittings DEFINITIONS



' 6             ,       

  =&    5           ?   > :                             



' 6          '  #  !   Æ          !        5     ! 5        5    $    !            ? Æ E  !  &       



' (            #      5   #                ! ½ FACTS

'

"            #        

!         =   >   "    ! !   ?      Æ        

'  '



-6310 A                 

-630 A    -  =   >

         

 '

-670 A            !  ,  B   #         EXAMPLE

'

" (       "       !            #   

Figure 4.1.2





        !"  "

REMARKS

'

"         #       

Section 4.1

205

Connectivity: Properties and Structure

 '

6   (  3       J !& %        (  3        6%  =(  41>



'   6%                        #    (        5 !      -J10 !           = !>

'

(  41       !     -670'        !       ! 

                         

'

  -9 0                                 B  (   4       *!  : G  -:9 0  $  -$ 93 0            =     !>            Subgraph Contraction

6                     DEFINITION



'                               #       FACTS

'

 /          

'

 

-$;/ 0 A         !

-6630 A      !              

'

-J110 A                        

CONJECTURE

-$;/ 0 (         Æ                Edge Deletion DEFINITION



'                #                   =  #>  FACTS

'

 

-$ 9 0 A  !   

    !          E      =! >   

206

Chapter 4

CONNECTIVITY and TRAVERSABILITY

'

-;&330 :       !      :     ½        ?  = ?  > 6 = > 6 #                  => 6 #                 ' -;&/10 :       !       "      

      !    ?    ?   = ?  >       !     E             #              ' -*;&/0 (        #          !                    #   !  #   



 

REMARK



' (                  ;&  -;&/40     B

                            Vertex Deletion FACTS

'

-J : 90 A             

  #

          ' -630 A  = E >        =>   !          ' -A390 A  = E >             !         REMARK

'

(  4/ !  5  : G   6   (  /    

Minimality and Criticality

     B                       #     =   > !           

   #       !     DEFINITIONS



'             

     = >           =  >       

     = >          =  >  

'

 #                 => ?    => ? 

FACTS

'

-$ 9$ 90 A        =       E      

  >

  

Section 4.1

207

Connectivity: Properties and Structure

'

-$ 90 A               #  

'

  

'

 E    



A             #    ! 

   !      -* 30 A                   

REMARKS

'

*   -* 7/* 110    #   #                            !     : & -: 90 8  !     $  =(  7>

 



' (  7     *           =   > $ %  =(  7>   #        6 #        #             J  -J 9 0 Vertex-Minimal Connectivity – Criticality

$     -$ 990          ' 

  ' -  '     !     !         DEFINITION



'         

      =  >     

#   !      !   =   > ?    +  ?  !          

    FACTS

' '

-$ 990 6  =  >       

½ 

6 C&     D =   ¾·¾       -   0>  =  >     =  E >  



' -330 6      E      B         !   

'

-$ 990 "  =  >         7 ¾ 6       ,     =  >      



REMARKS

'

    =  >    !   5         -$ 3 0

'

(  77     5      ·½     =  >    $  !        !  ,      =(  79>  ' (  73 !      $        ,     ! 

208

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Connectivity Augmentation

+            -(/ 0        

   * "  ' -    *  * !   

  ? =  >             ,          !        ¼ ? =   >    .                 !&       

  !              ! +     F &  -+ F 390    ,             

    "             Æ                              6   B      !     -(/0

References -. / 0      .  $%             =// >  4K47 -8 210 H 8  H  2 2      L  : 11 -8970  8    F!  19K -* 730 2     ( *    2  !        7K 7              !""#     F!  7K73 -:/70 2     : : &

 *  :MF!  9K/ -A390  9K99

 >

Section 4.1

209

Connectivity: Properties and Structure

-AH 990  A  . H &     2       (***       %  =/99> 71K 7 -A2 340  : AI  A 2 I          

        $  7 =/34> K -((470 :  (  .  (& $ #   )!  !& $ 3 =/47> //K 1 

 +

-(/10  ( & &         K     9K11  8 J : : G  * H I    5  =A>  -.  /0%(0   8  //1 -(/0  ( &          B     $ 4 =//> K4

%($ +

-(/ 0  ( &        !&     K7  H 8   J2 $ =A> $    1 %     !!2 6 N    $      //  -(/40  ( &    !& )!  K99   2   $ 2I   : : G  =A>      A    8L //4 -2 70 6 2   $ #  $   I

     ( &  2   $ %   =/7> K9 -2* 910 . 2  ( *            8  =/91> 14K 

0 ' $

37

-2 340  2             N       //7 -2 41K

-* 30  K1 -* F 730 ( *     Q F   .  !      5 4 .   /73

(   3  4 

210

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-* 630  *I

&    6       ,  $  =/3> /K 

  

-* 2 110 $  *      * 2 !   #   ' !     B +    =111> K41 -*/0  *&  Æ          ! &   &   9 =//> K4

   

-*;&/0  *&  * ;&   #   5  $       ,             3 =//> 4K43 -H910 *  H A  L      Q   I  2  $  39 =/91> /4K1 -J 1 0 J J !     ;  !  5       ' : G

 +  5 +     % , 3 =11> K  -J 1 0 J J !     6!      ' : G

 +  5   -J 10 J J !     A#    !      ' : G  +  5      -J 10 J J !       : G

 +  5      -J 9 0 6 J   F  *  %          +  

  % , 9 =/9 > K  -J110 $ J            % , 31 =111> K 3

+    

-J10 $ J                #         3 =11> K1 -: $ 910 . 2 :     $   ;  #     ,   !        &     0 $ % 1 =/91>  K71 -: 90 .  : & $         =/9> 93K3 -:9 0 : : G   4

  $ 

+ )  . $

4

=/9 > 3

-:970 : : G  ;            $

%  3 =/97> /K3 -:990 : : G

            %  1 =/99>  K4



 $ 

-:/10 $ L :            / =//1> 4K 

 

Section 4.1

211

Connectivity: Properties and Structure

-:/0 : : G

       //

 *6    A   F * 

-:F 930 : : G  L F  :    $ .  $           $  / =/93> 7/K97

$ 

-$ 90 + $  $      &  I  2  ,# / =/9> K3

-$ 9 0 + $  A#     I  6    2    I  J    $ % 7 8   9 =/9> 37K/9 -$ 90 + $  A&  2          I  2    $ ,#  =/9> /K  -$ 90 + $  2   &  Q      2  14 =/9> /K -$ 9 0 + $  J    +    2  7 8    =/9 > 39K1  -$ 990 + $  A & I

 I   K4



&   2 

 $ %

$ 

-$ 93 0 + $             $  =/93>  4K7  I -$ 930 + $  N   $ #    &  5& ,# 1 =/93> 4K7 I -$ 930 + $  N   $ #    &  ,#  =/93M9/> 39K 1





+

+

$ 

/ =/99>

      $

  $

-$ 9/0 + $         ,     77K/4     *   !   2 3  *     /9/ : $   : F  3 /9/ -$ 3 0 + $  ;          3/K/3  !       4(  5 6789:     6 ;F /3  -$ 990  8 $    H   ; $ 1 =/99> 44K7



   



  

-$3 0 + . $       $% 6 =/3 > 9K /

  

+      3

-$;/ 0 + . $   J ;                % , 71 =// > 13K  -$90 J $ Q   J  

+

- $ 1 =/9> /7K4

-;10 ;  ;  L     $% 6  : + 8 &   H +  =A> %          

212

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-;/70 ;  ;          '      '   7 =//7> K4 -;&3 0 * ;&           +     , 9 =/3 > 4K9 -;&340 * ;&           ""  9K4  H &    =A> '       +   ,     /34 -;&390 * ;&           """'  #             =/39> 4/K3/ -;&330 * ;&          +     % , 4 =/33>  4K44 -;&/1 0 * ;&   A        ! &   &       7 =//1> 9/K34 -;&/10 * ;&                   4 /K44   8 &   * =A>                L  *  //1 -;&/40 * ;&                = E >           =//4>  K91 -340 F    .   2   R     4K9  % 8     !9: =2 ! /34> : $   : F  1    N      /34 - /70 .    ;     ,      $ 4/ =//7> //K 4 -9 0  H      ,    3K/3

   +     9 =/9 >

-330 H H     % 5          ;6  *   #  =/33> 794K793 -/90 S  /K/7 -610  6  6 AI G                    =11> K -631 0  6    &   *   +    =/31> 9K93 -6310  6           ,   ,    +  

  % , / =/31>  K9 -630  6  F            +      4 =/3> 4K4 

Section 4.1

Connectivity: Properties and Structure

213

-6330  6           /9K  : + 8 &   H +  =A> %         (((     : /33 -6630  6   8 6 F           +      ,  =/3> //K  -670 + 6 6        '    K 44 -6770 + 6 6  8      N    6  : /77 -+ $790 $ A + &   . $ $         

+ $ / =/79> /K3 -+ F 390 6 +      F &   A       +   % % 4 =/39> /7K  -+0 * +              + $

4 =/> 41K73 -+ /0  +  6 #         K  " $ * 

 L J& =A> 0  '    %  7/  $     (       //   8  // -+990 .  +         ,  +     % ,  =/99> 9 K93

214

4.2

Chapter 4

CONNECTIVITY and TRAVERSABILITY

EULERIAN GRAPHS                8   .,               A  6  A  6 A    ;          2  2  4 L   6   A  6    .   7 6   A  6 

Introduction A           JI  8  ' (                  (  = > A

C

D

B

(a)

(b)

Figure 4.2.1

                   ! &

              ! &          T : A !         97 -A970U         6       !   C   , D         (  #               -(/1 (/0

4.2.1 Basic Definitions and Characterizations

  6            #    

? =  > !    #  

             = >     

    

                 5  C D    C D  CD

Section 4.2

215

Eulerian Graphs

DEFINITIONS



'         =   >   ! &       = >  ,         #                 #  

' ' '

        #                            #     

"    #              B                   

    "    **          !     



  B 

'          =  #  >                 =         #  >             



'          =  >          =  >               =   > Some Basic Characterizations FACTS

(     !      -69 $3  +/1 (3/ (/10

'

      1 =-A970 -* 390 -L L0>

:

    6 !   B

'

= >

  

=>

     

=>

      

' ' ' ' '

                                                                                  

    ? =  >              =     >             =-9/ (3/ (/10>

' = > => =>

(    

%  !   B



%    %        %         

216

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARKS

'

(            A =-A970> !   (  = >   (  => !        *  -* 390 6 B

  (  =>  (  =>    L =-L L0>

'

8 (       (    7    !               

' '

F           

6        #             #  (   Characterizations Based on Partition Cuts DEFINITIONS



' :        = > 6      !      =  >       !             ?  = >                #      ,



'                      

  #         !     = >



' 6      =  # >  =  >        !           =  > 6    =  >        !          =  >



' :   #         #    6        Ú          =  > !  ? 

  "                  

Ú  Ú     FACTS

' '

  

 

 ' = > => =>

       = > :

 =  >         = >          =  > ?  =  > 

      

   #   6 !   B

'

  

 =  >  ¬  =  >   =  >¬             = > ¬

¬

      

REMARKS



' +  (  =>        (  9=>  = >             =    >      #           (  1=> =!    (  3  /         >

Section 4.2

217

Eulerian Graphs

'       (  1             

!          #             & "-/&  ;  ,          %  U       %        -((70

4.2.2 Algorithms to Construct Eulerian Tours +   !  !               

             = -(/10> Algorithm 4.2.1: #"$%"& $!"' (#)*

#'    !         5'      

    #          +               #                 #      %    A           %    #    

      , '-<    = 1>  !            &           EXAMPLE

' 6 &                  ! 

    R  CD 6          ? &  & & &  % ?         !  (   6       !  %         #       ¼ ? &  &     & &   #                  ¼               ½

Figure 4.2.2 REMARKS

' 6        * %       -            

218

Chapter 4

CONNECTIVITY and TRAVERSABILITY

'

6    ( %   ! !          

              ( %  

    -:3/ 0 Algorithm 4.2.2:

$"& $!"' ( $)*

!  '     =     ?    ¼      :  ?       (  ?   '   :  ?   = > "  = > ?  :  ?    =  >

#' A    5' A  

A

>

  ?    =  >        A#    ?               



The Splitting and Detachment Operations

6   ' *                                      DEFINITIONS



' :    !  #     =>                     6         !

#     !  ¼  ¼ 5                            6               = (  >

Figure 4.2.3

 $! "  "!   $   

' :   #    !  =>         =>  =>    =>                   !  !                ?              => =!       > 6                6             = (   >

Section 4.2

219

Eulerian Graphs e3 e3 e4

e2 e1

e4

v

e5

G

Figure 4.2.4

e2 e1

v1 v3

v2 e5

H

+"     '   



'             B                 #    = > (           -F 9/ F 34  F 340 FACTS

'

 +** :   #       !  =>     ½  ¾ ¿ Ú  = > "     #          ½ ¾  ½ ¿      => "    #  ½  ¿    @ &  ½ ¿  

  



' :   #      =     > !  =>   "        ½ ¾         ½ ¿     ½ ¾  ½ ¿       # (       "      ½ ¾  ½ ¿     

' '

             

   

                   

REMARKS



' 6    : =(  >                

         =  -(/10> "         !        

   =   !   >             (        :   -(110



' .,       (             !     ! "     =    >   &        = 5  >    ! -'                               @         =>        



' 6          !              !              #  !  !          #  ! 

220

Chapter 4

Algorithm 4.2.3:

CONNECTIVITY and TRAVERSABILITY

,$! $!"'

#' A    !  '     = > 5' A            "     ?    ?    ¼      :  ?       (  ?   ' "  = > ?  :  ?    = >   = > A        "     #     ?    = >   = >      A   ?     @ &      '?      = E >        A#    ?               

REMARKS

'

  K                   '                          



' 6  @ !        ( %     #                1    '        B    ( %   !          

         "    !        : !           = -(/10> ;              

4.2.3 Eulerian-Tour Enumeration and Other Counting Problems 6 8A6 6    #                       "     ,   * =(  4>

       = >                  6   !  ! #    !       +

  )   8 5 = >       

  .F B 

  B  .8 5          DEFINITIONS



'               1   

             !    



' : %     =%>  5    # !                  =%> ?       6      =%> !       ,   

  ?   



 ?   ? = >   U

   



Section 4.2



 

221

Eulerian Graphs

'

:   ?  ½           !                  !                B           !      #         B





' :      6     %          =  > !       U      ½   (     ! ½                %    5  

# ½      ½   # ¾      

    (   #     =  >        #      

  !      

FACTS

 ' 

 ,   * 2     %  =%> ? ½        ?  =%>   J @   # 6         %         



' "       %            B             

' '

%    ?           3) -  * -A84 6 0 : %            =%>          6           !         =)= >  >V    (      







' (      !  *    '      = >    = >             ,#         ,



   

 '

6 8 5   %  

 

  =%  >> !  

  = >    

     ==> ? )=> ?   

' 6     !     8 5 B                8 5   %   B 

         8A6 6     8 5 B  

     ½ = V>  

EXAMPLE



' 6 8 5    10>

%   %   !  ( 

4 =  -;/

222

Chapter 4

CONNECTIVITY and TRAVERSABILITY

0000

000

1000 D 2,4 :

00

D 2,3 :

001

0100

010

1100

10

01

1101 011

11

0010

010

1010

101 110

0001

1001

100

001

100

000

0101 1011

101

0110 110

111

0011

011

1110

0111 111

1111

Figure 4.2.5

 -". !"  %   % 

REMARK

'

.8 5              ?   !  !     B 6      %             !       .F B  6    

   !        !    !   B       '    %    J                  ! !                                =  -S10>

4.2.4 Applications to General Graphs "     !                   U          

            #    !* ! * = > "   !               B  !         B                Covering Walks and Double Tracings DEFINITIONS



'       =    >               



  ! &

'         ! &        #  !                       !   

Section 4.2

223

Eulerian Graphs

 '

         ! &        ½           ?  =    ?  >              

 

' '

                      

6            ! 

     

= >   

  = >            

FACTS

'

:    !         $ 1 6            !              B             U    ?             



' A                "             



' - 990                         =     >



' -6390 "    !    

            B              



' -6770 -6390        !   = >  1     

   

'

-L940 :        = >             = > !      =  >                          ;        (   = &   ?  = > REMARKS

'

6                =.,   />            !     !    !  !    !         ! ! 

'

6     B  (    4                      ,                                    !      5           Maze Searching

"  #      *1   !      !        #        6  %    5      *1-    * = -(/0   #   >

  "           =>      !        #    ,      =>                  

224

Chapter 4

CONNECTIVITY and TRAVERSABILITY

 ""& $!"' ( ) *

Algorithm 4.2.4:

#'     5'      

   



     Ú                                                    



=

"   

>

? 1 

?

=

> ?

+  =

+  =-



>

=

 

>0

=

?

'?

'?

:

>

?

>

-

=

A#

>0



=

> 





E

?

?

=

>

'?

'?

E

Covers, Double Covers, and Packings DEFINITIONS



'

      



   

+

       



'

    

+

#  !  

 

     



+



'

 .

+

      

=.>     

     5    

  

  

  !     



  

   

 



    

'

+





   

+



        

           !  

+



CONJECTURES

  !  " 

 

  

  ! 

 

=.>' A        .

  ' A 

        

.

# 

  ! 

 

  '

A        . 

          

Three Optimization Problems DEFINITIONS



6

'

:

    !    !  !   

    

!



!           & 



'

 



'

+

6

$%

 6

  

+ =

+

  

=





! !

>    

=

> ?

 ¾

=

=

> ?

'

 , 

=

¾ 

>

= >



6

>

    &   =$+ >

  ,  

>    

$ %

   & 

! + +

 



+ =

 &  &  

>   # 

=$+ >   ,

Section 4.2

 ' 

225

Eulerian Graphs

6   &  &     ,    !     ! & ! =>            = >

FACTS

'

-(370 :         6      .         &  +    .    +   6     .   5        

 '

-(2340 6 N         $ #  +    &     

                 $   +                 

 '

-(2340 :    !    !  !     "      N        +     $ #  +    &    =+ > ? = >  = > !   = >        !     = > '? => ¾ 



'

-(2340 (           +      $   +             N        =+ > ? = >

'

(       !  !           N        +      $   +        =+ >  = > 6    = > !    B        ==+ > ?   = > ? 1    >

Nowhere-Zero Flows DEFINITIONS







' :  '  =%>  ,         = > ?  = >      =%> ¾  ¾ 

%

6  

    ' 

' :  ' = >  -        : %        ! 

  =%>           = >  ,  =  > '?  => 6     '        )!      % '   )!     (    => ? 1      = > '  '    )!      =>        = > ¼

¼

CONJECTURE

) *  +,   4 )! -64 0

   =FQ4(> A        !

FACTS

' '

-30 A        !  7 )!

-64 0 "      => !   )!    



     

 

'         !  )!          

    !   )!          

226

Chapter 4

CONNECTIVITY and TRAVERSABILITY



' 6        FQ4(  .     !               

'

-9/0 :            '  = > !  !    B

' = > 6 #      +          = >

 .

6 

   #   =>   + => (        = >



¾ ¼

= >    

 

  ¾

= >

 # =>'

  

¼

REMARKS

'

.                       K A !    !                               #                              -2Q/ 0  -Q/90       )!     



' F!  )!    !                                      =     = >>   =>  !             

4.2.5 Various Types of Eulerian Tours and Cycle Decompositions DEFINITION



' :         %      "      = >

             %        

            %    FACTS

'

-J470 :     !  #   = > ?                6            5         !  ½ = > ? ¾ = >     U        !            !    

   

 '

-3  ((/10                   

     &         

 '

:       #       #        !   

'

 6 

-A840 : %¼       !           

  % ?   =%¼ > 6  #  %          

    

Section 4.2

227

Eulerian Graphs

'

- (/40 : ½         = >     !             ?    ½             #      

= >  /  U   = >  /              !   /       

REMARKS

 '  '

(  3            : =(  >

(  /               #          = -Q/90>



' %           -(+3/ (/10 *!    

              %¼  !    =   =%¼ >>       +   (          

            =  8A6 6 -(  30> Incidence-Partition and Transition Systems DEFINITIONS



' (   #        => ?

           6  = > ?     





Ú =>      ==>>   

    ¾



'               0 = >           0 = > ?  =>         = > => ?    





 => A   =>       '            +             0  0         !  A                0                                   0           ! +            0       0               +      ' :  = >                      = >  =     = >>              =>   = >  = >         ,     '       +           0  0 ?        

¾

    6  C D                              C  D



'           = >   ,       

#        =  >   ,  =  >  =>    =  >      =>   = >

228

Chapter 4

CONNECTIVITY and TRAVERSABILITY

FACTS

' -J730              = >       Ú    = >

=

           >   ,         

+       >  #         + 

' -(310 2         

 =

' -(310 :   

 =

!  =>

$



            " =>  1  >   #           

' -((/10 :

=

> 6       

         !          >             = >   ,

=

' -(310 :                   " => $       = >              EXAMPLE

' 6      (  7 !        0 =  > ?   E ¼  = E >¼ '     4   7 ?     0 =  >        !  !   (  7                 1

5

3’ 5’

1’ 2’

2

4’

4

3

Figure 4.2.6

  /!  0 = >"! $ $ '

REMARKS

' 6       +            !  =>  1       = >         H         - 3/0'        W%

 W%                !          ' (  4 !  (  3               =(  > ' ( 

          (   +            =         #           >     &!  '= * .   " 

          .   5   F! Q 4 (! 5     -(:3  (33 (1 (10

Section 4.2

229

Eulerian Graphs



' (    7 !    #                      #                 ' (                        !   (  7            &



' +  (  7  9                  #  !          = -Q/90>



'  = >                -(/10 F                 !              .,          #    = >      Orderings of the Incidence Set, Non-Intersecting Tours, and A-Trails DEFINITIONS



' 2     #  ,# B ½        Ú          Ú           Ú    1 => "         1 =>      &!             



' :         # !  =>   !            Ú    1 => ?        Ú        0 = >          1 =>            !        2                   0 = > 6  

    0 = >       0 =

>

'

:       !         1 =>              0 = >      0 = >     !    1 =>      !  =>              +                0  0    

   

'

:       !         1 =>                     0    ?  E    ?    = =>>



'          !              #         #   

'

   =  >              

EXAMPLE

'

             B          !  (  9 !                  7 1   3    / 9 4 

230

Chapter 4

CONNECTIVITY and TRAVERSABILITY

2

1 11

10 9 8 7

12

6 4

5 3

Figure 4.2.7 

" $    "

FACTS

' 2          # 



1 =>      =

 ' "      !  =>               B



 =

>   

>    

 ' -(/40 6     !                      -  ' -(/30              U             ' :

                     #   Æ = >  3 !     3

 # !    #   5  

 # 6       REMARKS

' (     3             : =(  > B                     :      ,      = >              ' 6     !       0 = >      

       = >    '      !                 U            : &!        ,   0 = > =   0 = >>          5         0 = >

Section 4.2

231

Eulerian Graphs

4.2.6 Transforming Eulerian Tours The Kappa Transformations 6 &        

                   

6             

         (        -(/10

DEFINITIONS



'

6

       





                     

? ?

  

   

                                              +                  +             +        '

:

?

  

       

?

  B 



  

'

 



=

      

=

?

=



+ 

'

:



?



=

> ?

   



'

 

¼  =

       

>        

+ 

=C   ! D> 

  

?





  

   

  

           



 

=

>

          



> 





      

!  

     

  

=

>    

=

>   #



  







   



  





              

 :

 



=       

               ?      =     

      > 6 !  ! 



+ 

>

2       



6      

 

     +   

 6       



>        

    

> 6  

6   

  

?

        '

                                     

 =

> ?

> ?

 =

  A   ¼¼=   >

           













¼ :                     £ ¼ £ ¼        ? = >   #    = > ? ¼ ¼¼ ¼ £ ¼ ¼¼ +   +       ? +   +  6    ? = > ? = = >> '



'













:

 !      

'

6!    

    0½  0¾

    

?



        @  

=

>   

 6

  ?

=



   

> 

 £  ?

=



>

     @      ?



232

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARK

 ' 6

      ,             ! 

              #         * 

       

FACTS

' : ½    !  @             >        = -J310 -&30 -(/10>



 B 

= # 

   

' :       !         = >     

    @  = >      6          B        !              + !  +  ?        B   = >         !         1 =>     >        @         6          B        !              + !  +  ?        B    

' :

=

' :     !  @              B     

 6    

         =!             >      !        =   >

#     6                               

' "

EXAMPLES

' 6          !      ?       3 =! 

  B>  !  (  3= > 6           & !     6           ¼ ?     3 9 7 4      =   >   = (  3=>>

Figure 4.2.8

' 6    A#  4        8   

             + ?     !   ?    

  ? 4 7 9 3 =!    B> =(  /= >>    

Section 4.2

 

/=>>

233

Eulerian Graphs





¼¼

?   9 3 4 7 

        =( 

Figure 4.2.9 Splicing the Trails in a Trail Decomposition

+     !          6&     !                    =    >          Algorithm 4.2.5: 0"& $!"' (*

#'     5'   





                      : ? ½               +         !   ?      = >   = > ?  :      ¼¼ :   ? =   >      '?

         '?  

References -J310 H      J  6     A      $  =/31> 74K7/ -2Q/ 0 8   : 2    O Q  2  !              $ % )  =// > K4  -(/40 : .   * (  6 F   ,            ,             

 $

 =//4> 1K  -(/30 : .  * (                            

 $  =//3> //K

234

Chapter 4

CONNECTIVITY and TRAVERSABILITY

- (/40 $    * (           ,      +       =//4> 9K  -;/0 2     ;  ;  

           "         $  $2 ! *  // -A840 6

   A  F 2  8 5              %  %8   =/4> 1K9 -A970 : A                      =97> 9  3K 1 ? ;   " L 9 K1 -(330 (  .#          +    33 49K7

  

-(310 * (  A :    J I &    . I    J    +    - )  =/31>  4K79 -(3 0 * (           

     .          H  8  N   $ =A>     /3  K 7 -(370 * (         5       +  

  - )  =/37> /K1 -(330 * (    !               '  =/33> 3K 3



-(3/0 * (  A    =   >              -  $           %  /39    

 $  =/3/> F K 4K/ -(/10 * (  *      )     $   F *    //1

 /

-(/0 * (  *      )     $   F *    //

 / =  . 

  . 

 8     1  *        ) )57('1   %   

   $ . =A> J!   

-(110 * ( 

  111 /K39

-(10 * (  = > 6             =     >    $  =11> K  -(10 * (  8            %      5    $  =11> 99K3 -((/10 * (    ( & ;               +    - =//1>  4K4

Section 4.2

Eulerian Graphs

235

-(2340 * (   $ 2  ;     !                    =/34> 7K79 -(+3/0 * (   A + $ , #  =/3/> 44K71

%             

-((70 :  (  .  (& -.  '.    N      FH /7 I -* 390  *  N   $I  &    :    +    N    $  12 =39> 1K -J470  J  A                 ? !    B   =  

&> $ ->   %8   =/47> F  K7 ? -J730  J  $  !           $ ->    =/73> F  97K31 G :  )4 4  $4  (/ 2  KL    ,   -:3/ 0 $ A 3/  -$3 0 6  $J       ' "     !        $  =/3 > 9K  -F 9/0   H  F  +                      H +  =A>   ; N   U $  J  /93 ) '  $      (   =/9/> 39K/9 -F 34 0   H  F  +   .         A    % 8     "  =A> /34 $ % 0  ' %      N    : =/34> 9K4 -F 340   H  F  +             A   + 0 $ %  =/34> F  9K/ - 3/0 H  .  6   I  2   $  =3/> /K1 - 990 2     6     !   & &   $  5    )  @@/    *   =A> (     ;  N  *   K /97 -9/0  .               )   H  8  N   $ =A>     F!  9K3 -30  .   F!  7 )! +    - =/3> 1K4 -9/0 *  &                  =/9/> 19K13

236

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-&30 . J &  A               

-  %        J $ J  *  <  =A>    $ /3 : F  $      8  F!  /7 -270U

             C D  H & A =-A74 0>

4.3.1 The Basic Problem and Its Variations DEFINITIONS



'        

  ! &       

'

2  ,    ? =  > !   !    '   &  &   &    !    





 

.



    6                





' 6            



' 6      

  

&& - &&         && ! &&        



' 6      && $ &&         *,'                FACTS

' '

N  .     

 =   > $  F   =  >

 

238

Chapter 4

CONNECTIVITY and TRAVERSABILITY

The Eulerian Case DEFINITIONS



'



       =   >   ! &       ,         #     ! &   

= > 

       #  

 

'

        #             

'

   



    

    ! & 



'

"

 

? =

 



  

  



 











 

   

 B 

    "   #      

    !    

  

>     #

  

   

    

( 3   3 ( 

   &    =

   

*!    # C     D 

>

=

>

 

( 3 



FACTS

  

'

   

         # 

'

     

'

"     

      

    

   

=      #>      

        

REMARK



'

           #            $ #

  

Variations of CPP DEFINITIONS



'

    '

6    B          

      =   >



'

     . '

  ,   

; '

   

             



'

  .      '

  ,   B   

             =          >



'

     '

"   N        

          6     !        

           #     CD          =   !       

          >

"  !  !    @    !     

       



'

      '

&' *  *

6 

   

       

  !     B                

Section 4.3

239

Chinese Postman Problems

        6                          !               !     !                            =>   #     !



     '

'

6           #  

FACTS



'

6          

 "







 

  , =  >        B       ,  #   



!  

   

4

 !

4







 ! =  , >      ! 

 Æ                

  ,   !            !         

"   



U  

*   >



'







  !   ,                





   &"

=



(     

     !  ,    B 



              

 =



'

-AH90>

-+ /0 6 !      F    

    

       



'

6       F              

M       !  = -2 H9/0>

REMARK



'

"            #      #  

   

                  ! 

                         

             

                    #      -A 2: /4 0  -A 2: /4 0 A#           

 

        -(/0

4.3.2 Undirected Postman Problems 6     2     !           #     =              >

6 

) ! !      A =-A74 0> !          

DEFINITIONS



'



  $   

# =$      



'

    

  

  

     !  !    

>

   # 

       

240

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Algorithm 4.3.1: ,$  5677 #'    5' $   ! 

!   !      

     

:        !      (        ( 3  (       ! (  3 (      #   !   !          (     !      4   (     4 .                :             

    6             

!          !                      @ !      !&  A =  -A74 0-A74 0> 6              ,        6 !     ( =  -J 790>        ' 2       ! &   #          

 !                =( %

     > EXAMPLE

'       (  U !    ,      6                    !        !' L# 

                 



                                      

:  4    

Figure 4.3.1 $   $!"' 

              !      (             !  4 6      

Section 4.3

241

Chinese Postman Problems

½  ½         

6                    !      (   6     

     =   !  1>      ! & !'

                                REMARKS

' 6         !      

  

  #   !     !   ! &   =      &      > !                  = -2 H9/0>

' "     (      B     

     B                    #       !    A  H =-AH90>

' 6              #                     !   &         N          !        *      ,               !             ! , '              !   

      !       ! &

    "          !  

          8   !           !                   !     = >       !  !    !    

4.3.3 Directed Postman Problems 6       .              "              !       

      6              

   FACTS

 '       !   &

   

' 6   

           !    U       

    6                    & " /&  ; =  >

242

Chapter 4

Algorithm 4.3.2:

CONNECTIVITY and TRAVERSABILITY

,$  677

#'      !   !      

 5' $   !       " A

         



(      ?  5= >  )&5= >    !      '



    



¾

   





( 

 (

¾









(  1

¾

( ?    



(       (     =   >                  



Producing an Eulerian Tour in a Symmetric (Multi)Digraph

     B                    =      >          6             ! =  -A840> DEFINITION



'            !      #     Algorithm 4.3.3:

7"! "   $"  !" 

#' A      5' A    

  #      £  (              £  (   #     ? £  :         !     5           = >             :      £          # £          !         !      

       !         

 ? £       '            #   = >   = >  #   U       

    !       

Section 4.3

Chinese Postman Problems

243

EXAMPLE

'              (    , # 

  #    

       #        ,       !  ' ( ? ( ? U ( ? U  ( ? 1 !                !        ,         =     > #          !     (   6           !    Æ#             !  #               , =   >   !  # B'                         

Figure 4.3.2 $   $!"'    REMARKS

' 6 !& )!           A  H =-AH90>

' 6             B                ' "       B           !  #                # (        #               (  

    !        

4.3.4 Mixed Postman Problems FACTS

' 6  #    $   -   U       6"("8":"6< =  - 970>

244

Chapter 4

CONNECTIVITY and TRAVERSABILITY



' $   -           !   # = >  #    !    !     = -2 H9/0

Deciding if a Mixed Graph Is Eulerian DEFINITIONS



' 6     #

       

 ' '

   #  

      

  #                      #   #            B 

      #                  

 



'   #     ,          +   = >   @ !      +   = >  +        = >  +  +             5      +

  = >  + =  -((70> FACTS

'

 = >   #     ,       

'

      

   

$ #               

EXAMPLE

'

               #       !       #   6    (           ,   # B ½            

Figure 4.3.3

 $"  89 +" 

    6 = > B     #      

        ,          #  !         6   ! &          !           ,   6     !& )!      !                  

Section 4.3

245

Chinese Postman Problems

!  89 +"  2 $" 

Algorithm 4.3.4:

#'        #    5'                                  

(      ?  5= >  )&5= >                  :       !        !  !& )!  '     







   ¾

   

(

( 

1 (

 

    

( ?    

   =   > 

"          =    > (          " ( ?  ;                   A  ( ?  ;                   A :         A =        >                

EXAMPLE

'

6           = #>    (        (    "       , 

   !  #    # 6  

  (  (    ,              =  >  =  >       !     , 6 #        !        

Figure 4.3.4

$   $!"'    !"   !" 

246

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARKS

 '

6             .,    &           &    =  @ !             >                5           

'

"               !                     

           =  >            !                  =!     @>          #                    !                =  -AH90>

The Postman Problem for Mixed Graphs

  $  F         ! +     &                   ! !        

       ,*   *                    !         ! ,          ;                      #   *!            !  B  @    #    !   =  -A 2: /4 0 -A 2: /4 0> DEFINITION



'                          ,           REMARK



' "     $              !  

              #      "        = (    4>  !       ;!        !                      M  FACT

'

  #  

        

  

    6        #                            =  >            6             ,    #    !             ( & =-(9/0>

Section 4.3

247

Chinese Postman Problems

EXAMPLE

' 6          B    #        #    (  4   U        !   "             #        !      F!      !       !       ,U !                 B  ;                 !           '  U          N                 !            

Figure 4.3.5 2"  : ''"  /!"

    "       !  !          !         

  !& )!   U 

      -AH90 "                        #           @     !      !          M 

  Approximation Algorithm ES

6 !  #                   !      5     M       6    !     =  -AH90  -(9/0>          4        C  M     D Algorithm 4.3.5: "9'  $!"' ,

#'    #      

 5'      

!  M  !  

          N         #             ,   :       ;         M       :             

    6 #          4                /#

248

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARK

'                          =   >  &    A   "     !  !  ( & FACT

' -(9/0 6     

          A     

   #  "   

            A#  7 ! EXAMPLE

'     #    (  7    !  !    ,     6            A        =        >           ;            !                       !  E 6 6               !  *                          !  !  6         , !                    " !    E 16

Figure 4.3.6 $   "9'  $!"' ,

Approximate Algorithm SE

       #               A    !        =#/> =  -(9/0>

    6             

7     =  -(9/0>                 M         4

Section 4.3

249

Chinese Postman Problems

Algorithm 4.3.6: "9'  $!"' ,

#'    #      

 5'      

!  M  !  

      #         #    :                        N    :           = >          

EXAMPLE

'       (  9             A          *!           

Figure 4.3.7 $   "9'  $!"' ,  Some Performance Bounds FACT

' -(9/0 6             A     



 !     #  A#  9        

 

    ! EXAMPLE

'         (  3        

       A   !        A !            !        A

Figure 4.3.8 $!"' ,  ,    "& :"   

250

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARKS

' "  !     #       4 =A>

   7 =A>     *!  A#  3      '    #        !               A   =     >  !         A !     !      !        A      

' 6   A#  3 

    B  !     

 !' +     A  A        !       @     T "         

          C D    !                  +           !&         @ B        @                           

         6 ,          ( & =-(9/0> !  !  !      !            !          !       

      #    ' "      =-(9/0> ( &                6      !  !    

' + 

 

  -(9/0                    !   U   !       !  (  / ! 8 ///  !     ,       ( & #    !     

   L   = L//0> !           6    (  /     

Figure 4.3.9  :"   " '   $!"' ,  , 

' (!             $    &    

     *!   !    

 F            #    

        !        B & 

 6         $ 

    "     ,            ' 

        $                B         @ =  -8 6/0 -8 6/0  1 > 6              -       -    &'- 

Section 4.3

Chinese Postman Problems

251

References -889 0 A : 8   : . 8  F!&  L     $    +    '.  =/9 > 74K/  -8 6/0  8 8   &   6   .    .      2    %($ +      $  =//>  3K41 -8 6/0  8 8   &   6      2    :   6          .          2  (       9 =//>  444K43 -8310  8& 6       $ # F!&      (     9 -A74 0 H A$ #  $      !  1 L  + )   '  ,   %  7/8 =/74>  4K1 -A74 0 H A  6  (!   + $  9 =/74>  /K 79 -AH90 H A  A H $   A 6       $     4 =/9>  33K  -A840 6

   A  F 2  8      6  ;  :   2  %  %8  3 =/4>  1K9 -A 2: /4 0  A  $ 2   2 :       "' 6      5    )   =//4>  K  -A 2: /4 0  A  $ 2   2 :       ""' 6      5    )   =//4>  //K   -(/0 * (  A  2     6    L      $ 41 F *    =//> -((70 :  (  .  (& -.  '.    N      FH =/7>

252

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-(9/0 2 ( & #           +

$ 7 =/9/>  43K44  -2 H9/0 $ 2   . H     (   1         '   +* (    F!  -270 $ 2  2      N  A   ;     $    =/7>  9K99 -23 0 $ 2            + $ )  *6   =/3 >  K/ =   > -23 0 $ 2  ;  +        

  $  / =/3 >  K 7 -J J9/0  J    2 J 6 $ #       

  $   =/9/>  3/K1 -J 790  J            -        F!  -: Q330   7 K7 3 -F /70 

- 970  *      ;  #   A 6   + $  =/97>  4 K44  - / 0 + :   

     &        $ # F!& 5    )  0  7 =// >   K  - :/40 + :     $ :            $ # F!&     5    )   =//4>  9/K 3/ - L//0 8  

   H L     ¾¿ #        $ #    %($ +    $   =///>  4K  - /0 6 J   ;  $ #      5    )  0   =//>  K9 -+ 3/0 Q +  ;  +      A  2  $     =/3/>  /9K

Section 4.4

4.4

253

DeBruijn Graphs and Sequences

DEBRUIJN GRAPHS AND SEQUENCES  $ %&'    (  '   .8 5 2  8     2   8 5 B     F    2      

Introduction F 8 5      ,                = >               (                     !   8 5   "     !        8 5   !     8 5 B                  

4.4.1 DeBruijn Graph Basics DeBruijn Sequences DEFINITIONS

'

                

           5    ,          &    #  



?   ! 

6! 8 5 B       C  BD                 



' "   7   / $           &          &¼           & 6        !   ¼ 7                &   ,      7 



' "   7   / $      B          !                  !   7 

 /     





'                     ? ½ ¾ ¿          ? ·½    ?          6         

' '

    ½ ¾         ½ ¾    

 

½ ¾    

    

½ ¾    

    



? ½  

?

½



254

Chapter 4

CONNECTIVITY and TRAVERSABILITY

FACTS

'

   !      8 5 B             @               B        



' 6             8 5    &

&  8 5 B     

EXAMPLES

'

1111  8 5 B    "    111 11 11 1 1  1 11

'

11111111  8 5 B   

DeBruijn Graphs

            8 5 B   

   !          B DEFINITIONS

'

           =>      !  

      !   B      L#  5   #   

                      8 5            =>              

           A        ,    

#  !       !       #  !     



' 6       8 5                 



' 6      8 5             8 5 EXAMPLE

'

(    !    8 5     

FACTS



' 6                     

                8 5       



' A  #  8 5        6 ,              !      1   ,           

' '

A  #  8 5        A  8 5     

Section 4.4

255

DeBruijn Graphs and Sequences 0000

000 0001

1000 1001

001 0010

100 0100

010 0011

0101

1100

1010 101

1011 011

1101

0110

0111

110 1110

111

1111

Figure 4.4.1  -". !"   "" 

' A  8 5       

' 6     = >      8 5   =>       !   8 5 B    6           B  ,      #        ' -".& "' -8 90 (       8 5 B   



 ½ 



   4 7    7 1 3 791337

   ¾

½

 

 

REMARKS

'          8 5           

    8 5    *!  8 5%       !   8 5 B

'        8 5      8 5   =>            !         8 5    ! #   

4.4.2 Generating deBruijn Sequences  Æ       8 5 B         ,           8 5               &     A     8 5              #   

256

Chapter 4

CONNECTIVITY and TRAVERSABILITY

FACTS

 ' -2 70'         !    #            A   ' " 8 5   =>   B                      #            

#  =6      B    ,          ,    8 5  > ' 6 B        A     8 5    

  8 5 B    E 

EXAMPLE

' (          8 5 B    8 5     



0000

000 0001

1000 1001

001 0010

100 0100

010 0011

0101 1011

011

1100

1010 101

0110

0111

1101 110 1110

111

1111

Figure 4.4.2  $"  " 

=>

REMARKS

' 6   (  (    Æ    A    =>    

# !   !  (  (           !    B     8 (  (     !  W1%    

W% ALGORITHM

' 6  8 5 B     ( %   =B     >    A     8 5   = > 6   B       A   =( %      >

Section 4.4

257

DeBruijn Graphs and Sequences

Necklaces and Lyndon Words

( &  J -(J990      &         8 5 B DEFINITIONS



'                      =       B

   >



'  B

                         

'  0      &    !              :  &            +  &  # 

         B

         &  FACTS

'

 &      :  !              !         !       



' 8         8         &       8= >   



! 8= >        

 - 0          

'

-(J990' "  =#      >         :   ! !        #          !        1         8 5 B      #        REMARK



' 6  - = >  &  ! #  !   +    - =1> ? 13  - =4> ? /

-

=4> ? 3 !

EXAMPLES

'

(       ,  B

     4 01101 11010

0

1

1

10101 01011

0

1

10110

Figure 4.4.3

'

 0$    "" 

6    :  !     1 +     11  8 5 B   

258

Chapter 4

CONNECTIVITY and TRAVERSABILITY

'

6    :  !     11  1 +     1111  8 5 B   

'

+ !   (  (4  ? :  !       

 " #       

111 11 1 1 " ! !     !      !    #       8 5 B 11111111   

4.4.3 Pseudorandom Numbers ( $                   =    >        

@       8             $         B    .8 5 B !      !                          DEFINITIONS



'       B  B                      



' -2790 6 1           B

  !'

  

6   % 





 @     1%      

                 B                 6                !  5    = E    >    !    ! = E 11    11>





'         B      !  ' 1 2    8 5 B          #     1%       #     %

'

-390 6    .    

  

+

 ,  

= >

7 / /

! 7=/>              6          , /     B + 

Section 4.4

259

DeBruijn Graphs and Sequences

FACTS



'

;     8 5 B         

B



'

 8 5 B      , 2% , !   ( 

   % #  B     1%       !    

      B      #           



'

"   = #  >     8 5 B    

        & 

;        

 B     2   5          8 5 B  !   ! B   



'

-H/0' 6   !

  

 B    

  

     8 5 B     

4.4.4 A Genetics Application 6       .F      #    Æ             8       #   #                !& 6      

                   .F      !   6       # 

  ,       B    #            !                           .F  B B   # 

6       Æ    6  

+   - 6 + 10      ,  8 5    !   



      B 7

       B   

                      

DEFINITIONS

 

!)  

'



'

(   + ?

  ,  B      2 6



7  7¾      7

      



 .F B ! ,  +

   

             

   +        

6!      



 5            .F B 7       !   , 



    





   

REMARK



'

  A         B &       +

   8 5            Æ       !

6   =    >        B  

!     #        !  @       +    8 5  

260

Chapter 4

CONNECTIVITY and TRAVERSABILITY

References -;0 "      &    &  :  ! 8 5 B 

   !!!   M M M&MF&  M -390 2 H       (        N    /39 -. 70 F 2 8 5       '    943K97 

/

-(J990 * ( &  " J :#        8 5  B +     %   =/99> 9K1 -H10  H  H ;       B  /7K1  8      *    B!A =   : 8 .  >   L  11 -2 H9/0 $  2   .  H     (   1         '   + * (  X  /9/ -2790  + 2 %  )  % * .  /79 -2 70 " H 2 F       + 0 $ %  =/ 7> 79K 9 -22$ ://0  H ( 2 Æ + $ 2  H * $     :!  $      + * (  /// -2

Section 4.5

4.5

261

Hamiltonian Graphs

HAMILTONIAN GRAPHS ' 

' )*   

4 *  4 6     & 4 A#      4 $ 6  ; *     T 44   2  47 (    

4.5.1 History              F   = -2 H9/0>                      !            F     +   !  *              341 *   #     #  * 

   .   349 6      , 

                    6   !   &  !     34/    !           , !  *  %            4  *          ,       B        "   -J 470    344 6    J &    B ' 2           !  ,    = >        #     6 J &    &    B    *   N   J &                   ! (           -8 :+ 370 DEFINITIONS

' ' '

  

            =   >

  

             

       

               

4.5.2 The Classic Attacks 6                               @           6    &     Æ                           U         #        

262

Chapter 4

CONNECTIVITY and TRAVERSABILITY

    6               #    (               Degrees

  6              #     Æ  = >

 

Æ =

> 

DEFINITIONS



' +      = >        !      6                        = >



' 6         ! = >          5       5    !               



' (  '       ? = 9  > =    ? 9 >                 5     5    (   3 9 !       E 

  6 !              '

: =

>?

 /   (  



(½    (

  

FACTS

' '

-. 40 " :

    

     

 -;710 " : = >   

   Æ = >   

       : = >    

 -;70 " := >  E  

        

     

EXAMPLE

'

  !   !   #     , =     (  4> 6              * Æ = > ? =*  >  := > ? *          .  % 6  ;% 6 =(   > 6               !              Æ = > ? *  : = > ? * !  ;    =      (  4>

Figure 4.5.1



' -H 310 :    

2$$" !   "  " &  ;"& "$ 

         !     



Section 4.5

263

Hamiltonian Graphs



' -$$70 " ? = 9  >              =  > !  => E =>  E      5        9       

'

-8970 :

! =

 

    6

>  ! ,

        

 

!½=

!=

>     

>     

     



' -*/0                               REMARK

'

6         #         6   = >     &       ,       *!               

 !   "      #     

  1           6 !           !              !          =!       >

Other Counts DEFINITION



' 6    # (      - =(>     

  5   (        - =+ >   +          5    #  + 

! "   

  +     !      ,      

  



' 6              = >          ! 

            #  

'

  

    



= >  

EXAMPLE

' 6   =5 *>      !   *  #  +   ! +  ?   ? 5    ? *  5  ! !    5       +       *      +         Y    ¾     (  4 ! !    = 7>  = 4>

264

Chapter 4

Figure 4.5.2

+" 

= 7>

CONNECTIVITY and TRAVERSABILITY



= 4>



FACTS

'

  -;70 "               ½ E          (          !    #   E   

 = >  = 4> "                     

'





-( 3 0 "

   / / (=> =>  = > ?   

      

    

' -8 8L: 3/0 "          := >  E = >      

 '

-A90 :

    

   =

> 

 

= >   = >         " = >   = >        " = >   = > E         ' -+930 "    +    - =+>           ' -(370 :         "  #   &            +    !       & !   - =+ >      "



'

    

-8L/0 -( 2H :/0 "

                  

- =+ >       +  !       REMARK

'

6       #  

 1

Powers and Line Graphs

         ! &       =      >

DEFINITIONS



' 6    ;= >         !            !       !   !    ;= > 

5            5  =      >

Section 4.5

265

Hamiltonian Graphs



'     !          

    # 

!   



' +                    5        =    ½     >                         5         ' 6             !   =  > ?  = >  !    =  >       = >  





'                

    = #  5 >           = >

 "    

FACTS



' -* F+740 :    !      6 ;= >           ½               



' -2* //0 :    !       6   ;= >  

   !   =  >                

'

 

' '

-+ 90 " -(9 0 "

" -8930>

  !  Æ = >   

     

  





; =

> ? ;=;= >>    

    

     =        > =

Planar Graphs FACTS

 '

-630 A              =       -6470>



' -2730 :        !        !  " 5             !  5¼         #   !     =  >=5  5¼ > ? 1



4.5.3 Extending the Classics Adding Toughness DEFINITION



' "   #   +     +  !    &     & 

  , & =+ >  +  ! =+ >      & 6      # 

FACTS

'

-H930 :                   

     := >  

 6

266

Chapter 4

'

-8 $L/10 :     

CONNECTIVITY and TRAVERSABILITY

      

'

-8L/10 :        6     

   := >   6

  !  Æ = > 

   

REMARK

'

 G   5     &     &          (   & ?     *!   -8 8: L110 #   =/  6>             6 $ 1 ! 

More Than Hamiltonian DEFINITIONS

' '

  

               2   2

            

 

               



'                !   /     #      / E        =! > (     #     #         

     2



'        = >      B         =     >         B     

FACTS

'

    => Æ = >       => := >          !                    

-8( 2:/90 "

    

    EXAMPLE



' 6         !               6                          FACTS

'

-8990 "      

'

           

!   = >  ¾    

-*/10 "       := >       #       !       : = >  =  4>     #  (  Æ = >  = E >      # 

'

-*/0 " ? = 9  >                 

  5    (   3 9 !   =(> E =3>  E        

Section 4.5

267

Hamiltonian Graphs

' -*/0 :  /   " ? = 9  >                  Æ = >  /   = > $ ¾  / E /¾        

 ' -J /70 -J /30 6 #                  Æ = >   = E >       !         ' -J  //0          :         " =>   E       #            ' -( 2J: 0 :     !               " => E =>  E =  />          5              REMARK

' 8     !        

   N#    .        !   ;   

4.5.4 More Than One Hamiltonian Cycle? A Second Hamiltonian Cycle FACTS

' A                        6                           = -6 70>

' -6/30 "

     

     

/   !  /  11 

  

   !        !  :   #         !      !    '*    =! > =  -   =>   =   =! >>> 6         ! ¼    ! ¼   ? !      #          !   ! ¼       !       ! 

' -6/90 :



' -*110 (         #     =>    

       !  Æ  = >   =>      Æ = >   Æ   E        "              =Æ  = >Æ = >>         

' -$ 970 -2$ 970 6 # 

    !   5       

! 



Æ  =

>



         

' -Q 970 -3/0 6 #  ,    #   4      

=     >  !                

268

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARK

'

(        6  -6930 #  %    5     ! 5   =         !        > 6  #    =(  >

Many Hamiltonian Cycles FACTS

'

 

-6/70 : 

! ' (½ 3½  (¾ 3¾    ( 3 (½            

= > "     3½     3                  (½3½ 

     

=> "     3½     3     $    ½  ¾     =1  '    >     !       3 ½ (3        ·½  =  '>V          ½     

 '

            71¾    :¾ = >  E    

-( 340 :

= > "

   5          => "     7        ¾ ½ E    5       

 

 

 



' -A/0 :       !   =  > "      !  :¾= >   Æ = >           5       

Uniquely Hamiltonian Graphs DEFINITION

 '

            #        

FACTS



' -A!310 6 #  ,     B       !      

'

-H +3/0   B         #     = E />      B          #   

'

-8H /30 A   B           #  

   ¾ =3 > E  !  ? =  ¾ > ½    (    B              !        

Section 4.5

269

Hamiltonian Graphs

Products and Hamiltonian Decompositions DEFINITIONS



'                                             = E >  

'

A    !   &        #   = ½>   = ¾> 6       ? ½  ¾    

=

> ? =½ ¾>=½  ¾>  ½ ? ½  ¾¾

=

6         

=

> ? =½ ¾>=½  ¾>  ½½

?

=

¾> ½ ½>

 ¾ ? ¾



¾

 ½½  =

?



   

 ¾ ¾

=

¾>



 ¾      = > ? =½ ¾>=½  ¾>  ½ ? ½  ¾¾ ¾  ¾ ? ¾  ½½  = ½ >   ½ ½  = ½ >  ¾¾  =

6     

½>

½

¾>



6        =         !  > ? ½- ¾0    

=

> ? =½  ¾>=½  ¾ >  ½ ½

=

  ½ ? ½  ¾¾  =

½>

¾>



REMARK

'

H & -H 9/0 5              E              B  ' " ½  ¾              ½  ¾       T

FACTS



' -/0 : ½  ¾  !         7  &           !  &  7 6 ½  ¾            !  '

7  & => &   =>

=>   

¾

= >   

½

'

   

    77&  

"         ½  ¾               *                    ½



'

¾

-8/10 -Q3/0   ½  ¾        "            ½ ¾       

270

Chapter 4

CONNECTIVITY and TRAVERSABILITY

'

-( : /30 6                    ½              

'

-8 30 6 #      !               



' -J/90 = > "    

=> =>

   

    

 = >    - 0      "          = >    - 0      "        = >    - 0     

=> " =>

 = >    - 0 

 = >    - 0      "         = >    - 0      "  = E >             = >   E   - 0      "    #          = >    - 0

=> " =>

         

   #     

4.5.5 Random Graphs     +    5= >             !  - ?   DEFINITIONS

'

=3     >    1  *   :                -    !      * ' =3 .  (  >    4 ? 4 = >        !   & 

         6   7 ?   @   !  4      #        +                !      7 



'  !   @             B = >                

  







&   & ? 1     -   

' " Z           !           Z    "  5=">      F      B

                     "      



' 6 4 2    %            

#         2              6            %    

Section 4.5

271

Hamiltonian Graphs

FACTS

 '

- 970 -J970 6 #                      ¾       ' -J970 -J30         * ?   E  E   4 = > ?    E  E  6   



          

'

 

    

4 = > ?  = E 

1 E >'       5=       > ?  '       '     ' -+/ +/ 0 (   5     5          ' -(/ 0        %        ' -(110        %        "                   %        ;       %     %         -J30 (



REMARKS

'

"          - V    =!  B      >      !  C  D =    *> AI   !  ,  5   !                          &        6  !   ,  8G





' "      & !  #         !  

       ,           8G

 (  (  -8((340             

 '

     B        

 

4.5.6 Forbidden Subgraphs DEFINITION



'                    

       

     

  = > 6   -              #  5           !                 => 6   => 6  

;    ! #  5         5       #       #   =    &>

Figure 4.5.3

 !"  -    ;

272

Chapter 4

CONNECTIVITY and TRAVERSABILITY

FACTS

'

-.2H 30 "

 ½  -

= > 

   

=> 

  

' 







   

    U    

-8.J110 6 #          ,       

  -





  

'

-8L/10 "

  

 '

-2H 30 "

  

 '

-8/0 "

'

-( 2 /40 "



    

  

  

   

  -  

  - 

   

   

  -  

  

              

    



1

Other Forbidden Pairs     B  '       T 6  !       -8/0       -( 2/90      1   + !       

FACTS

'

,

 





?







+





+

6

  

, + 

-

     

, +



?

  =

  

 - 







> 

      

-  

 =

-  

!

1>           

'

-( 2/90 :

, +

 

, 

'

?

+  9  



?





1 6

  

-2:  0 :

 9  



?

= > A   

, + ? >   , +         -    -  

    =

     

=>

,

-8/0 -( 2/90 :

     

9





'

 9 

?

!

> 

             

  

    

             





?



;





-( 2/90 "     

   

  !    



        

    

Claw-Free Graphs "              !  

=

      

 6  !     B

'

  9 -   -  -   -  ?



6        B '



    !  

"   !        

         T 6  !  !       -( 2H :10 !            !  



! 

&

  Æ     

(  -( 2H 0           

    Æ      !     8& -810            !     !              " -( 2H 0                  

   !  

Section 4.5

273

Hamiltonian Graphs

DEFINITIONS



' ( # (        -- =(>0       

 (           -- =(>0       =- =(>> =;          !      ! >



' 6        !      2= >           ,        # (        



' 6            

  

5/=

>    

FACTS

'

-( 2/90 : , +     =, + ?  >         1 6  , +        #      , ?   +       -    -  



     -

' -/90 " 

'

- /90 :

2=

>  ! ,

=>       

5/=

    

    

  !    6

= >   =>



> ? 5/=2= >>

    2=

> ? 

REMARKS

 '

6  !     @     = -8970>                 (        -8 110



' 8 (  73     

  !  

        

2=

> 

'

6

                   !   (                -8930 -8930 -+ 2 3 0 -8/40 -2 /70 -2/0  -210

References -8 30 Q 8    2     *        #     +     % ,  =/3> 4K7 -8 8: L110 . 8  * H 8   :  * H L  F               

 $ // =111> 9K -8 8L: 3/0 . 8  * H 8  * H L    :        

  * &   F   +     % , 9 =/3/> F  9K 

274

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-8 $L/10 . 8   $   A    * H L  :      !         $ 9/ =/3/M/1> 4/K91 -8970 H  8  L  G

         =/97>   K4

   $

4

-8( 2:/90  8  2   H (   H 2  : : & ;          +       =//9> 74K9 -8/0  8  -               . 6  $    N    //

     

-8930 H  8 *       %    8 &   +  A     : =/93> -8 :+ 370 F : 8  A J :    H +       N    ;# =/37>

    

:

DE" !E" ;#

-8((340 8 8G  6 " (   $ (  ;                     $ %          F!  49K9 

   $ %

-8H /30 H  8  8 H & L        B       +     % , 9 =//3> 74K94 -8990 H  8      

+     % ,  =/99> 31K3



-8930 H  8  *              ! % * 

               F SS" =/93> K3 -8/40 H  8  8      K      ( A    =//4> 4K1 -8/10 H 8 &

    

        J!      =//1>

-810 H 8& (              $ 4 =11> 9K97 -8.J110  8 I  ( ( .    A JI :              = ! >    %($ +   1 =111> 77K 799 -8 110 * 8  Q  5G [&  "     '           7 =111> 9K 3 -8L/10 * H 8  * H L                       ½ ¿        $        8 & A 8" +  L $   +  Q  =//1> 3K / 



Section 4.5

275

Hamiltonian Graphs

-8L/0 * H 8  * H L  :             !        +      4 =//> /K3 -+ 90 2      A +  ;      #    % $  3 =/9> K 3 -A90 L  G     AI            =/9> K

% 

   $



-(/ 0     $ (  *               +     % , 7 =// > 4K7 -(110     $ (  *               ) %     7 =111> 7/K 1 -2 /70  H    H  2   *             

          $ 47 =//7> K3 -. 40 2  .          =/4> 7/K3

 0 $ %



-.2H 30 . .@  H 2  $  H  (               

         2    H   . 2  : : &  . : & =/3> /9K7 -A/0  4K41

%7 + $

-A!310  A   * !              +  

  % , / =/31> 1K1/ -( 3 0 2 * (  F! Æ           , 9 =/3 > K9

+     %

-( : /30  (   H :  *            / =//3> 4K44

+   

-( 2/90  H (   H 2                    $ 9 =//9> 4K71 -( 2H 0  H (   H 2  $  H  (           '       -( 2H 0  H (   H 2  $  H  (           '  Æ        -( 340  H (       A  5             .  

         %  =J    $  /3 > +   F!  K / -( 2H :/0  H (   H 2 $  H   : : & ; 

     .  %     $ 14 =//> 7K9

276

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-( 2H :10  H (  H 2 $  H   : : &         !              $  / =11> 9K3 -( 2J: 10  H (   H 2  J&  : : & "   

    .             +       F  =11> //K1 -( 2 /40  H (   H 2 Q  5G [&  "    (            ' 1/ =//4> K -(9 0 * (  6 B     !         +      % , 7 =/9 > /K  -(370  (   ! Æ        +      1 =/37> 14K 1/ -2 H9/0 $  2   .  H     (   1         '   (    F!  -2: 0  H 2 6 : \  &  (          '          -2/0  H 2 N         K    +      4 =//> K49 -210  H 2 

        K           / F  =11> 9K4 -2* //0  H 2  A *                ,

  (   7 =///> 7K 3 -2H 30  H 2  $  H  (                  $  =/3> 3/K/7 -2730 A H 2          !         08  $ F  =/73> 4K43 -2$ 970 8 2   H $ &      5           $  =/97> /K/7 -* F+740 ( *      H  F  +   ;                $ , =/74> 91K91 -*/10 2 *  A#          $ 34 =//1> 4/K9 -*/0 2 *  A#           +     % , 4 =//> /K -*110  * &  :    !               $  =111> 94K31

Section 4.5

277

Hamiltonian Graphs

-H 9/0 8 H & A  5                 +

0 $ % => / =/9/> K7 -H 310 8 H & *            +     % , / =/31> 9K 7 -H +3/0 8 H &   + +         !   B    +       =/3/> 499K431 -H930 *  H ;  #       ,         $  =/93> /K  -J  //0 *  J   2 F G &I     &! ;         +       =///> 9K4 -J 470 6  J &  ;                  ) %  =:>  7 =347> K 3 -J30 H JG   A G  :         #                  $  =/3> 44K7 -J /70 H JG  2 F G &I    A G  ;  B             )       / =//7> /K -J /30 H JG  2 F G &I    A G       5          =//3>  K71 -J970  . J       AI   G  *           %8  $  9 =/97> 971K97  -J/90 $ J            #     + 

0   =//9> 4K3 -$ 970  $                $  =/97> 9K 1

 

# 

-$$70 H $  : $ ;              ( +

$  =/7> 7K74 -;710 ; ;            $ $ 79 =/71> 44 -;70 ; ; *       + $   

  =/7> K9 - 970 : G  *               $  =/97> 4/K7  -+/0  +    F  +             ) %      =//> 9K4 -+/ 0  +    F  +              ) %     4 =// > 7K9 

278

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-3/0 $      5          4         $ 3 =/3/> 41K44 - /90 Q  5G

[& ;     !    +     % , 91 =//9> 9K  -/90 ( 8  *       !    +     % , 4 =//> 9K/  -/0   *                 $ /1 =//> 7/K/1 -6930  2 6  *        B      

   $  =/93> 4/K73 -630  6             +      9 =/3> 7/K97 -6/70  6  ;                            4 =//7> 9K  -6/90  6            +     %

, 9 =//9> K  -6/30  6  "                   +     % , 9 =//3> 1 K1/ -6 70 + 6 6 ;        + 0 $ %  =/ 7> /3K1 -6470 + 6 6            $ % 3 =/47> //K7 -+ 2 3 0 . +   H  2      K *              $ 4 =/3 > /K1  -+930 .  +   Æ             +      % , 4 =/93> 3 K37 -Q 970 H Q &           4       +  

  % ,  =/97> 7K -Q3/0 $ Q .                        3 =/3/> 43K73

Section 4.6

4.6

279

Traveling Salesman Problems

TRAVELING SALESMAN PROBLEMS   

  &    +' $

7 6 6       7 A#    7   *   7 "  *   74 6 2   6 77 6 L     

Introduction 6 6       =6 >                 "            6        Æ               6    



        #         - 10 "     !   6   2   6   L    

4.6.1 The Traveling Salesman Problem J $ -$0 !     ,       6        =6 > *             #                           !        !         &                                  "    ! !   !         !     !         =(      !  6     -*+340> "                  6     Symmetric and Asymmetric TSP DEFINITIONS



' #  3#& =#3#&>' 2   = >    !  !     ,             = > ! 

'

   3#& =3#&>'

2       





     ! 

 !  !     ,      

280

Chapter 4

CONNECTIVITY and TRAVERSABILITY



' 6 /  3#&        6  !          A       !        A      !   

'

       

       

  6                    

   



#      

  8 3#& !    6  6     Matrix Representation of TSP

A     6      !     #   !             #      6    

    6  DEFINITIONS



' 6    = >        6     # % ? - 0 !    !     !       6      

    6     # % ? - 0 !    !                         



'     6                E              EXAMPLES

'

    6 !     1  % ? 9 

 

  # 7 4 1  1 9 4

1 / 3 1

 

 !  (  7 6  V ? 7     !  / 9 1  9   6      !        

Figure 4.6.1

'

    ,7

    6 !       # 1 1 9 1 1 / % ? 9 / 1 9 7 /  4 1

  

9  7 4 / 1 1 7 7 1

  

Section 4.6

281

Traveling Salesman Problems

 !  (  7         4     V ?   6         4    !   

Figure 4.6.2

    ,,7

Algorithmic Complexity FACTS



' 6          #         6        !    !'   !  1      U    !                               6 

'

(       6  F         B   

8     !  1     !    5         (   !    !  

'

- 2970 (       5  ?F         

    !       !    5      

Exact and Approximate Algorithms DEFINITIONS

' '

             !        

    =   >               &                          

  : !   #      6  =    6  == >  == >  == >   !                    !    = 



' 6 *    -Q30     !  #! =!>     = == >   == >>= == >   == >>  &    6   =  !   == > ?  == > FACT

'

-* J10 6       #    

#! =!>       6 !  #! =!>   

!  6 ! 

282

Chapter 4

CONNECTIVITY and TRAVERSABILITY

The Euclidean TSP

.  (  4 !  !           A   6  !         6  6  !  ,   -/30  //7 = (  7> $  -$ //0           !    = -10> FACTS

' - 992 2H970 A   6  F   6 $ 1          !"         A   6  ,     E 6          

' -10 (  

'     !         =6>> - /30

!"     # 

1=  E

    6

!"                   !   6    -10

' -6/90 6 #    5 $       A   6  1= >     A        ,        5            F   REMARKS

'  %  =(  7>             A     

    *!  (  3              ' A#               B      

  =   # >            

#                 !                   (                   #   ! 

' 6             !  '          4  * *       4  $      !  6         -2340 -H2$ -8 /30 (     6 !     #         -: 10

Section 4.6

283

Traveling Salesman Problems

FACT

' 6  -    #   #       6                         @  

  =



>V  @  

°





Integer Programming Approaches

L           6       6  +   , =-8:110> '*   ** =- 30>    -''    -'-  = -8 6340 -( :610  -F 10> 6   ! &!       =-+/30> 6    =    >         6    .   (&  H -. (H4 0



            ' .,  

  (   ?

(

       =  > 1 ! 

:    !    =  > 6 6    # '   > ?

    



 (    5  ( ?   ?         ( ?   ?       

(  +      1  +   ¾  ¾ ( ? 1     ?     

FACTS

 ' 6 ,            #

 #                     #  #   6 !          !  5     #      *!               "               !   #  5    =  - >

' 6         - *   B         

+

       

   +

' 6    !                     * ! *           1=  > -+/30             !     #  5   

!     !

   

°







"

&

?          6   

284

Chapter 4

CONNECTIVITY and TRAVERSABILITY

  ;!       !    ( #        !                    B          6                  6 

4.6.3 Construction Heuristics #                  

  !   

Greedy-Type Algorithms

6                  6           !      # # 

               Algorithm 4.6.1:      #  5        =>    + '? +   

EXAMPLE

' +  >>      6  A#   !      

 (  7     #    >>    #    #     #  6           !  1 =!    ! >

Section 4.6

285

Traveling Salesman Problems

Figure 4.6.3

    ,7

        #   -H2$>     U             !          111]          #   6  -H$10 !      >>     !  A           6          >>  6  Insertion Algorithms

 ,                       6  ( 6         !      

        ! #     ( 6       !       6       #    !

  6   !     5   B  !  6  DEFINITION



' : ! ? ½  ¾        ½   # B           #   !  (   =  >    !            =  >           =  > !    =  >  = > = (  7 > 6       ! =   > 6  =  > ? =  ·½>     /    ! =   > ? ½  ¾             ½    =  > ? =  ½>  ! =   > ? ½  ¾      ½    

Figure 4.6.4

2"  /"9  " = 

 



>

REMARK

'

'*  ,      ,       ,   !   , !    @      # A      !  -^0  #  

286

Chapter 4

Algorithm 4.6.3:

CONNECTIVITY and TRAVERSABILITY

1"9 2" 3124

#'       # - 0 5' 6  ½          :     !         "      ! ?      ( 7 ?      :   #     !      -^0 " #     =   >    ! ?              !   ! =     >         ! =    >    =  >  !   ! '? ! =     >





  2  #     !   = ! >       



!

    = ! > ?    



  

DEFINITIONS

' '

 

6       567  #     !

6         )67  #              6   =  ! > ?   = ! >



 

' 6         ,67  #            !   #  6   =  ! > ?  # = ! >

 

    6 #           B 

!  A   6 = -H$10>     #  !  #  6  -22         =-H2$ 6            #        

        "     ,        :  J               -210   :  J              6  6       6 =  -H2$ DEFINITIONS

'

( 6   8                      !    5   !  !       = (  74> ;          !   6              =       #> 

Figure 4.6.5



! 

 



 

 2



" "$   

 2



 

' (               #  

        



 







 = >

' 6                ,  U   @           =>                     =>              = 

    > 6    

Section 4.6

289

Traveling Salesman Problems

FACT



'

- $ J 10          & #     ,

     =     >      !  





  



1=   >    

  6             

Exponential Neighborhoods 8  



   _=

 >

         

     #     # 

       



 = >

  '







6    

( 6     

    !   #      !                 

  

=

 >

"      #  6   

!          

1= > =1= >>

6

      -A; 10 -.+110  -2  

4.6.5 The Generalized TSP 6

 1' !

              

#   6 -(  610

DEFINITIONS



'

6

1  (    3    #   &   13#&'

2  !     



    

     

    ,

   !       #   =    > #    

 ?     



'

6 

             #   =    >

#       



'

6

 

 

1  ( #  3    #   &   1#3#& 

      ! 



  



REMARK



'

;     B  W    %  W#  %  26 

26    !    B   

6 W#  %   

26  26                

     

290

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Transforming Generalized TSP to TSP ;   !         2   6       6  

6  Æ       26  6  

26  6          -F8/0  -: //0   

FACTS

 '

"       -F8/0  26  6    

       +    ,        6  

                           #  6               

4

  !        "             !    # 



             

  

 '

"       -: //0  26     6  

! ,  Æ             !          !               (   #



  !       

4 !

      

!

 

4

  ¼

6 !     

   !   

!

?

 ! 

½  ½         ½  4 ¼





¼



¼ 





"  

   ! 

        

          



     26

6 !        !      ! 

        !    26     

    



    6   !      ! 

4

    =





4  

> !                  

!   8      #



  

¼



  !   

      26  

'

(       -: //0  -F8/0    5  !

*

                &  

        #   

Exact Algorithms FACTS

'

    #  =-82    !  

        -F8/0  -: //0                     2   6  *!        B              6  %       =  > !       =>

'

         26        

-(  610  :         26     -F8/0 6 #       5   &        

   6    26 

'

% ? = >       ½  ¾              %            #  

#    ½  ¾        F             ?        =                 #   B  > -2 :

      

  =



  

> 

 



B     



8



 

8

8

! ½  ¾     

 

  #   #     

       

      

     

   

    #   26  -82      6  



 

     ! 

    ! >

=> (     !   



     

  !     

=" -(  610   

  -82  :

 



8

       B 

*!          -82                  6  L                                                 L                   )            6        B     

"

         

    

DEFINITIONS



'

2  !            

 

  

  

1 



 

     !  !   !   " ¾   ?  

  # 1    

"       

  !   





1     

65& 



 !         !     



?  



292

Chapter 4



'

6

CONNECTIVITY and TRAVERSABILITY

  6  5 &    65&'

        

E

2  ! 

    



1   ?

        !    "   , L   !     !         

REMARKS



'

;                   '

   !              = #>      !  

 

* &'&

   !     @       

 @       - J + //0



'

"          L =

½ >

   F 

     =  W %> L       -L /70

Exact Algorithms FACTS



'

6  Æ  #        L     

    =-8*110 -F  10 - J 60>



'

(        L           # 

         -6L 16L 10



'

  L      6 

3 ! "  -  



        L        !     -8 10

   

6 #         !  L

     6            !  11  

   #    !             L !   !  4   - J 66L 10 ;        L  

              &  #   

6

          L 

Heuristics for CVRP L        !   '

    L 

   B & U                                

  

6   &       

      @ !  B  

        =-A;0 -2: 10 -6 /0 -6L /30>

(  L

           B &  )#                      #         !              L   '

       



&-   

+

 

REMARK



'

6      !       L     

     L !  W  %    W %  W %    W%

Section 4.6

293

Traveling Salesman Problems

Savings Heuristics

6  & +              -+7 0   &!      L  * !          !         -2 /0 -+7 0  -: 10

  = > ( #  +  &=+ >  =  #    >  !  

    6         +  => 6      #  +  =+ > ?

  ¾



DEFINITIONS



'       !½  !¾  =!½ !¾>    ! #  B   =!½>  =!¾> 6               !½  !¾                   #     " =  = =!½>  =!¾>>  ">



' 2    !½  !¾      =!½ !¾>  7=!½  !¾>     7=!½  !¾> ? &= =!½>> E &= =!¾>>  &= =!½>  =!¾>>

°

'

: , ? !½  !¾     !     /     !  !      # 1 6     %=,>   !      /

    !½ !¾     !      =!  ! > #   = =!½>  =!¾>>  "

  !      =!  ! >     7=!  ! > REMARKS

'

"   "-(       * =-+7 0-: 10>  !    

!         &= =! >> 6    # 

  &= =! >>  !      6         =! > !     

    



' 6   !     !½  !¾        & + 

  " = 1>     !½    # 1  =1  >     !¾     # 1   !      =  >      !   = (  77>

Figure 4.6.6

 6$ "0>"! '"!  $ !½  !¾

REMARKS



' 6    !   4        =!  ! > !   #    7=!  ! >      4  "     !           4        -: 10

294

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Algorithm 4.6.5: , /! #" 3,#4

#'      # - 0     ?           "      

5' L  , ? !½     ! 

"       / ?    ! ? 1  1  ?      / "    , ? !½     !  +  / $ 

      %=,>

    4  %=,> !  4   /   (    =! ! >  4  , '? =,  !  ! > =! ! >

/ '? /  

' ;  ,              ,   

  6      =   7 > ( #   -: 10 L      & +                       Insertion Heuristics

" L      -: 10 !          ! ? 1   1 6               B        6 ! W  %      #          !  !       ,  "  B   !    

!    !                    6      #      !       &= =! > >  &= =! >> REMARKS

'  #          , $  6      -$ 69/0 ' (   H &  -( H 30             6    1'  * ! *  , W  %                Two-phase Heuristics

6      &-                     ½          6           1  ?       +  *  -+*90  !   B   A   L   !    1              A         A      !    

+          !          

     !       =1 > 6   #  ?       =8   > ! 8    !     1     1   6 !           !

Section 4.6

295

Traveling Salesman Problems

Algorithm 4.6.6: ,:! #"

#'      # - 0    8           ?           "       5' L       



!



?      

    ½  ¾         8

"    + ?   ?       



? 

(

7

?     

" =+

  >

'?









 

8 ½

7

?       

$ "

E

 '? +   ?      

+

(



:

  6        +

!

1

REMARK

'  #           L     -8 /40  #   !                -*$ 69/0

References -A; 10  J 5  ; A H 8 ;         

          B    

 $  =11> 94K1 -2 /0 J  &  8 2                5  ) / =//> 47K 7/ -8 /30 .    A 8 #  L  G

   + & ;     6        $  + $/ *6  / ($ ,   !!9 ((( =//3> 7 4K747 6 M4M///        

          -/30         #      A   6      +$ 4 =//3> 94K93         9 "AAA   (    //7   3 "AAA   (    //9 -10    #         6  "   8  %     /   =2 2      A> J! 11 -8 6340 A 8     6 8   8 $ "   8  %  1         5   >  =A : : ! H J :   * 2   J   . 8   A> +   /34

296

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-8:110  8   :    #                 (  % $    111 -82  J! 11 -(  610 $ (   H H     2G

   6 6 2   6       ;       8  %    /   =2 2      A> J! 11 -( H 30 $ : (    H &                '.   =/3> 1/K  -2 2H970 $  2    : 2    .  H  F        9 $ %     =/97> 1K

Section 4.6

Traveling Salesman Problems

297

-2: 10 $ 2  2 :   H  +   /34 -2  K1 -: 10 2 :   (      *          L    /  )   =  6  . L  A> "$ 11 -: 10  :     6 !  "   8  %    /   =2 2      A> J! 11 -$0 J $ .   *   *  $  ;   =/> K -$ //0 H  8 $  2      #        '         #        6   $6     %($ +   3 =///> /3K1/ -F 10 . F     6  8            6     8  %    /   =2 2      A> J! 11 -F  10 . F   2     8             L    /  )   =  6  . L  A> "$ 11 -F8/0  A F  H  8   :                       5  ) / =//> 7K7 -F8/0  A F  H  8   Æ                  ('-5)  =//> /K  - 990  *      6 A           F      % =/99> 9K  - 30  *       J       5   >    *  /3 - J + //0   2 J     $ +                   A  N     A  "   A //3M - 10    6 6      '     (    L       8  %    /   =2 2      A> J! 11 - $ J 10    ( $    J    6   '    

     #      4 =11> K9

Section 4.6

299

Traveling Salesman Problems

- J 60 6 J   : J  +   &  : A 6 ;                $  

- /30     +   #        C D  C  D  EA  $ %     =//3> 4 1K441 -210    ( 2  :     $       8  %    /   =2 2      A> J! 11 -90 L "  &  A           6        '  $       =/9> 3K =   > - 2970     6 2   #     +$  =/97> 444K474 - 970 L "  

  ;                    /  '8 ,%%) % - > $ '8  =/97> 9K =   > -6 /0 A 6                 ' .   =//> 77K79 -6 310 6 + 6   *        % , / =/31> 73K9 

¾ /  3 +    

-6L 10  6  . L  8   8          L  "  /  )   =  6  . L  A> "$ 11 -6L 10  6  . L  $  #    #                   

 $  =11> 39K4 -6/90 : 6   + *    A '  #        6  $6  =! $ %     =//9> K/ -L /70 . L                       *  + 5  ) 3/ =//7> 13K7 -+/30 :  +  (    +   //3 -+*90  +   *                     5  ) I   =/9> K  -Q30 A Q $    B    #             $ 5  ) 7 =/3> /K

300

4.7

Chapter 4

CONNECTIVITY and TRAVERSABILITY

FURTHER TOPICS IN CONNECTIVITY                         

9 *    9 8   9       9 2           

Introduction                  !     =Æ >     !                   (  !       #   = #   >    F# !   !        =  !>         (                      C      D    ( #          

4.7.1 High Connectivity         !  C D    !   #  ,     !  C   D    . @      !          ' = > L  !     =>     =    > =>       =      > => :      =      > 6                      !   #  #        Minimum Degree and Diameter

  : ? =  >    !        Æ       = # >   "            Æ  Æ           Æ  `       DEFINITIONS



' 6      !                    ,   

Section 4.7

' '

301

Further Topics in Connectivity

6    

  # 7& = > ¾

6     

       



 

    #   

 *    #          * 

'  = >  =  >  FACTS

' '

-:9

? Æ

' ' ' ' '

Æ         B       Æ  0 "    5       => E =>    

-770 "

% ?   ? Æ  -L330 "       Æ     E   ? Æ   -L3/0 "  *    =*  >      ½ Æ     ? Æ    -6L/0 "  *    =*  >  Æ       ? Æ   -. L/40 "    B  <  *      Æ     ? Æ  - 940 "

   !   

REMARKS

' ' '

 (    (         (  4  * ? 

     ! (   ( 

"     (  9    -. L/40    Æ      B               !          - Q3/0 Degree Sequence

  (  #      #   !   B       ? Æ  ( #  - =>       5    FACTS



' -2+930 "  #                  =  > =      C D # >    = > E = >    ?             ? Æ 

'



 '



   ,               4 =>      9    4

-2A9/0 "   #

? Æ

¾







-89/0 :    !     "   B       ? Æ   ,  = E  >        !          Æ   ? Æ 



302

Chapter 4

'

-. L/90 " Æ      Æ      Æ      !      Æ   ? Æ 

CONNECTIVITY and TRAVERSABILITY





= E  Æ

'

-L10        7 !   B  !     ? ? 1 !   " Æ      Æ Æ   #  Æ   ? Æ      =Æ E >    # 



>  =  > E

<  * : ? ?       

REMARKS

'

F   (  3   (    !    (  /    (   $   !   #   - Q3/0 (  /    (    (  



' (  1   (   !         !  - Q3/0     (      /

'

(     

         S -S/ 0 !    = (  >     ! (     (  1



' (        -L330 -L3/0  !  (  9 (

 !  -*L10      (        #                  U    => ?  => => Distance DEFINITIONS



' 6    7& =  > ! !               7& =  >                !      >

 = >     =+



' 6    ;               !    5           5  =          > FACTS

'

:               ?     ?   6     !       ;   , $=    > ?  =  > E        ;     %=; >  %= > E 

'

- Q3/0 :

'

-8  ( ( /70 :

            #    #    

         !   , 7&=   >   6 = ? Æ > 6

; " ;

   !     

= > "

       

=>

    ! 

Æ

    

;

  #     = ? Æ >

  #    = ? Æ >



Section 4.7

303

Further Topics in Connectivity

REMARKS

'

6 Æ        (    #        (   (  Æ  B                     !  (  4= >

 '

(     & (  4= >     (    (   =  &% >

Super Edge-Connectivity

* !           DEFINITION



'   #                          U            #      EXAMPLE

'

(  9 !     #           

 6                 e

g

Figure 4.7.1

f

 ' 9' $$ !   " 

FACTS

'

-:9 0 :

=>   

'

 ¾  ¾  "    5    ?   

"    5     

'  '

-J90 "

Æ    E  

   => E

   => E =>  E  



  

-( /0 "     !          Æ   !   => ? Æ     = >    

 '

-/0 :  

   !   #   ` "

$ Æ E `   



REMARKS

 '

(  9  3 !      (        B  (  7

304

Chapter 4

CONNECTIVITY and TRAVERSABILITY

'

(  /      ,  (   =!         B >    (  1    

Digraphs

                **  '  =                        

B    

  >    

DEFINITIONS



' 6             = >        

#  !          



' 6           = >        

   !          

  = >  =>   -'       5   * #     =>   -'    

  5   # U Æ => ?   =>   => => Æ  ?   ¾  =>  Æ   ?   ¾   => => Æ ?   ¾ Æ => ?  Æ   Æ     = > ( # 





       !  `     #  

   =      

  (  

 5 

>

=  >

   #   

FACTS

' '

% ?   ? Æ  -S/ 0 :        "        = @>

  =   >    Æ = > E Æ = >    ?         ? Æ  ' -*L10 :     !      ! 6 => ?   =>  =>             ' -*L1 0 :       !          Æ  "    #      #    9       #     #        9   ? Æ  ' -*L10 :  *               Æ !  *   "  =*Æ >=*  >    => ?   =>  =>     

       ' -*L10 : ¼  ¼¼               Æ   !           " =(> E =3>  = E >         ( 3  ¼         ( 3  ¼¼  => ?   =>  =>             -H90 " 



    !    



REMARKS

'

F    Ga&%  =(  >     B      H  =(  >      (      (  3

Section 4.7

305

Further Topics in Connectivity

'

(   !     . &   L&   ! B   -. L/9. L110 !        !    



'     (          !    !    #        $        H %  =(  >                  -(;!110

'

 B  (          (   

Oriented Graphs DEFINITIONS



'                             # !                             5     # !     



'      =         >        !  !          = >  == >  = >> EXAMPLE

'

(  9 !     #             "  ? ( 3        =      - 0         >       =         

5     # !     >

u

x

v

Figure 4.7.2

y

 ' 9' $$    " 

FACTS

'

- (910 :

      ! 

Æ  = E >   ? Æ 

       Æ  "



' -( /0 "       !             

 '

-( /0 "

      !    ! 

Æ     E

  

306

Chapter 4

CONNECTIVITY and TRAVERSABILITY

REMARKS

'

(  9  3     (   !  (  /      (   

B  (  /



' "    Æ        - (910  -( /0 =(  9  3> ! Æ  E Æ     Æ  E Æ    E     (      !   (  3  /      

'

*      * !                

Semigirth

6    H %  =(  >    !        

    !                "  #             =      >        DEFINITIONS



' -( ( 3/( ( A/10 (      ? =  > !    %      @= >      @ !   %          = >  7&= >  @       ! &   B       ! &   7&= > E 



7&= > ? @          ! & '        ( *   !     #      

=> 

*                5        #   6                  

EXAMPLE

'

(  9 !        !           @ ? % ? 

Figure 4.7.3

,'!" @ ? % ? 

@  B   

Section 4.7

307

Further Topics in Connectivity

FACTS

 '

-( ( 3/0 :

'

-( ( /7  8 210 :

    !     

@       = > " %  @  ? Æ  => " %  @       ? Æ  => " %  @      

   

Æ $    %   

*   =*  >

%  @ E *    ? Æ  " %  @ E *       ? Æ  " %  @ E *      

= > " => =>

'

        !       #    

REMARKS



' 6           (  1       @   !   !                (      = >   !       Æ          

       7&=  > 7&= >  @ *         @       #              

 ' '

     

    

@   (      (  1= >

(                H %  =(  > "        = >      Æ     E    %      (               (  

Line Digraphs DEFINITION



' 6    ;       ;     =; >   = > 

# = >  5   # = > >   ?  =    '   = >      = > >     > 6      ;   ,    ; ? ;; ½  FACTS

'

6   ; B        =; > ?  = >           Æ =; > ? Æ = > ? Æ  $  =; > ? = >

'

"      $        %     @  ; 

           %=; > ? %= > E      @=; > ? @= > E      - 790-( ( 3/0-( " => =>

'

   ? Æ           ? Æ             

-8  ( ( /7 ( //0 :

      : 6



%=; >          " %=; >         " %=; >    

= > " => =>

'

;

   !      Æ $             !    %=; >

   ? Æ           ? Æ             

-( ( /7 0        !       #    

REMARKS

'

Æ $ 

(  7    B  .,   4  (  1

Section 4.7

309

Further Topics in Connectivity



' (  3        (   !       Ga&%

          Cages DEFINITIONS



'  = >        !               



'      ? =  >        9      

#         ?        #         #  !  EXAMPLE

'

6 :   !  (  9   = 7>   !       

Figure 4.7.4

 # : !" 

FACTS



' -(*/9S+ + 10  = >        = >     #   



  

 ' '

-. //H $/30 A  = >   ! 

' '

-$ 8 ( 1T0 A  = >   ! 

     1   -+ S+ 10 A  = >   !            #   

' '

-$ 8 1T0 A  = >   ! 

     

-$ 8 1T$ 8 10 A  = >      

 B  



          

-$ 8 1T0 = 7>  = 3>     #   

CONJECTURE

-(*/90 A  = >     #   

310

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Large Digraphs

6 !            = >        DEFINITION



%

' (    !   #   `      $    =` %>     =` %> ?  E ` E `¾ E    E `%  FACTS

' '

 #    !   #   `    %    =` %> -+ 790 6   = >  !    $     %   ,

 =%  > E 

'

-";&340

 Æ    - =` %  > E ` E 0 "  Æ    - =` %  > E `0

= > " =>

 '

$ =Æ  >- =` %  > E ` E 0  ? Æ  " $ =Æ  > - =` %  > E `0  ? Æ 

= > " =>

 '

-( /0

 Æ    - =` %  > E 0 E ` "  Æ    - =` %  >  0 E ` E 

= > " =>

' = > =>

-( /0 :



  

" $ % ½ E     ?  " $ % E   ? 

'

-/( / 0 :

= > "

$

=> "

$





 % ½ E %

¾ E  % ½ E %

         % ?     ¾ E E ¾ E  %    % ?     ¾ E E ¿ E ¾ E  %   



EXAMPLE

'

(  94 !       !  ? 7 ` ? Æ ?  ?   % ?    $ % ½ E     $ % E  (  4         #    = ? ? >

Section 4.7

311

Further Topics in Connectivity

Figure 4.7.5





? ??

REMARKS

'

6  &! (  9   + &  !   ,   !        %     !   =      > " !                      5      !            %  $%    



'           !       /  = >  !         /  % *!      Æ              =6           

   %'  ?        !       % !   ? !    !   C       D        %>

'

" !  &            $     , "        !  !      &   C&D             !  (  3 = 

 (  />  (  41



' (  41      (  3 F     !     (  41=> !    $  =` %>



? `   

Large Graphs

        !     A    -A340 & 

 -F " 390 -/0  -( /0 -( / 0 DEFINITION



' 6 $         !   #   `  

 %     =` %> ?  E ` E `=`  > E E `=`  >%  FACTS

' = > " =>

-F " 390 $

=Æ  >- =`   %  > E 0 E `   

" $ =Æ  >=`  >%

E  



? Æ



? Æ

312

'

Chapter 4

-/( / 0

%

= > :     

=> :

Æ  

"

CONNECTIVITY and TRAVERSABILITY

$ Æ - =`   %  > E 0 E =`  >%

½





%   Æ      4 " $ =Æ  >- =` %  > E `0  ? Æ 

4.7.2 Bounded Connectivity 6  B                               = >  "     !    # 

A-Semigirth 6 !  ,         =.,   > DEFINITION



' -( ( 3/0 : ? =  >     !      Æ    %

  A    1  A  Æ   6 A      @& = >      @& !   %         

7&= >  @&          B      A      ! &   7&= > E   7&= > ? @&         ! &

= >  =>

FACT

' -( ( 3/0 :      !      Æ $    % A    @&  1  A  Æ    !          ;  6 = > " %  @&    Æ  A => " %  @&     Æ  A => "   %  @&   =; >  Æ  A => "   %  @& E   =; >  Æ  A REMARKS

 '

A   @&

 '

A  Æ     !     

F   @          @ $    ! ,       !    6 ,    @&      



Imbeddings

* !                             ;       &       - Q/30 - Q10

Section 4.7

313

Further Topics in Connectivity

DEFINITION

'

  

           

+ !    

+ 

    ! 

FACT



' -90 :               $ 1 =!  "        '     -   90> 6  =4 E  E 3>  Adjacency Spectrum

2  = >  !       #         !                6    5               5    = 74         #& -8 / 0 - . /40> DEFINITIONS



' 2              ? = >      # #      !    ?       5  

? 1 ! 



' 6  &        #    =

 ,  & ?   + =  + > ! +  + >        + 

FACTS

'

-/48/40 :               #    

    

       6 & $      %¾    #     ! # !  !   =6                         -8  ( ( /70>

  2   

 

'

-( 2  =? Æ > $ $ $   :  =(> '? =(   >=   >   ¾ Æ   6 = >   Æ  ' ' ¾ Æ   REMARKS



' 8  (  49 8! -8/70       #   

           



' (                      !&   -8* J 30     -: 10



' F     (  4=>  !  (  43  

% ?  

  #    ;

314

Chapter 4

CONNECTIVITY and TRAVERSABILITY

Laplacian Spectrum DEFINITION



' 2      0      ,  ; ? %  ! %        #   #      5    #  =    -8 / 0> 6 0          

   :      #

    6    :     

 B½      ?

= >                    ! 

         ,      FACTS

 '

  ;      ,    

      !   ,  B    "  Æ   !  =  >  

 =? Æ > $ $      :     

  B  B     B  ! B ? Æ     ?      5

 '

-( 90 :

   !     :     

 

  1  ? 1        => (         !   = >  = > => (  #    !   =   >  = >    ' :  Æ     !    % $   :     

 B =? 1>  B  B   B  " Æ  ( (( ½ (¾½¾(½ (( ½(    ? Æ  = >

REMARK

'

(  7  5 B  (  43     :     



4.7.3 Symmetry and Regularity Boundaries, Fragments, and Atoms

6                                   = >  !      (       !     + &  -+ 910  $  -$ 90 6         !      -970  ,  #   *   -* 990 -* 310 -* 30 8         !  

     

      !     ,       =(        ,     > DEFINITIONS

'

6       #         C             5   *         C         5    

Section 4.7

'

315

Further Topics in Connectivity

6            

      =  >     6         ?  "     !       =  >    5 

'

-* 310 "      ! 

=  > D        #

 Æ · =  Æ

>      

REMARKS



'          !       !  

            !     

 '

(  79   H %  =(  >

Graphs with Symmetry

2  !         CD           

          "        !                 !       2 

         7  7 DEFINITION

'

 = > 

       =      >      !                    =    >    =   >   >  

          > 

       

Section 4.7

317

Further Topics in Connectivity

FACTS

'  '

-$ 9+ 910 :

 '

-$ 910 :

A     #            #       !    6        ? 

?     E  ( 

? 

         !    6

?

'

-+ 910 :  #       !     6    -0      #     $        

      = >

'

-* 990 :  #        !     =  >   6      -0   #     (       =  >           = >



' -* 30 :  #         !  = >    6 ?       $              REMARKS

 '

6 , !    (  7/  B  (  7 6        $ 



' ( (  9  9    =      >         B     #     = >  !          #    = ? ? Æ > "     &!    = >      = >      

'

8 (  77 *   -* 990   J  %                     #        -J 9 0  *                    #    Cayley Graphs

6         #    = >             !    = 7  7> "                   &    !   &            ! &!   .  ' " * 

       !         .      E  ? .   E     E     DEFINITIONS



' : b  ,   !           + b   6     ? =b + >       !     b      = > !  +  "     ! + ? + =! + ? ( ' ( + > !                  

+

' ' ¼

" b                   

     +   b     ! +     b

  

318

Chapter 4

CONNECTIVITY and TRAVERSABILITY



' 6        c                   

' :         (        !     

 6  

( ? (EE

FACTS

'

-"9/0 : +            b ? c !   4    (+( ½ ? +    ( b 6       =b + >   #    =   ? + >

'

-* 3 0 : b  ,   !          +  :      =     >   =b + >     6      b    +        =     >   =b + >      b !    

'

-* 3 0 : b  ,   !          +  : 6       =b + +  >   #   

+  + ½ 

'

-* /70 : b          +       b    + 1    : %      ? =b + > 6  

#        = = >>% !                         ?   $         ! B               =3+ > ½½  = >

 

REMARKS

' '

(  94   *         (  9 

(         (  97 !       2  -230 B  &  J   -&J390 *   : G   -* : /0    -/0           = >  !          =   !       ,              ,  E     > Circulant Graphs

8                            !&   !      & " "   #                     !& = -8*/40-86 3 0> FACTS



' -* 3 0 : b       .  : +        B  7  = ?>½  ¾       = >    ·½        ½   ?      7   6        =b + >   #    = ? 7>



' -* 3 0 : b       .  : +        B  7  = ?>½  ¾       = >    ·½        ½   ?      7     +  +  ! +     =   >       +  6        =b + +  >   #    = ? + +  >

Section 4.7

319

Further Topics in Connectivity

 '

6   .    B

             + .  *         =.  + >   #    =   ? + >

REMARKS

'

6   + ¼ ? +  (  9/ =        > !     -8(910    C #    D ½       ½ =  -86 3 0>



' (  31   *      !           =(       5 !      -* /70> Distance-Regular Graphs

6         !    8      /91 .             !                       !  !          "  #                 DEFINITIONS

'

:      !    %       !  % 2               !      !  7&= > ?               5     !             E         '  #         =  U  >        !

5           !  5      









   FACTS



' :     6         !

' '

       



A         #     -8$340 A         #      

CONJECTURE

-8/70 A           #    REMARKS

' '

(  3  B  (    3

6 5                            ''  1 =      =  > 

     5   ,     >U  -2/0 "   5 !    5  2  -230     # 

                 #    

320

Chapter 4

CONNECTIVITY and TRAVERSABILITY

4.7.4 Generalizations of the Connectivity Parameters 6                 @ !              -8 8: 390 -8; 10 -* 30 -+90 * ! !       #    !      

     !&      Conditional Connectivity

6 # ! ,            DEFINITIONS

 '

2    ? =  >      7 #   ¼                 C = >      !  7¼     7¼  7          ¼       7                !  7¼     7¼  7



' 6                   

        7   6                            7   FACT

'  = > => => =>

-( ( 3/( ( A/1( ( / 0 :

   !     

%     : @ ?  )  ½  6 " %  @   ? Æ  " %  @     ? Æ   Æ   " %  @     Æ      Æ  " %  @      Æ  

Æ $   



CONJECTURE -( ( / 0

%  @  7    =7 E >Æ  7 " %  @  7      =7 E >Æ  7

= > " =>

REMARKS



' *   -* 30              "  #          !      ! ,



' F                        = (  3    (  7> " $ Æ     

  $ Æ     

'

6 5   !          7 =    Æ $   @ $ =7 E>> -( ( /70 $   7         !       Æ       Æ     !    -8  ( ( /90 -8 //0

Section 4.7

321

Further Topics in Connectivity

Distance Connectivity

* !                   = >    -( ( / 0  -8  ( /70 !   &       !   DEFINITIONS

' : ? = >     2        = >     =

>    +       =>            +   =>            =>                =>                    =>            =>   ' : ? = >     !    % 2  &   &  %  &          =&U > ? =&>  ,  =&> ?   => '    7&= >  &  &    => ?  !               &        =&U > ?

=&> ?   => '    7&= >  &  &   FACTS

' = > =>

? => ? =>  =>   =%>

? =>  =>   =%>



' : > 6

    !     

Æ $      @ = .,  

 Æ  %  @ E   ? =@ E > "  Æ  %  @  ? =@>

= > " =>

'

? Æ     %  @  =@ E >  Æ  => ? Æ     %  @    =@>  Æ  ' A     !       =>  Æ    #    = >

 

 '

:

      !         

   &        

=&U

> ? =&U >

' = > =>

      =&U > ? =&U > 

  Æ $  %    ? =>   "  Æ  %      ? =  >     %      ? =  >   "  Æ  %      ? =  >    :

      !   



  

322

Chapter 4

' = > =>



     =>  Æ

? Æ     % %      =  >  Æ       =  >  Æ ? Æ     % %      =  >  Æ

'

CONNECTIVITY and TRAVERSABILITY

         

   !       =>  Æ    #     

REMARKS



' " (  39   =&>  =&>  ,   &  %  ! Æ                    



'

                (  37= >   (  33 !   H %  =(  >

'

(  /1 !  (  37     (  3/  @= > ? =  >

High Distance Connectivity DEFINITIONS

' 2  #                  => ?  #Ú¾ 7&= >    => ?  # ¾ 7&= >    ' (   &   &  %   &       Æ =&> ?  Æ  =&> Æ   =&> ! Æ  =&> ?   ¾  => '  =>  &  Æ   =&> ?   ¾   => '   =>  & '      !    %      7      7  %   !     5              B   7 " 7 ? %            = -8JQ730- Q9 0> FACTS

' Æ ? Æ=> ? ? Æ=5>  Æ=5 E >   Æ=%> ' (  &   &  % =&>  =&>  Æ=&>

    

 &     ! =&> ?  

 &      ! =&> ? Æ =&>

       

=&> ? Æ =&> 

'

"        &  5

'

  #    

  #   &    

7      6 = > =&> ?  Æ =&> =@ E >   &  7 E  => =&> ?  Æ =&> =@>   &  7 ' -8  ( ( /9 0 :  7      = >   #   &       &  7  %  @   =>   #   &        &  7 E   %  @ -8  ( ( /9 0 :



Section 4.7

' = > =>

323

Further Topics in Connectivity

     % 6     &  % %         #   &       %         %         #   &      %        :

   !   

Maximal Connectivity

"   &          !      =   >     !   #        6         !      

  .       #                = # >              FACTS



'        ' - : *370 (      

!     #       (  2       `  ' - : *370 :   #   !      Æ = > " Æ       Æ  => " Æ  = E >    !          =   E > => " Æ  = E >    !             = E >

` ?   !  

Hamiltonian Connectivity DEFINITIONS



      !               '          = > $       +   = > !   ? +   #       !    +       =    '     *   

 > FACTS

 '

   "

 '

-2+ 370 :      5     !  =>E=> E            

  = >E

-2+ 370 (                      !  = E >   =                     > REMARK

'

6                =.,   9>    $  F    2           2     

324

Chapter 4

CONNECTIVITY and TRAVERSABILITY

References - 790 $   ;          $ G 1 =/79> 47K7 -&J390 8 &  8 J    ;           (***     7 =/39> 334K333 -/40 F  6     !     +     

=//4> 3/K/4 -/0 8       !         (***      =//> 9K/ - (910 HF    "6 (  ;            (***        6 9 =/91>  /K41 -8 //0 $ 8   A#    7            $ /4 =///> /K4 -8 8: 390 J 8   :+ 8 & $H :    A  ;          '   71 =/39>  K  -8  ( ( /70 $ 8       H (P    $ (  ;                    '.  3 =//7> /9K14 -8  ( ( /9 0 $ 8       H (P    $ (  ;  

    7      !          $ 9 =//9> /K9 -8  ( ( /90 $ 8       H (P

   $ (  A#       !              $ 79M73 =//9> 34K11 -8  ( /70 $ 8        $ (  .       

    +       =//7> 3K/ -8*/40 H  8 (    .( * .     !&'    +         =//4> K1 -8; 10 :+ 8 & ; ;   A  6           $ 4 =11> K 4 -8 / 0 F 8                 N       //  -89/0 8 8G  ;   !  B              $ 3 =/9/> K -8(910 ( 8    (          '.   =/91> 7K3

Section 4.7

Further Topics in Connectivity

325

-8* J 30 ( 8 ( *     H J  2         !&     '      '.   =/3> 49K7 [ QG       +  

-8JQ730 H 8G &  J      4 =/73> 91K97 -86 3 0 ( 8   6           +      3 =/3 > 39K // -8/40 A 8! 6      0    

 7 3 =//4> 79K9 -8/70 A 8!         9K 1 -8$340 A 8!  .$ $ 6         *   +   7 =/34> 4K7 - ( //0 $ 8   H (P

  ;                   '.   =///> /9K14 -770 2    %($ + 

 $  =/77> 993K93 -970 2    ;           # = >       ;> =/97> /K1 -: 10 A   $H :   L                    '       

 $ 3 =11> 7K9/ -90 H & * !%      $  0 1 =/9> 1K19 - . /40 .  & G $ . d  *   %          

   6     H 8  L  :   //4 -. //0 $ .     = >         $ // =///> 19K4 -. L/40  . &   : L&  F! Æ      B                1 =//4> 91K93 -. L/90  . &   : L&  . B      #           +      7 =//9> 9K  -. L110  . &   : L&  . B      #            B     $  =111> 9K -A340 * A    :!          +       / =/34> 41K4 -( ( 3/0 H (P   $ (  $ #       +       =/3/> 749K773

326

Chapter 4

CONNECTIVITY and TRAVERSABILITY

-( ( / 0 H (P   $ (  A#      !         $ 9 =// > 7K91 -( ( /7 0 H (P   $ (  8          !   #        

 $ 7/ =//7> 7/K99 -( ( /70 H (P

  $ (  ;  #         $

44 =//7> /K49 -( 90 $ (         > $ +  =/9> /3K14 -( /0 $ (  ;               +      7 =//> 4 4K444 -( /0 $ (  6            +      9 =//> K 4 -( / 0 $ (  6               $

 =// > 79K93 -( ( / 0 $ (   H (P   ;                 $ 4 =// > 7/K97 -( ( A/10 $ (  H (P    $ A                  /8 =//1> 9K -( 2

!   

?  



'

   #



? =

> # 

   = > 



? 1

! 

$! "  / K        # 

'       

   : 



''" !"  3" " !" 4'

      !   

          

"9'  3" "9' 4 $!"''

          &

                         

" "'     '  

  ''" !" '  ' 

''" ,7 3,74'  !

' K    '           

$   K   #       

       



+  

=

>

+

'   

+

=

>   @ !

           5     

-". !"   ""  B





'     ! 

   U #

   

 +

     

 5   #



 

=

>



+ +  + 

=

>

 

      ! 

      



   

        8 5  U        

,     #  !       !       #  !     

$  !" '  ' 

$  "  K   

=  #  >'

      

        =         #  >             

$  /"9 K    ' # !     B   " !" $"'               5       5   

( 



3 9

!      



E 

       

 " !" '   !  !  #         = >  " 9 K   '        ! 

        

$0 K    '  #        " K  #   '      !           " !'     '   "! K     '   !     U    

-' 

331

Chapter 4 Glossary

 !

 >

=

'



     

  



!       

 

6 $ 34!" 

+

K   b !     

' = >  !  

  , !     b     

6 7'  7" $'



 ½

!

b

' ,            

!     U 

$ :" $"

'

*

              

         

$? ' "   

K   

'   #        



'½ '  !"  " $$ 

K   '  #      K    '  #        '    !   #  ! & !      



   =

>

'

 

 '$   ! "  ! 



  

=



>

    #

 



 '         !  !  



'   !   







'   !    





'          ,   =     >   





'    

  ,      

5      



 !" 

-



  ?





  >

'  ,            

         

"  $ !  "  $  !"  

'   



=&   



  



   !     

  

 





'   



   !    

  

/"! : $0

=

   

*  >'

K       

'  ! &   



" $$  !"  !  '  /"9 617 "

' 

'    

 ' 



K    ' # !      K  !          !  # 

        1  '

        !  !    !  "

 !   

  



 



1 

   # 1    

$ /"

K   

'   

      

$ '

 > 

?  

  !   

"



  !         ! 

+

+

¾

   

  



   



     

?  

      







K    =   >

'

        =

             =    >

$  $ /" 36 64 #  !  

+

'    



+

      

 

332

Chapter 4

!   /   = / E        =! >

$ 9 $'    



CONNECTIVITY and TRAVERSABILITY

>    #    

 $$'        #      #   

$  0! K    '     5      $  K ½ ¾      ½¾    '        ? ½  -".  K ½ ¾      ½¾    '        ? ½   $'                       

!" $"'        5       5    !                !" ? K   

'           =    > 

  

 ' " '   .,     ' K    '       B                 #         

 =

 '" K  = >  '   #     !    !" '     !    U '  ' 

>U 



   ''" K    '                  !    = >  = >   '   $ '    !       U  *  ' 



      *-

 '    !      U    &"

 '  " $$ '       =  >  

   = >

 "!$ '    ! 

     '  

      #

 ! &         U

3"!$4 '    !       U -   -    '

  

 ''"½'       !              =   >  #       ''"¾' =    #



>        B   

! !½ K         

'    ! 

 

! !¾ K    

'    ! 

         

! 3/"94 K         

'     ! 

 

 => K    '    = # > ! 

       @ 

 

333

Chapter 4 Glossary

! 3/"94 K    

'     ! 

 

       

&  /  7&   =  >  ! 

=

>

K    =   >

 &

  ' "9    

 6 '    #

  

   !  

 ½

K !  

  5  

 ¾

  







 "!$ " !" '

 

  

' ! "'

!

  

  !   =

   

2

> 

!



? -  0 !

   =   >



7&  

%



  ! 

U   ,    



K ! # 

!   





'          

'

2

'    

        

! & !      

1

      

    # 



 $ " !'  ! &        #  !   " $'              

  !

  

"!'                  ! '   !  5         ? =  > 

  

=

>       

! " '     !  " K  #  





      

  ?

E



?



'       #    



!/½ K   '

  U 

!/¾



       ! 

  

=



>

K       '

       !



       U 

 



!' '   ' - !.  '           !''" !" '   !    

     

 

$  ,7'  ! $"  !"  3" !"  " '9 !" 4'           $"  " K    =   >'   ! &       = > , 

       #     ! &      

    #  

/ !" '      !         9  $!"''                     

½ ¾    "'

 "

K   

           '     

>U        

 "   



*  

  

 =

'  = #  5 >      

> ?



=



 

   

> =   

   



=

>

334

Chapter 4

" !' K   

CONNECTIVITY and TRAVERSABILITY

'    

   

     

!" $% *$'   =   > ! #          *             !      =     *>

 

       

!" $% ,7'  ! 7! !" '  9 .,   4 !" K    '        $ !" K  #      '          '$  '         !  !    '$  $'       '$  ''                    

                

 = E>

 '$  !" '             ""'              B    

                B     

 ?$'    #        

' ! K       + '  !    + !       " K        =  >'     !      U 

 =  >

  K  # '        =  > ! =      



 

   

 ? U     >



 " ''   .,   7 !" K  #      '       5     &'    #  !         &  ' "'                K   '    !   5     /"'   !    !    !"  3"  !" 4     '   #     =   > 

!  # 

 U  = >  - 0

" K  #      '   #       7&= >    

 



"" /"9 K     ' # !   5         " $$.   '         !  #     

  

"'   !       !"  3" !" 4'   =   > !        ! !"  3" !" 4'   =   > !    

   

Chapter 4 Glossary

335

  " $''         ½ ¾    ½ ¾          !  #       5    ½  ¾              ?       '   ' '       5        =!        >                         5         0  " "' '

                   U                     U  7 @ $   ' "9 K    '    # ; ? =2 > !    2 ? =>       5       2 ? 1 !  $ !"  K     '      !        

 # = >  5   # = >  "  K     '                          $ !"  K    '    !          !       !   !    ;= >  5              $0 !" '                 B    @   ½ ¾      ½ ¾       #        ?               #  5   "$0 !" '    !     ,   5    !                 $ $ '$ K  # (           -- =(>0  '          -- =(>0       =- =(>> ' !'     !  !     #  " K    '         #             ' 9' $$  !"  3" !" 4'   =   > !   B       ' 9' $$ ! !"  3" !" 4'   =   > !    B       ' 9'' !" K  = >  '   #    =      >        '' $$  !"  3" !" 4'   =   >    = >           =  >   '' $$ ! !"  3" !" 4'   =   >    = >          =  >   ''' 3&4!" K  = >  '       & =  >       ''' !" K  = >  '       =  >   

    ''' !" K  = >  '       =      >       

336

Chapter 4

'9 !" '     8"  K   

CONNECTIVITY and TRAVERSABILITY

         '       #     

    #      

! /

D" !'

K    

'

    !    

           

! / ' K     '    ! /  " K  #   !        

! / !  " K



! / " !' K

  !              





 # 

!      ,  #     





'      

   

'     



'      !     

        



! "½ K  # ('       5   ( ! "¾ K    + '   5    #  +   " K        =  >'     !   

 ·   =





U 

>

!" K  #     '      5     &'    #  !         & " K  #      '   #      

7&   =



>    





"'     '    $'             = > * " !" '   ! #          *  # 

 " K

  

!     

 ' 

? =

 

    

>   ! 

    

?

=

=

>

>'      U 

   =

  ! &    ! &  !   ,      



'



/

    

 

  







K   

D" !'



 



 

   # 

'   

5  

K    

'

  



  



   # 

   



    !     

/ ' K     '      !           /  " K  #       '      





/ !  " K  # !         # 

/ " !' K

   

       









U   ,    

           

      

>



   

 

'     



'      !       

337

Chapter 4 Glossary

'  " $''       ,      =    ! >       

    

 "'              '9'           #   =!    

   >  "" $'  #            =     #> !                0" " '         #     !              "'            !       :'       !               =  >    

'  " =   &">' K        '  ! &       



 :" K     '      !   =   = >        = >  

> ?

=

>  ! 



?   !" '    

      #  !    ?        #         #  ! 

 

""      K  ! &

 ·½     



? ·½ = 

'     ! &     ½   ½ >

 ·½ ? 

     ·½ 





"" " : $0' ! &        " "'          # 5            #      5    ;            -           

'!" @ K     '     @&  A ? 1 '!") A K     '              

 ' = >  7&= >  @       ! &   B      A     ! &   7&= > E U =>  7&= > ? @          ! &U  @& 

 " !  K     # 



 

'

3$4  "  K   

½¾   



'       











    

  

     ? ½ ¾ ¿       ? ·½    ?         



 !  !"  3"  !" 4 K            

 



'   =   >

$! " '   .,     0" "  " $''         #     !            

"!$  !" '  '  "!$ "!$ " !" '         !    !  !"  " '    

338

Chapter 4

CONNECTIVITY and TRAVERSABILITY

" !" '  #      !            5   #     U   ,    

" !" '  #       !                #     U   ,    

''" !" ½'  '  ''" !" ¾'  '  ''" !" ¿'    !    #

9

     U  

''" !" '   !    #       ''" ,7 3,,74 K   = > !   '    !        

 

 $ !" K  #    #       

, 

'         

 $$  " ! ' 2                            #   ! K    '  #  &    & =+ >  +  ! =+ >        +  "  $'         "  ''   .,   9 " /$!  $'  " $'' ,     !         !                                  ! U      **  !

" !$ ? $ K  !     =  >'      E              !    !      #

#  =   !    >

 

,7'   *  *  ''" 3,74' ,     !         ! 

* ' 

 =              >



$ '



!" $% K  !      

      6  !          A       !        A      !   

     ½         ' ,     !       #   =    > #        ?     

=>3!4 '  '   

  '    #   # 

/$ "! " $')     36174 K  !           E    !      1   ?      

!  !    "  ' ,  L   !     !         

339

Chapter 4 Glossary

3/"94/½ K   '

        ! 



        U 

3/"94/¾

Ú 



K      '      

  ! 

           U 

Ú 



/"9 $!'

    !  #

!        5  

5  









 

   

  !         

 # U          

: $0'





/"9''" !" '   

     

 ! 5  

  

 

  #     



    B              

            B

: 0$ $0 !" '

  

  =

     

         

>  # 

 

 

 

          





  

  

  5 

: 0$  !" '  

:$'

   !      U 

 ' ' 

       

  # 

!



!

      #    5  

Chapter

5

COLORINGS and RELATED TOPICS 5.1

GRAPH COLORING

                  5.2

FURTHER TOPICS in GRAPH COLORING

                  5.3

INDEPENDENT SETS and CLIQUES

              5.4

FACTORS and FACTORIZATION

!" #   $    5.5

PERFECT GRAPHS

 % &'    ( % 5.6

APPLICATIONS to TIMETABLING

)  ( %     & "   * +  ,

 ) #" + -        ./            GLOSSARY

Section 5.1

5.1

341

Graph Coloring

GRAPH COLORING                                               !    !" #   $    %    &   ' ()    *' 

Introduction            ' "  $               ' " $ +        , 

      -  #  -   '            +   ' ,   -   .+ !' /  0   ,   

    '    1 

2 341 5 6   ,     '    '   + ,    /      77

   %        +   - -   '   315&6       381 556

   9   "  ,   '!

 -    - + +   ,      +  ) 

5.1.1 General Concepts      ,     ,      '    

   '       +   ' ,   )  -  .+      0 % '    '      +  - ,     + ,   , 2 ,   #    1  . 0+    - '   '      '      Proper Vertex-Coloring and Chromatic Number DEFINITIONS

:

;  '   

 < .  0   '   :



'    ' -      ' =  >

342

 

Chapter 5

COLORINGS and RELATED TOPICS

    '  , ?  -         : ;     - !   ,          ('     -  + ,  .   )

,    0

 <        :

1  

 



:



;  

!       -,    0   ½

,  ?   

!      0

  

:






   + + "   , 



." 0  J." 0   ." 0

¼¼

.0

¼¼

¼

: %&   ./A  A ;    A "  N  F0 #  -    + , - " ¼ .0 < ¼.0  : .-  EL0 E    ?  &+ '  - ,!'  

 , - " .0 < .0

O  : ."  + 8  2  9

A 4-+ E   @22 -2A F   4  0 #  -  

+ " .0 < ¼¼

¼¼

.0

 : .8  2  9

0 E    ?  +

'    ' -  



"

.0
0   !+    !!     '     +    !!   REMARK

:

;   ,    -  /K  +               '        '         J.0  J.0C+   - F + 2       - ' '   1     L    2 ,  -    )    @-    '     ,  '  '    ' + +  38 76       3 E*@ 5B6

FACTS



: 3 B 6 ('      - ?  . &$0  '+         2 '     B

:

3 B6 ('  !V , ?  . 0  '+            !!   2 '     &

:

38 5$6 #  -   (

(        !!   2 '  

Uniquely Edge-Colorable Graphs DEFINITION



: ;    < .  0        '    ?    !   ,   < ¼ .0   .  '    '  0 EXAMPLES

:

1   !         1   !           -   1                !!   .     /    - '   < 0

:

31&$6 1     ' , 5!   2 2   2  3 3   3   '   23 .    5+        50   !!   1    2 , !'  !    '   < 

FACTS

:

 



31&B6 1           !    + '   

: ('   !   !  +   '  ,     =YIJ    >     !   !   D    

Section 5.1

355

Graph Coloring

 * -    ½ ¾  ½¿  ¾¿    '   <   

    ' -  , 

 , -  

½ ¾  ¿

 

Further -Bound Graph Classes CONJECTURES



:



:

/+

.N 'N A @0 #  - 

 '   

  3B&6 1   

/

   

! '    

     

! '   '    '    ,  -

         

FACTS



:

38S56 ;

! '        '   

 

 '    



:

/

3@ 5&6 #  - 

/ + '

  

/ +     ! '      '   /      



   -  '

5.1.6 Coloring and Orientation Paths and Cycles FACTS



:

3$B+ * $&6 ;   



:

3E$6 ;  

 



:

' 

  '



      

.0   '   '     '      '         ' 

   

       -  

,     

0   '  -  

.

,          

'

3156 ( Æ   E K     - ? '     '    . 

0

.1    I*  1 +

0

E - -+ '   

!   '    '      (         '       +  

     -+       + '       



:

!     

3" &$6 ( -          ' 

       '    



!      . 0+

Eulerian Subgraphs DEFINITION



4 < . 4 0    4 < . 4 0 '  4 ,    -    +  ,   .0 <  .0 '     " 4     A  + 4 <   ,  - 4    .@    -   ' " :

;

 

  

       0

'     

·

356

Chapter 5

COLORINGS and RELATED TOPICS

FACT

4 3;156 ('   '      '       ,   -  '  L '    '   ,     ' 4  !   ,-      )    .0 '  +       .1           -      0

:

Choosability and Orientations with Kernels FACTS

4 < . 4 0 -     "4 ! @         

       *      '    -    * ' "4     

  *  ('      ,     .0 '     +        

:

:

1     -    -         ;     ,     * .  %  0     '  !  % 3   " .  0 (    +  Æ       ,     !  



: (' -     '      -     +         ,    !    +            '     + -  8M IF   (   + '         )  -!   +  " .0   C  E      -        !       .   0 Acyclic Orientations DEFINITION



: . ' 3E1 B6  3;BB+  60 1            ,       (    + S ; .Q;K0     !    ! ' +  S @ .Q@   K0         +     

        1   - ,       ?                      ' 1   ' 5 

)     ',    + , 6   2    

  9 

  #.0   '   , 

 5  6  

  



FACTS

:

3;115 6 ('  < .  0      $ -   ,  #.0 <  +  

&     '   '                .(  

2 ,+  ,-+ ,  #.0    C . 0 '     

-     0 : 3;115 6 #  - (+        < . 0 ,      (  #.0   

  +  ' 

Section 5.1

357

Graph Coloring

: 3;15 6 #        ,  -        + #. 0 < R.   0 ,      .0 

,-  7  ) #     +        #. 0 < .   0





5.1.7 Colorings of Infinite Graphs FACTS



  '   ' - : 34 56 #    +  )      " .0   '   ' - )    '   ! 

 : 3" &&6 (' .0 < +  '  - )        5  +  :

3"  6 #    +  )    )    '   !  

     ,     

:

  .0

5

38 56 1 .0  ,!) '  -   +  -   !

   9!% 1 A    -     +   -  ;  '   

:

38 BB6 1 '  ,       : 1          <  + .0 < +  ." 0  ,-  ." 0 











 < .  0

Coloring Euclidean Spaces DEFINITIONS



:

1             '     -  A   

  '   ,        







: -  .)   ) 0 =    > 7 <       +       .70  -   A , -      ?  '   '   7 FACTS

: : : : : : :





  &

3F 6 (  + .  0



 

3E E $6 "  !       - -  + .  0

  

3 76 ( !    + .  0



; !       5 -    .  0 3D* &6 ;

+ .  0     . C .00



    3#9B6 ;  + .  0    . C .00  3@ 5 6 1     " .  0    )  '   ' <  

<  .()  , ) -  341 5 60 

: #  - )      7+ ..700  7 C   : #  - 7 ,  7 < + ..700     .3T760 #    +

 ,-+      '  !       

  /  '

358

Chapter 5

COLORINGS and RELATED TOPICS

 : 3  @2B 6 (' 7    '   +  ..700 <  E  -+ ..7  00 <   ..7  00 < 

 : .W 8 / A 3*1 76A W S  9 @ 0 D       7

    '  - +      ' '      7 <             '     ('    7+  ..700  )  '  

  7A  '   < 7+      7     ..700 < 

References 3;BB6 E ;+ 4$    " + 9I1+ 5BB 3;115 6 E ;+  1 +  T 1/+ @  '         '  + *  !"5  .55 0+ I7 3;?8 @/B76 E ;? + 4 8 N

+   @/N+ ; 

  * + .5 4$ 5 "   5  5 .5B70+  I$7 3;56  ; + *     '  +  I  8 92 . 0+    4$   + S    "    ' + D   E  @  D  

 @ B&+  -  S+ 55 3;776  ; +      +    5  5 $ .7770+ $I$B 3;8@556  ; + E 8-- +  " @2 -+ D   '     !   + 4$   5 .5550+  I& 3;156  ;   E 1+        '  + 4$    .550+  I 3;15 6  ;   T 1/+ 1             +  3   5  5 $ .55 0+ $I$B 3"N &B6 ( "NN+ ;   

' ' 8K ? + .5 4$ 5 "   5   .5&B0+  I$ 3" &&6 " "  N+     + (5   !"5 5 5 .5&&0+ 5&I5B 3" &B6 " "  N +     + .5 4$ 5 "   5 (  .5&B0+ I$ 3" BB6 " "  N + 1     '    + 4$   B 5BB+ 5I  3"  B76 " "  N+ S ;  +  S H + F,K ?    '    -  + ) 5 .5 4$ 5  .5B70+ 5 I55 3" &$6 4 ; " +          ?  ' D + .5   !"5 5 .0  .5&$0+ &&IB

Section 5.1

359

Graph Coloring

3" 8 &&6 %  "    ;  8  2+ %      '   K    +      K    + .5 4$ 5 "   5 (  .5&&0+ &I 7 3"76 @ " + ; !     '   !'  + *  !"5   .770+ I$ 3"6 * D "

2+ %      '   , 2+ # 5 4$   #"5 5 & 5+ 5I5& 3"  6    "?  S H + ;     '  )            '   + & 5 %5 , "5 # 5  5   .5 0+ &I& 3 &B6 S ;  + ;         '   + *  !"5  .5&B0+ BIB 3 &56 S ;  + F?N

K  !   ? : -      + .5 4$ 5 "   5 ( $ .5&50+ $BI& 3 E*@ 5B6 ; -  + E E + " *+  # @ + ; -  2  ,  :   +          + .5  " "  B .55B0+ &IB$ 3 B6  ; + %      

-  !!  + S 1+ -  ' 9 

+ + 5B 3 $56      S + %      + .5 43 $ 5 "  $ .5$50+ &I&B 3 76   + ;  !   ' !   

    + *  !"5  $ .770+ BI57 3B6 "   + @      

2   5+ ) % 7 .5B0

3 6  ;  + ;    ' !         2      + .5   !"5 5 & .5 0+ B I5 3 &6  ;  + ;   ' * D "

2   ?  ' F F,+ # 5   !"5 5 162 & .5 &0+ $I5  3  @2B 6 * "

 + S H

+   8 @2 +     + .5 5 .5B 0+ B$I77

4$ 5 "   5 (

3  5$6 E    D  + D    '   !' /   + 4$   $ .55$0+ I  3  56 S H +        + 4 5 .5 !"5  .5 50+ IB 3 $&6 S H + @  2      + 4+5 !"5 $ .5$&0+  I $ 3 F$$6 S

H

  ; F?+ %     '     ! +

      & .5$$0+ $I55

360

Chapter 5

COLORINGS and RELATED TOPICS

3 *1&56 S H + ; D *+  F 1 + 

    + S  9 !  '     +   1     + ;  + ! ' + 4 5 & 5 XX( .5&50+  I & 3#9B6 S #2  * E 9 + (      ,     !  + 4$    .5B0+  &I$B 3$6 1 + 8     (+ #$5 !"5 7 5   5 5 5 B .5$0+ $ I5 3$B6 1 + %        +   IB  S H

   % F 8  . 0+ "    " +   E  @  4 " + 1 .F0+ 5$$+ ;  S+ @  + 5$B 35 6 # -+ 1      '        + .5 4$ 5 "   5 ( $ .55 0+  I B 38 56 # -  S 8 ?N  +         '   + #  !"5   5  .550+ &I&  3 B 6 D  + ;    '       - ? +  I$    +   !F  E  @   + 5B  35$6 @ -+ ; F?N

!2   '    + *  !"5   .55$0+ 55I7 3D &6  ,  D D -N/+ ;     '    +  !"5 5 5   5  .5&0+  I7 3B&6 ; N'N+ S  '   ,    '  +   X(X .5B&0+ I M 3F6 F F,+   8)2    @  22  +  8" "5 &  "5 5 9 " BB .50+ I M 3F 6 F F,+  2  2  *   2   E+ #  5 !"5  .5 0+ BI 3F@/&76 ; F?   @/N+ S

' '  ?  ' H

+  $7I$  S H + ; *N+   1 @N  . 0+ 4$   "       5 77 +   E  @  4 "  +   !F + 5&7 M 3F$6  F?N

+   8  2     !'M   + ,5 5 !  3 " 3 5 3, $ !"53& 5 " + 7 .5$0+ $I& 341 5 6 1 * 4  " 1 ' +  " 4  # $+ 9!(   + 55  34 5$6 ; 4  + ;   -           '   '  + E  + 4 55$ 34 5$6 ; 4  + 1     '    + S - + ;  55$

Section 5.1

Graph Coloring

361

34 56 S  4  + 1     '  + $    .550+ I B 3856 4 8+   !?     ,  C . 0  + .5 4$ 5 "   5  5 .550+ I5 385$6 4 8+ ;

  

  !  + .5 4$ 5 "   5  & .55$0+ I 5 388 6 4 " 8  D E 8+ S           +  &$ .5 0+ &B$I&5

 

38S56 F ; 8   @  S + * ,    ' !  + .5  " "  B .550+ 5I5 38@ B6 F ; 8   4 F @ + @       ' /K  

-    '  + *  !"5  .5B0+ &&IB  385 6 4 F 8+ % "

2K   '     + 4$ 5 # $$5 45  .55 0+ 5&I 38 5$6 E 8  + @2 ,     + .5 4$ 5 "   5 ( $& .55$0+ I& 38 76 E 8  + @          '   ,    ,!/

!V ,+ ) 5 .5 4$ 5  .770+ BI7$ 38 BB6 S 8 ?N  +       )   + 7  .5 !"5 $ .5BB0+ B I5 M 38M

$6  8M +      ;, '       E+ !"5  5 && .5$0+  I$  38 &B6 ;  8  2+ +       +  $&5I$5$  ; F?!    1 @N  . 0+ 4$   +   E  @  4 "  B+ 8/  .F0+ 5&$+   !F + 5&B 38 B6 ;  8  2+ 1  F,  '    ,   -   ' -  + ! *% 5  5 B .5B0+ &I B . *0 38 B6 ;  8  2+ % F,  '         +  &I   ; F?+ D D -N/+   1 @N  . 0+ -    7 :   +   E  @  4 "  &+  .F0 5B+   !F + 5B 38 E&&6 ;  8  2   S E/ -+ ;       '    + ! *% 5  5 7 .5&&0+ I5 . *0 381 556 4 8 -NY+ T 1/+  E   + ,      '    : 

     +  BI5&  * D    . 0+ 4        *  !" + (E; @ @     E     1       @   5+ ; E  @ + 555

362

Chapter 5

COLORINGS and RELATED TOPICS

38776 E 8-- + 1     '     + 4$ 5 # $$5 45 5 .7770+ 5I$ 3D* &6   D   ; * + 1 /   '    ,         + !"% 5 .5&0+ I 3D&B6 4 D, + -  -   '    ,    '  + *  !"5  .5&B0+ $I$B 3D $B6 D D -N /+ %     ' )   ! +  !"5 5 5

  5 5 .5$B0+ 5I$& 3D &6 D D -N /+ (            +  5 !"5  3  5 B .5&0+ $ I$B 3D &B6 D D -N/+ 8K ? +    +   

 .5 4$ 5 "   5   .5&B0+ 5I 3DS@BB6 ; D

/2+ * S +  S @2+ *?  + 4$   B .5BB0+ $I&& 3E1 B6  E  E 1  + 1 L '   ' F    

    '  -     + # 5 ;    .0 < 2  (.0 < 3 '      (' (.0 <  '  - -  + ,           EXAMPLE

: #  - $ +     '  .$ C  $0! 

 .3;1 5&60    '         C   FACTS

: #  -   + , -

.0  (   + '



   '  + 

: #  -    < .  0+ , -

. 0  .  0

.0 < .0



.0   .0

: #  -     -  +  -

.0 <   

 '    

   .3 4 &B60+        ' .'  $50  )      '  ,    '     .3#5 60

: 3*@5B6 #  -    $+ '   

.0  $+      '     . ' F,K ?   0

: 3D & 6 #  -   + .0  . C   .00    ;   + -  0





 ." 0

." 0

    -   C   .,

   '

: 3*576 #  '     '    +  1

   ?  . '

 0   + +



.0  J.0 C  '  -  



: 38776 1      

    '      + + '  -   7      < .0     .0    "  .0  . C 0  .0+ '  -     : 3;1 5&6 #  -   +   - ' 23      .2 30! 

  



.0

: ."

2K 1  '    0 3 *1&56 @      +

     '    2                ('  .0    '  '  - -  +     ! 



 : $    % 31 5$6        # 5+ .& &0! 

 '   &  : 1 D *      . 31 5&6  

 +



  

0     '  .& &0!

: 31 5$6 - ! 

    .& &0! 

+ '  - & 

Section 5.2

367

Further Topics in Graph Coloring

OPEN PROBLEMS

: : " .

3 *1&56 ( - .2 30! 

   .2& 3&0! 

 '   3 *1&56 -   '  

  " 0  " .0" ." 0P

& P

  "     ' -  + 

REMARK

:

; Æ - , S   ,     Æ - ,  S !           '  '    -  31 5$6

5.2.2 Graphs on Surfaces F  + '      '  +    '      ,  '    '  + ,   -        - !   '       +          ,

   '            '  '    '  ;?  

' '  '          A     '  - 

  ,   '         ,2 DEFINITIONS

: :

;            ,   -    

;     .       ' 0        '       '       '   



: ;     

 '            -        ,2 '     '  FACTS

: : :

.#-   1 0 3F:B576 -     !   .#    1 0 3; F&&+ ; F8 &&6 -     !  

31:BB76 ;     

  !   '   '      !!

:

3" &56 -        !         ' 

,       '  

:  :

.M

/ K 1 0 3 56 -

¿ !'     !  

3F:B5B6 ;      !   '   '  '   -   - - 



: -     ! 

 .31560+     !! 

 !    .3 560

 : :

38156 -

¿ !'     ! 



315 6 ;    '     )-  ! 



368

Chapter 5

: : :

COLORINGS and RELATED TOPICS

3;156 ;         ! 

 3 5 6 1   !! 



¿ !'   

3 F&6 -      -       ,  ,           



: 3F56 1   '            ,      REMARK

:

;   

'  #    1   -  3* @@15&6A   '  

' ,     -  '      2 ,

Heawood Number and the Empire Problem DEFINITION

:

1 ! "  '    ' 

". 0 <

&C

E  + '  -   

" .  &0
 -9B: -:9. 88GD  %    )    

  

6A) "8 3 )     )       2 3  + , )                     )    

Section 6.1

495

Automorphisms

            + ,   *  &    2  

( (       3+  ,



1     )       )  %  *

  $        (  68 4 * 

 2

2  * 

61! 8 3  (     2 *  68 )  

     9       +  ,  (   +  ,                         4  ¾  

   $  ¾ +  ,  % (  

    %  





6.1.7 Primitivity DEFINITIONS



2 3 )              ) 4         + 

        ,      (   +4 , 4 4 +4 ,  4 4  I     (       ) 

  

$



  ) -<        

       

  ) -       ) -(  

    

 <       ) 

     ) -( 

2 4

$ 

     4       ) -(                 (        



2         )           

          &  EXAMPLES

2

    + , 

            $         (       ) -  )  )       &                      

2

      

    ( )   

 <       )        

     +  ,

2 2

      

 

>&      (               

    

      ) ) -   C (          & 

    & FACTS

2

  &         &          ) -  + , =

              

2

$ 

    (        :    E              + ,(   

   &         

  

496

Chapter 6

ALGEBRAIC GRAPH THEORY

2

6 1""8 3  )  %        

       

  ( (       (       1   

      %    

2

6K1"?8 3  )         &   % (   % (

            4        4 

2

6K1!!)8 3  )   &             + , 4      Æ         )

     &    )   )

 (        (  )      



2 61 B8 3  )  % (   %        

 

     + , 4 (        (     &          )  &  )   )   #   (     )   )                /              /



2 6 $ 511 "?8 3  )    % (  (  &        

       

 

6.1.8 More Automorphisms of Infinite Graphs    . /   %      )  ) 0               ./          (       ) 

%    (  %        )  =  6= 8 $   ) (   )        %    

         (  + ,           DEFINITIONS

2 3 & &  + , 1   &  &          &  &    &  &  + ,   )   +&  &,   +&  &,  

% 

$             :         + ,

2

 :                 

  + ,          (   %     5+ , 4

+ ,



2 $   )      &  + ,(      &       )        )   & $ & &  + ,(       &  &                   

 2

    2  + ,   + ,             

    + ,(

    + ,  +, +,   + ,

$       ) 9 (         >     %       ) 9 

Section 6.1



497

Automorphisms

 2 

               %&  %     ) + ,( ( + , 4     % 



2  )  + ,          + ,        %    )  1           + ,        



2        %      )          %    FACTS

 &'  ()"*+ *,

2 6GL  82 3        )  + )   % , :  % (   (    9  )            5         (   &     9     &

                          

 2

$            (      %  $    5+ , 4 B

 2

6= 8 3

&  &

 + ,



 %   %  )  

        :  2

&  & J %  )        &  &     %       9  +% , && 

2

1     % (  5+ , :         ) 

%             %  )   + , I   + ,           + ,

2

6= !8 >            %&      %     )  

 2

6= !8 $           %     %&  %     )  (        

 2

             %    (    )      %  +           ,  )      %  +     )  )     ,

 2

6= !8 >            %     %&    )       

 2

6= !8 $        % (   + ,        (  5+ , 4  (  A  )   7        =  K 6K"8(  )     

   %         %    

 2  2

$



  (   %        (  5+ , 4   ¼ 

5           $     (  5+ , 4  + . / ) , $   

       (  5+ , 4  $   &    (  5+ , 4  ¼ 

498

Chapter 6

ALGEBRAIC GRAPH THEORY

 2 65 ?!8 $               :    (  + ,     )           + ,   %    )   2 65 ?!8        )                    :    

 2 6A)1"B8 5  

       %  $ + ,        )  "            + ,(  5+ , 4  $ "         + ,     (        + ,  + H ,      6+ , 4 

 2 65?8 3

 )  (   % (   &     + ,

  )            %     )   &              + ,

 2 6= "8 >            

      9    &

    ( (             )      %  

      9  (        %  

      9   $     (          

      9   )   

&      EXAMPLES

2    )       ¼          (  C (

)       E   (       %  5    %     (

      %

 2 3  )   )  (   )       $  % (       

 &    =  (    % (  

 &    $ ( 

   + ) ,  2 3  + , 4  (    + ,          +, , +,  H , +, B, +, H  B,  ,               ( ) 7 



 :      5+ , 4  

2           %       + % ,     



  ¼ 

2        

   >      + ,  &    :           &( +

,      :       &( +

,        &       &          :      &   

2           )   +(      

      &,    &   ( )     &    Strips

                

Section 6.1

499

Automorphisms

DEFINITIONS



2

        

       

 %+ ,, 

+



2



   





 

   

&     )  

+ ,   %+ , 

 + ,

  %  



     (   ½ + ,(  

       + ,   



 

  %   

REMARK



2

$

(     

  





        

                ) %               %         

½

   (    

  

 

$  

     9  +5 6K1!!8,

FACTS

 

2



7    %      (         :  2

   
 1- (  1 1 ( E )       %    ( # !    +?"?,( M " 6 1""8 K >    # > 1- (    C   %  

    (   +?"",( ?M B 6 "8  $   -( N      %               (  $% &'  +?",( ?MBB L 6= 8  = ( ')   1    (

   +?

,( M!

6= "8  = ( N  #&  C    C      1    (  (   +? ",( ?M! 6= !8  = (           %    %    (    $  "  +?!,( M"

502

Chapter 6

ALGEBRAIC GRAPH THEORY

6=  "8 7 =    > #   ( E           (  #  5  =   +? ",(  M ? L 6=! 8 N =C ( ')  L  N     TL )    ( ! $ !+  ( ?! 

)  *

6= "8 N 7 = (             )        (    +?",( BMB L 6$ ?8 1 $ ( ')  & -      -     ( !   +? ?,( "M

 # 

  

6$ !B8 1 $ (          )       ( 2       &!   ! +I : # 5  KS  A     I : A  U  ( =  ? ?,(  > U (   (  P  5S  ( J = (    ( ?!B(  M   6$ !8 1 $ (  C    -     ( (  /   &&( +?!,( BM?

+ ,!  - .!! 

6$ $C!8 1 $   = $C) - (         ( +?!,( !!M" 6$ G BB8 1 $   5 G VC (    1  D 5 ( $( J Q -( BBB

 !  

# !*     % " ( K 

6$ 5""8 1 $   J 5  (               (   +?""R"?,( M! 6$"!8  P $ ( E  )    &         (   +?"!,( !M"  6K"8 =  K(         %    ( "M"" 6K?8 =  K( E %  %&   %    ( M

)! 

 ! )! 

  

+?",(

)!    +??,(

6KJ ?8 =  K   J   ( N       %    (  (    +??,( "MB 6K1!!8 =  K  # > 1- ( E        %   %    (  !   +?!!,( M 6K1!!)8 =  K  # > 1- ( E      %   &      ( )!   ( M 6K1"8 =  K  # > 1- ( 7         %    (    !  +?",( ?M  6K1"?8 =  K  # > 1- (          % 

    (    +?"?,(  M !

Section 6.1

503

Automorphisms

6GL  8 N GL  (     ( 3 C ( ? 

    # ( -

P 

6J "8 3  J  C( E   &              C      (      +? ",( ?M 6J 1!8 3  J  C  # > 1- (             )    ( $(     +?!,( ??MBB" 6J 1!)8 3  J  C  # > 1- (             )    ( $$(     +?!,( BB?MB" 6 1?8 J    # > 1- ( E       )      (   "   +??,( M

 

65!8  5)  (                    (     +?!,( M 65 B8  5)  (       ( 

0!   +?

65 8  5)  (  &          ( !M!" 65 8  5)  ( P &      ( 65 !8  5)  (   W ( 

B,(  M!

) -    +?

 !   +?

% ( J 

,(

,(  M"

( #  ? !

65?8 J 5  (           

  (    +??,( M

    

65 ?!8 J 5   P $  % (             :    (         +??!,( BMB 61"?8 I    # > 1- ( $%   &   (    (         (         +?"?,( "M  6 "8 P $  % (      

  (  $%  -  +?",( J  ( BM! 6 8 1  (

  # !( '        (   ( ?

61!8 # > 1- ( E      )        ( 

  +?!,( ?MB



 

61!8 # > 1- ( E           1( 2 #     &!   !( +Q   ( N  3 -(    1 ( , 5  P ( A ( ?!(  BM 61!8 # > 1- (              ( 

 ( 

       ( 1    +?!,( BMB 61! 8 # > 1- (                 (

    +?! ,( !M 



504

61?8 # > 1- ( >     ( BM!

Chapter 6

ALGEBRAIC GRAPH THEORY

        +??,(

61 B8 # > 1-   K >   (    C   %   

    (       (     L 61!8  # 1 ( ')    L    ( ?M

        +?!,(

618 = 1 ( I               (  +?,( BM "

   

Section 6.2

6.2

505

Cayley Graphs

CAYLEY GRAPHS             I              $  

 5)    7 C   7     

Introduction      :              

    :  E  

                      I         )9      

6.2.1 Construction and Recognition 1       %    (      %    ( )  )           %     1  I      %      I      %            (        I      %             I      %    (      DEFINITIONS



2 3 )  %         3  )  )          4  ½ (  (          ½          

   (   I+ < ,(  %2      I+ < ,        <      9   2 <  I+ < ,      < 4 2   

 

1    :               $               )              )     (  )    (    4   < 4 2 H 

      I     



   I+ ,

2 I                      1         I +< ,                 

  2                   2 2 2  



  )    2 +

     :      7 +>,(  



2

#

+  ,(      

 

   

                  4

!      

 

Figure 6.2.1

 )

 - 



- "-   .' $ *""  " 

FACTS

  

2

>  I       &   

2

 I     I+

2

65"8


)       / + >



/>  

   2



/    >  < ¾ > 4 /   (  > 4   < > 4  H     /       / 4  > 4     / 4   H <  / 4 !( > 4 


/

# +  ,



/

4 !(



/

# > # +  ,(



/

# > # +  ,( 



/

4 !(

>

  />         

 


/ + >

ALGEBRAIC GRAPH THEORY

>

# +  ,


>

4   < 

 
  )         / + > +   />      

     />( / >    )   (    />( /  >    )   )        2  ·½ /> 4 + H ,+ H ,(    $<

/>



/>

4 + H ,+  ,(     


4

H ,)



/>

4 +  ,)

4 +> H ,)
  ,)(  

/



   
  <      /     >    /      

 >


4 +/ H ,) 



>

4 +  ,) 



/



4 / H (

  

4 +' H ,)+' H ,(

' 



/



/

4

 '

 ' H (

/

   / ( >

/ ( >



4



4 +'  ,)+'  ,(

  )     +' 

4

H (  



 )  


 ,)+'  ,(  4 +'  ,)+'  ,(  

 )  
4   (  4  H (    4     


4  



4 ?< 



/

4 !(

>

4 ! 



4 !

RESEARCH PROBLEM

42 $     ) ' ( B       '        Y     -    C     )              

6.2.3 Isomorphism 5            -  I           :       

   I         

Section 6.2

509

Cayley Graphs

DEFINITIONS AND NOTATIONS

2

 I     I+ < ,   "     I+ < ,  4 I+ <  ,(    &        %+ ,    4 +,

2 2

  "     I     

     

  I$  

              

  3                  

2

3  4 /½½ /¾    /  )   C              7   ,   B , + (      + , 4 +,  ,      , ,

, 

   : $   

,

  # ,+  / ,  B ,

+ /

 (  4      $ 

  3 & +, 4 ,+, 2 B , +  7  ) &        $(  &  +,        & +,    , 4 B        "  1            (       &  &   2 3  4 /½ /¾    /  )   C                     $  4 +        ,     $ 



+      , J  







          

  4 B(  4       $

  3 +      , )         

  (   &         $ $  (   &(     4  (       (     +&, 4  +&,) $   (    +&, 4  +&,(    +&,     

                        &

EXAMPLES



2         I +!<    ,  I +!<    ,            - 2  2            N%   ) ( )           

2

7



4 (  6 4   





  4  





?     ? B  8

? B      ?  



        I +< ,  I +<  ,        )                E   (       

         4    % (      I$   FACTS



2 6A!!8 3 )  I       %        I$           )    + ,        9  + ,

510

Chapter 6

2 63 B8 $

  I$  ( 

ALGEBRAIC GRAPH THEORY

  ) 

2 6#?!8         I$       4 ,(    :   

 B  (





,

 " ? "

 

2 3 /        )  /      I$      

E   ( 

   / 4 





/   H 

 (      I$     : 

E         I$      I       I$   )              S *       6A 8  &               

2 6 !8 $ /    (    )         &          /  

  ;+,  / 

   

             





 +/  ,)  ;    > 

2 6 # B8 $

 4 / /    /        (  / 4         (    )                  

/  /     /

 ;+,

 ½ ¾  

;+,;+ ,    ;+,





& Ê 

 



     -    )        (     -      ) &        $   / 4 (     & 4 

    &   -  )  EXAMPLE

2 1   7    4 B   )       +(,( +(,( +(,( +(,( +(,  +(,    (  & (          +(, 5  / 4 (        & 4       (      )      &  4         +, 4  7 & 4 (     +&, 4   &   4  -     )       7 & 4 (     +&, 4   &   4 "(  )   )    7  (  & 4  (     +&, 4   &   4 "     )               1          )      %                    B RESEARCH PROBLEM

42 7    /( 

            I$  

Section 6.2

511

Cayley Graphs

6.2.4 Subgraphs           :     )    I     5                

 &      (    

$        9    &       

&      )  

DEFINITIONS



2





    

½       

 



   ( (







2



    



 )







  





  ( 



          (          4 (  !  "(          (   !  "         !  "

   %&

  

   

    )

  

! "

4



       

(

   

  





             

=

     



    









(

   

    $       

-      + 

  



2

    0  4

 )      

  4(





        0

    =

     

     







FACTS



2

3

  $



2

)   

   (

$ 

 

   

 &       $ 







   (    

       &

  

     &   ( 







 



2

6#!( 1!B8 $ 

    



 &      



2

6 ?8 $

   I+



2





2


    I          

(   =

   



/ ( /

  

512

Chapter 6

ALGEBRAIC GRAPH THEORY

6.2.5 Factorization DEFINITIONS

2 2

                     

                       ( )    ½      )      





2                       =

         (       =

            



2                      

   )    )               FACTS

2

65"8 >    I               2   4     '<

    )    <



      

   C   

2

65"8 I            

     I     C            2       
     I         2 $( )!    +BB,( !M? 6A!!8 3 A) ( $   )       

    (     "  ? +?!!,( ?M 



6A?8 3 A) (      (    (    (  

- 2

 ! 3 &&(   3   ( #  L   3 3 SC( #$    J = ( ??( !MB 6A 8 J   A  9( S *      (   I ( 1 ( J Q -( ? 

  !(

514

Chapter 6

ALGEBRAIC GRAPH THEORY

6IZ"8 I I I  J Z ( E    

   )      ( I )   #   P$$$(   ( !  ! ( 5   P ( ?"( M 67 ?B8 K 7 -( E       )      (  +??B,( BM 6 "!8 K 3     1 - ( ?"!

 #   

 

" #   ( 1 ( J Q -(

6$  B8 # $    I >   ( E  I   &              (         +BB,( M? 63 ??8 I = 3 ( 7   I$      ) ( ?M



       

63 B8 I = 3 ( E      %  I     \   (  +BB,( BM

+???,(

)!  

63 ? 8 K 3 ( =

        I      )        (       ( +?? ,( !M"  63 B8 K 3 ( =

        I      )        (       (     63?8  3) C-( I    2   ( &      -(         (     +??,( M"? 6#!8 1 # ( >  >         (    +?!,( M  S  *  9        ( 6#?!8 # #C-( E S +??!,( ?!MB

 ! 

)!   

V  6 > B8  A   ( K 5 S V(  K9(  -  # 1- ( I   (   6 !8    (



 ( 5  P ( J Q -( ?!

65"8  5)  ( E     %&     ( +?",( "BBM"B 65"8  5 ( E  C)   I    ( +?",( ?"MB!

      

       

6 !8 K   (  

          )  (     +? !,(  M 61!B8 # 1- ( I           ( M? 61B8  1 ( # ! 2 # ! = (    ( BB

  2!(

 

    

+?!B,(

#   5  ( J 

Section 6.2

515

Cayley Graphs

61 "8 N 1 ( I            

  (

      

6[B8 K [(

 

+?",( B!M

 

"      !! 2 &    (4 -!

( G  (

N  ( BB

6OB8 [ O( I       ) 2   ( B

)!   

+BB,( !M

516

6.3

Chapter 6

ALGEBRAIC GRAPH THEORY

ENUMERATION

     !        I    I    I    I    I    

5      #     N                I

     I  5 

Introduction $     -                     I         )    C       : 

      (  

  -     )    C        

         $(                     (   :            &     )  #    :          )           ?!  -    S  + 6S "!8   >     , 7 =   6=8    &               (

    (    (  

             )     I  6I!( I"?8(    %       . /      #             

      ) A   =C 6A =( A =)8       

     ) S  6S "!8(    E 6E"8( =        6= ?8      &               (  )    )

   (  )    6=!8     (    -   %            :(    :  -  %           65  ?8

6.3.1 Counting Simple Graphs and Multigraphs DEFINITIONS



2               ) (    ½  ¾     (         )            )            

                 ) 



2      4       



              



Section 6.3

517

Enumeration

2

     .   )     .      

                   % )     2   ' . +, . +, .

2

             .   .   







 )  

   

  



FACTS

2

  )    )              ,    ) 

    5 )    Æ  ,

2

+ , 7 , ( ¾ (   )  )               ,         )  )                , 

2

    )  )              

Table 6.3.1 ,





B     

 5 )  

5$*" *  - 2 " "  













 

   



 B  B B  B B  B 

(B

 B  

! " ? B      

+¾ ,





"



,

!

"

  B  (  (BB (BB ( ( (BB (BB (   B 

  B (B (?" B(? (   ("B B(?B ?(?B (! (! ?(?B B(?B  ("B

 " !" (! B(! ?"("B ! (!B ("(BB (B"(B (?B (?BB ((B (!("B B((! !(( B B( ( BB

(! "

(B?!(



2 6  8   )     )         

     



4 



+¾ ,

4



       +¾ ,      



 "((



 (

    )



5 )  



2 S *       (             (        +* ,     4          *     ) 

518

Chapter 6

Table 6.3.2

ALGEBRAIC GRAPH THEORY

1 " *$*" *  -  2 





















"

!"

!  (!B

("

(

" ("(?

) -   C '       +* ,(  ' 4       7 & (  +* ,             !(  * 4 ( * 4 (  * 4 * 4 * 4 * 4 * 4 B

 2



   5 + ,   

     (                (  + , 4

 ]

  



] ' * ]

+ ,+  

 ¾ ¾·½   ,  

¾



  



 

=     -       +* ,     (   + ,  + ,     

       

       (      >&       + ,         2

  4     4     4    H  ]



 

H  

]



 





]



 



]



 





  4    H ?   H "  H





  4    H B  H B  H     4    H 

 

 

H B   H B    H  



H B   H B   H "B    H B    

H   H B  H B  



 2

                     )  )     

+¾ ,

 

2 +, 4





       )              , 

2

6=( S "!8       2 +,      &       )  )    )      & + , )      )      H  5 )  

2

    )              )      

& + , )      )       )  5 )  

Section 6.3

519

Enumeration

Table 6.3.3 /*  -



,  B     













 

   

      

   





! " ? B      

 2 "







, " 

    ?       ?   

   



!

"

    B    ?!  " "  ?! 

         B  ?"B ( (! ( 

(B

(

+¾ ,

2     (   )   %      2                    )     

, +, 4

 

)



      )         

     ,  2 6=( S "!8       , +,      & 

     )  )    )      & +  , )      )      %     H  H  H  H     5 )  

 

9

½ 9

   

Table 6.3.4 5

* * -



,  B      ! " ? B

 2 " , " 













          

      ! " B  

  

   ! !  ! ? ? ? ?!

 "  " !   B

   "     ! ( " (!

520

Chapter 6

ALGEBRAIC GRAPH THEORY

EXAMPLES



2 7          0                         0    )    %       )         B  0  )               

Figure 6.3.1

/*  -  2 "  " 



2 7                       

 7       &  0               

Figure 6.3.2

0"" * *

* * -  2 "  " 

6.3.2 Counting Digraphs and Tournaments DEFINITIONS



2                 ) (    ½       (         )             )                              ) 



2     +    ,         (    (        (     &                )   ) 



2        +     ,     (     (   &             

2

       .   )     .       4                         % )    .  2 + , ' +. +, . +,

2



        )  

          

       .   .    FACTS



2   )  )              ,     )   

  Æ     5 )  

2

7 , (    (   )  )              ,          )  )              +  ,  ,  

Section 6.3

521

Enumeration

 2 " ,  

Table 6.3.5 5$*" *

* " -



, 











B     



  



 

 B ?B (B (" (B "(! B !!(B (?!B  !(? B "(! (B"(!

 B 

B ? !? ? !? ? B



! " ? B  







(B?

2     )  )         )  

       5

+¾ ,

 2   )  )       

     

 )            

(     

 2    5 +  ,   

       (                (  +  , 4

 ]

  



] '  *  ]



  +¾ ,





      

=     -       +* ,     (   + ,  + ,     

       

       (    

 >&       + ,         2

   4      4    H  

]







]





]



  H "  H   H 



]



 



]





   4    H   H      4    H





   4    H B  H B   H   H B  H B   H    

   4    H    H B   H    

 

  



 



H ?B  H B   



 H   H    H ?B  H B  H B 



522

Chapter 6

ALGEBRAIC GRAPH THEORY



2       +,                )  )      

    

+, 4

         )              ,  



2

6=( S "!8        +,      & 

     )  )     )      & + , )      )      H   5 )   

2

    )               )   

   & + , )      )       )  5 )   

Table 6.3.6

 -  2 " ,  



, 











B     



  

      

    ! " " " !  

  

  !? !B! ( (?B ( !B

"

?( B"

! " ? B  

2 2







    (   )   % 



 ´ ½µ 

6N8   ) "              )      ]    " 4 ] ' * ]               +* ,      C ) -(   



 +* , 4 

   

+ ,* * 

  

*

5 )  !

2

6# "8 3 " +, 4  H  H  H  H  H   H    )           (       7          +, 4  H  H  H  H  H            )   

    " +,  +, 4  H " +, 5 )  ! J                &     

Section 6.3

523

Enumeration

Table 6.3.7

 "     -  2  

   

5     

    

       (""B ?( ?(!(B ?B(!(" (B"(( "

 B  

! " ? B  

  (BB" !"( ?((?? ""( (?B (B(?(!

EXAMPLES



2 7                                0    )    %        )          B  0  )                

Figure 6.3.3

   *

* " -  2 "   



2 7                   E       

  

Figure 6.3.4

     -  2 

6.3.3 Counting Generic Trees DEFINITIONS



2              ) (    ½  ¾     (  )         )           )                              ) 



2              &(  (                                         %        

524

Chapter 6

ALGEBRAIC GRAPH THEORY



2      +        ,               FACTS

2 1%*%  * 6I"?82   ) 

5 )  "

2

  )   )      5 )  "

Table 6.3.8

5$*"  " 

" *$*"  -  2  

3)   

  3)   

    

  

  ?   !(!! !( ? (B?!( (B (! (BBB(BBB(BBB (?!(( B !(BB"(!B( "" (?"(B"((" !?(!(!!(( ?(?(? (B(?B(  ((?(B( B (" (?"B

! " ? B      

 2

)            

  (?  ("B!  ( (!"(? ? BB(BBB(BBB (!(?!( ? (?!( ( (!?( B(?(B!  ( ?(?(!(? (? (?(B "(?(! !(B!(?(B!(?!(?

         ) &           

+, 4

½ & 





 4  H  H  H  H ? H B H   



2 6I!8   Æ  &        +,      ) 

       

+, 4 

½



+   , 

½   

     %  &          S  + 6S "!8, 

+, 4  & 5 )  ?

+ ,





Section 6.3

525

Enumeration

2          ) "          

$+, 4

½





"  4  H  H  H  H  H  H   

2 6  * 6E"82   Æ  "        $+,     ) 

        +,      7 ! )      



$+, 4 +,   +,  +,



5 )  ?

2 I      :   &    

 +, 4

½





7  4  H  H  H  H  H  H B H   

2   Æ  7   &      ) 

        

 +, 4

½

+   ,   H  





     %  &        

 + , 4





H

&

½

  + ,







2          ) !           

 J  ) ( >     )    (  6# "8 K 1 # (

  

 !   !( = (     1  ( ?

6E"8  E (   )   (

"

 2  ? +?",( "M??

6S "!8  S    I (          !( 5  P ( ?"! 6 "8 K  (

" +? ,( BM

2 # !* # !*

 &        !!( 1 ( ?"

65  ?8 J K  5   5  0( 

  ( ??

 

 2 &" 1 !(



Section 6.4

6.4

533

Graphs and Vector Spaces

GRAPHS AND VECTOR SPACES     "!# !       $   A  I    N%     I   5)    '       I 5)    '         ) I    I 5)    I    I 5    N       I RIA           !  C   I    I 5   

Introduction >                         )        

 )             )   2 G  0*   ( G  0*     E *  >                 ) (   (     )       )  G  0*    :     )               C (  G  0*    :     )             C  (      %             )              ) (     $          ( (               9                                          

 5             

    )                            %      )          )               )         &  )        T                 #                       )   

C          

6.4.1 Basic Concepts and Definitions              

            (      (           )  

        )   I   7  -   (  )           )      %   7         (       6 Q??8  65?8

  '       %(

 (



4 ½  ¾     ( 

,



(

4 +  ,      +    ,   4 ½ ¾      





 

534

Chapter 6

ALGEBRAIC GRAPH THEORY

  $            +    ,    (       )  (      )     +   , DEFINITION



2                    &                                

         )   ) ^ REMARK

2

$                          + (    ,

EXAMPLE

2

>&     ?               7   

v1 e1

e3

v2

v3 e2

e4

e5

e7 e6

v5

e8

v4

Figure 6.4.1 Subgraphs and Complements DEFINITIONS

2

     4 +   ,            4 +  ,                    



 







2

> )     %   : )    4 +   ,     4 +  ,(                               )                   %  J      )           

2

> )     %   : )    4 +    ,     4 +  ,(                       )                     &  J     &  )         

2





   )    4 +    ,     4 +  ,(  )   ,     +  ,       





4 +  

Section 6.4

535

Graphs and Vector Spaces

EXAMPLES

2 7  

4 ½   (        )      

 7        7    +, 7     4    (        &  )        7    +), 





v1 e1

e3

v2

v3

v5

v4

e8

(a) An edge- induced subgraph of the graph G

v1 e1 v2

v4 (b) A vertex-induced subgraph of the graph G

Figure 6.4.2 0 "#"" $ "  23#"" $

2       )  



     7   +),



 7   +,     

v1

v1 e3

v2

e1 v3

v2

v3

e2 e4

e5

e7 e6

v5

v4

v5

(a) Subgraph G'

Figure 6.4.3 0 $

e8

v4

(b) Complement of G' in the graph G 



"   * 







 7  

536

Chapter 6

ALGEBRAIC GRAPH THEORY

Components, Spanning Trees, and Cospanning Trees DEFINITIONS

2

          -      

               (         N%   B     



2                  &       

 

    5              $      

  (       

      %  N%   !

2 2

   

          )         

 &    )                       &  )            



2            )           $                             

            "           



2                 /     (     

  /     



2          "                            

"



   



2 3 )   &      ,   /      8+ ,   + ,      ) 8+ , 4  /  + , 4 ,  H /

EXAMPLE

2

      "                          7    v1 v1

 7  

e1

e3

v2

v3

v2

v3

e2 e4

v5

v4 (a) A spanning tree T of G

Figure 6.4.4

e5

e7

v5

e6

e8

v4

(b) The cospanning tree with respect to T

0   "    "      

FACTS

2

   &    )            

Section 6.4

537

Graphs and Vector Spaces



2            &       )           ,  H                 /     / )   ,  H /   REMARK

2

'     (    



            

Cuts and Cutsets DEFINITIONS



2 I         4 +  , 3 ½   )   9  )      4    + (         ,               &                      !   "          &    ( 

       



2                        $   (                                         

          (    >:   (           

                EXAMPLE

2

7      7   (   !   "(    4      4                 (   (       7   +,                      5 ( !  "                   (     

 7   +),                     

v1 v3

e1 e2

v2 e4 e7

v5

v4

e8 (a) A cut of the graph G

v1 v2 v3

e5 e4 e6

v5 v4

e7 (b) A cutset of the graph G

Figure 6.4.5

0  "       

538

Chapter 6

ALGEBRAIC GRAPH THEORY

The Vector Space of a Graph under Ring Sum of Its Edge Subsets DEFINITIONS

 2

5           4 ½             )    )   )              

             7 & (  )    + B B    B B,     )              7   





 2

   +   '   ,      (      (          )      )    )      



2      ,   4 +              ,  4 +               ,    4 +?  ? ?     ?      ? , (   ? 4  )   )     ( +    + (  ) B 4 < B )  4 < B ) B 4 B<   )  4 B, FACT



2  ,         )         ,       )    ,         )      +      ,    ,       7+,(  %      (        

         )      +           )    ,    ) _+ , REMARKS

2 2

               )   

$       )             )       , + ,  )           )   ,             )     E)      +     ^,   B  _+ ,

2  2

$         (           6 8

            )      & 65 8( 6I!)8( 6N!8( 65?8(  65"8

6.4.2 The Circuit Subspace in an Undirected Graph DEFINITIONS



2                &        I  (          

2

                           

                ) ` + , $   ( ` + ,

             9               ^,



+   

Section 6.4

539

Graphs and Vector Spaces

FACTS

2 2

 )                   

            9     (           )       )    )            

 2

       )          (   ` + ,

      

 2 ` + ,   )       _+ ,   



     



EXAMPLE



2          7        (         (      7     v1 e1

v1 e3

v2

e1

e3

v3 v 2

v3

v2

e2

v3

e2 e4

e7

e7

e4

e6

e6 v5

v4 v 5

e8 (a) Circ G1

Figure 6.4.6

e8

v4

(b) Circ G2

v5 (c) G1

G2

-     "   

REMARKS

 2 2

7    )  P)  6P8

  (        + Ü,

  ( (   &         

Fundamental Circuits and the Dimension of the Circuit Subspace DEFINITION



2              "           :     (                  

  $                      

" (  



     

FACTS

2

               " (     ,    H     (       " 

540

Chapter 6

ALGEBRAIC GRAPH THEORY



2                              " (   (                

         " 

2

 +,  H ,                     ` + ,                )  



2 $                       (      ) &                    

2

                            )       )  ` + ,(  (      ` + ,

 :  ,  H (    + ,



2

         )  ` + ,        :  + , 4 ,  H /

/

  

EXAMPLE

 2

                              7    

"

4

½   

I   I   I   I  



4     



4     



4     



4    

  

$  )  %               (          (    (            ( (       7 

6.4.3 The Cutset Subspace in an Undirected Graph    %             5          )      )  & DEFINITION



2             9       

             ) 6+ ,      ^          )   6+ , FACTS

2

>                  9     ( 6+ ,         



2  2

     6+ ,        )       _+ ,

                  < ( 6+ ,       

Section 6.4

541

Graphs and Vector Spaces

EXAMPLE

2

I        7       ½ 4 !½  "   4 !   "  7   (    4    (  4   (  4       4      4        (  4       (     4        #   (   )      4 !0   4   "(   0 4    4    ( 4

4    4  (



4    4  (



4    4  

$ (          )      7   Fundamental Cutsets and the Dimension of the Cutset Subspace DEFINITIONS

2

3 " )              (   )  )   "  $       &       "  (         !   "                   

      )   "  

  $    )                )   



2         &         



"

    

( 



    

          

FACTS

 2

               (    )   " 

"

(    



   

2

         )         "       ) (   (  )    )                 " 

2

                       &             )  6+ ,





2 $            )          (     ) &           5        

2

                     

    )     )  6+ ,  (        6+ ,

 :    (  - 8+ ,



2        )  6+ ,        :  8+ , 4   /



/

  

2                  &    )     )  6+ ,



 

542

Chapter 6

ALGEBRAIC GRAPH THEORY

EXAMPLE



2 7        7   (                " 4 ½         A   A   A 





4     (



4      (



4 

     

,(

A    4     $  )  %    4              )   (  (  (             (  (  (        7 B

6.4.4 Relationship between Circuit and Cutset Subspaces A       )                             (                7         7     5               - )            &  & Orthogonality of Circuit and Cutset Subspaces DEFINITIONS



2  )   ,              <  )               <   ,    

           

,

 2

 )                    

    +   ,                 C  J    C  )     )  FACTS

2

                  )    

 =(           )    





2               7+,  C       



2  )        )       )                 )    

     )      )    >:   (                        

 2

 )        )     )                 )    

     )        )    >:   (                        

Section 6.4

2

543

Graphs and Vector Spaces

      )               

Circ/Cut-Based Decomposition of Graphs and Subgraphs DEFINITION

 2

    )                 

          ) &                  J    C          

                FACTS

2

$     )                      (                       

2

6I!8        )             

              )      

2

$       )              (    )   +         ,  ) &            

2

6I!)( 1 #!8 >      )                   $                 )        :  '(           EXAMPLES

2

I         7   ! $  )  %      )          )        5       )  

                                       )       _+ , E                )   ½ (  ( (      2

      

4 + B B B

  B,

4 +B  B B

  B,

4 +B B  B

 B ,

4 +B B B 

B B ,

4 +   B

 B B,

4 +  B B

B  B,

4 +B B  

B B ,

$         )    ) &            (     7 

544

Chapter 6

ALGEBRAIC GRAPH THEORY

7 (   +B B   B  ,(       )      )       (  ) &  2 +B B   4

+

B  ,

 B B B

4



     

B B, +    B  ,

  +   B B B B B ,     



(  +     B   ,     

e4

e7 e3

e2

e5

e6

e1 Figure 6.4.7 9

   **     

2 I      

  7   " $         (  ( (              =       )                    )        ) &             =  (     7 (         )        %   2 

+     ,

4

+  B  B

B,  +B B

  +   B  B B ,        (  (          (  (    



 B 

(  +B B  B  ,

v1 e1 e6 v2 Figure 6.4.8 9

e4

e2 v4 e5 e3

,

v3

   **     

Section 6.4

545

Graphs and Vector Spaces

6.4.5 The Circuit and Cutset Spaces in a Directed Graph $             (           A(   

 &(  0    

 

             

  

      

      

      :       

$ (     

              



      )

 &

   



( (



   

         ) 

        ( (     (    (          

Circuit and Cut Vectors and Matrices DEFINITIONS



2

            )          (  - 

   -  +              ,         



2

 

  

    

3  )              4 +   ,      

    

   

       (          

    

    % )       

  

  



2

  +   ,         )          ( 

               



2

 

   

              (    4 +  ,  

    

       

   

    % ) 

       



2

3 )           4

           

½  ¾      (



  ) 

          ,

+½  ¾       ,(  



 4



2



           



               

B

       

3 )           4

         



  

½ ¾       (



  )

      ,

+½  ¾       ,(  



 4



2



           



               

B

       

3 )           4

½  ¾      

3 ½  ¾     

 ½  ¾       )        (    (            

    

  $

,

 &         

546

Chapter 6

               

         



ALGEBRAIC GRAPH THEORY



,

 &    

The Fundamental Circuit, Fundamental Cutset, and Incidence Matrices

J&(  %                                            &                 REMARK

2

 %                                                     %     ) (    (             (                  &  + (      ,(            &      (       &     ) +½         ,(  

  4 B  







 

 

 

  

     +       ,

     +       ,

      

DEFINITIONS

2

)                     " (   ) ( (   +,  H ,  )  &       &              5

 (         &      " (   ) 1 (   + ,  )  &     &            3

"

             



2               (   0 (     )  &     &                   )  &      &                              ) 0



2   &    )       

    :  )  &    &  :  (  B EXAMPLES



2 I          7   ?+, )                  7   ?+),  +,(                   +    B  B B ,  + B  B B   B ,(    



2 I         "       7   ?+,         (  (  (                      "       &               

 &         2 7  I   # &2 I   I   I  

  B

  B

 B 

B  B B B B  B  B B 

 

Section 6.4

547

Graphs and Vector Spaces

v5 e4

e7 v1 e3

v3

v2

e1

v1

v4 e2

e2

e2

v3

e6

e5

v4

v2 e5

e5

v5

e6 v3 v1

e3

v4

v2

e1 (a) A directed graph.

(b) A circuit with orientation

(c) A cut with orientation

Figure 6.4.9 0 "" 7  7 "   -    7 

  

I # &2 A  A  A  A 

   

$  # &2 J  J  J  J  J 

½   

    

  B



B

B

B





B



B

B





B

B



B



B

B

B

B



B

B

B B 

 





B

B

B

B

B

B

B

B





B





B



B

B

B

B

 B

B 



 B

B B

B 

 



Orthogonality and the Matrix Tree Theorem

   

       )              

        

              

             )        

FACTS

2

                  )  

 

'

$         



 (     )     

'( 

              

 (    C

           (                     +   ,            

 

3



)                  

 )      +,  

   

     

 ,



 

  )     

%     ) ` + +),  

   

%     )

6+ ,

   



 

  )     

548

Chapter 6

2

$                

 

2

ALGEBRAIC GRAPH THEORY      

%  $        (        ) &   



 )                             Æ   

  )     

         ) &   



5

 (     

  )     

                     Æ      )     

 2

` + ,  6+ ,         $       ( 

    

   (

 2



` + ,  6+ ,   

   

  

 

%    

   

                  

                  )           )      (                 : ,

 H /(  

  (            :

 



/( 

-  (   /    )     

2

   

                 ) 

         

2

  

    

        

          

2

I         "

½          

 





)               

           ) 

              4        



    & 4

    &   C ,



 5         

   4

 H   4





 C 





   1



  1

4 6@









  )  &  1

           

2





1

 @

4 64

 (      8(   @



  )  &  4

         )            & 1

     

 8(









     

 "  5

 (   

  @



     & 

             

 "  #   ( 1



4



  

4

        &           

 

             )         5

 (           &  

            

           

2

+

( ! !

  

 & 0 0

, 7        (     

:    )           

EXAMPLE

2

    >&  

  7    

REMARKS

2

A     



 )   

   %      ( 

             

2 +,



 -     H ,(    

   + N%   ,

     &          +

     %     -  



, 

  

Section 6.4

Graphs and Vector Spaces

549

2

  & 0 0      (      $  )  %        + ,      &  :       &    0     + * ,  :        )       &    &  +          ,    7   )    65?8            &    

          65"8 Minty’s Painting Theorem

                      

  +         ,  )                  DEFINITIONS



2                           



2                         



2                         

    &( (  4                 1    C               (   )    (  ( ) (  &      )     -   FACTS

2

+   ! , 6# 8 3 )       7         ( &         2    &            -    )  )  (                   -       &          -    )   (                   -   

2

>                     ( )   )   ) 

REMARK

2

# *      +  -        ,                           ) 

  + 65?8, 7        7  E    - ) #      )    %            6# B( # 8 5           

  )             )    6PI"B( I ! ( 1 !B8

6.4.6 Two Circ/Cut-Based Tripartitions of a Graph $ Ü                         A         )  9         

550

Chapter 6

ALGEBRAIC GRAPH THEORY

             1                      )            )      Bicycle-Based Tripartition DEFINITION



2  )                 )                 (  )            EXAMPLE

2

  

  ½ (  (  (         7   "  )     

FACT

2

6 !"8  



    



         2





      )    



    





     )     



    





   )  

            % ) 7            

REMARK

2

     6 !"8                            7     )    6?8

A Tripartition Based on Maximally Distant Spanning Trees DEFINITIONS



2      ( +"  ",( )        %  +"  ", 4  +" ,   +" , 4  +" ,   +" ,



"

2       "  "          +"  ",           "  " 





+

"



 "  "

,

   &    )                  )  



2      &          "  "         5     

    "  "                  )        2

 3 A )                   " % )   3 A )                      " % )     A 

Section 6.4

551

Graphs and Vector Spaces

     ) (   )   :     A½ ( A            A  4 A     )       A     + & -      



2             

 )       N%   

 )    



2               

   +    

&          "  " ,       ')          

                 

 )        ')          

 )  FACTS

 2

6G G ?8 3 "  "     &                               " " % )  

    "  "     

 )                    " " % )  

 )   "  "     

         

 2

6G G ?8 I       4 +  , 3            )     (    (    4  + , +   ,   (  (             + ,      +     ,                 &            

EXAMPLE



2 $  )  %  " 4        " 4           

&                7   B             2  4    (  4    (   4   

e1

v2

v3

e5 v1

e8 e4

e2

e6 e7

v4

e3

v5

Figure 6.4.10 REMARKS



2 $                            )            +  -      , :        ,   H      )          )        )    ) 

    ,   H 

     )          :                )   :           

552

Chapter 6

ALGEBRAIC GRAPH THEORY

           )                )        )      C     :   )      )     ,  H (  -              E- ( $ C- (  1) 6E$1!B8     )       (  &    )                  (  ( 

   )   )  :    )                )   ) 

                 - ) G   G9  6G G ?8         ) E- ( $ C- (  1) 6E$1!B8   )                -            5       65"8      &                 )            



2 3  63 ! 8                      A   1 )  6A 1!8 &            

 

6.4.7 Realization of Circuit and Cutset Spaces $                     )  (          &       -  

     &

        &                 )     )  6?8 I ) 6I"8     6 "8       )  )         1              Æ         C)     &              &                          5   65 8     

    )   ( &       Æ   *  C)      DEFINITIONS

 2

     7       

& - +  

v5

v6

v4

v1 v2

v3 (a)

Figure 6.4.11

2

v5

v1

v4 v2

v3 (b)

 - & - +  

  & 7    7 4 67   @ 8(   @      &(     )    

Section 6.4

553

Graphs and Vector Spaces



7

2   &                   

  )          Æ  ( (  B      2



     

9

   (

(  B(



   &       )   +   Æ  ( (  B,        C          +     , )           C   



2

)

  &                  )    * * -    

FACTS

2



7         (                             

 &        

2 2

0

"



    &         

7

      &    ( (  B     (      * ) *    -   )      +   -      &            ,



7

2   &                          &     (  

   B  4   B   B  

B

7

B

2

7

2

7

  &        C)      &                               &       G  -       7   

7

  &            C)        &                          

 &       G  -       7   

7

REMARKS

 2

# 6#!B8        *  C)     (    *   (    !  



2 >   -                  %          6 B(  8 A    6A!B8 %      &                  )  &         &                    )     &         

           

 &  C  )         A    *        65"8

2

        &  C  )         

       - $     &        I )

6I"( I?8      C  )   $   ( A    6A!B8  A   Q   6A Q 8            C 

554

Chapter 6

ALGEBRAIC GRAPH THEORY

   &        &        N   A    *    )         )    65"8 Whitney and Kuratowski

1 )                          - ) 1  618  G  - 6GB8       1          )      )     ( 1           )    =    %      )    +   65?8,        -         )        N%      :    DEFINITION



2     ¾          ½            )          ¾        ¾               ½      ½ FACTS

2

$       )         ¾

½(  ½   

2  2

¾   



618                

$       -( G  - 6GB8                       )      G  -    REMARK

2

5 61B8     G  - *    $  :           G  -     *  C)               &  C  )  

References 6A!B8 P P A    (      5 2  (4 -  &!   !( N  ( N     >   >  ( $  $    ( # ( $ ( ?!B 6A Q 8 7  A   N I Q  ( 5        -(  !       +? ,( MB

&

6A 1!8 K A   3 1 ) (   

     (   "   &!   !  +!,( !M 6I"8 $ I ) ( #          )

   (  B(    !  +",( M  6I?8 $ I ) (      &  )    -  (      +??,( !M!

&%  !

Section 6.4

555

Graphs and Vector Spaces

6I!8 1 G I( E            ( B +?!,(  M? 6I!)8 1 G I(

  #   ( J  =

&    

(    ( ?!

6I ! 8 3 E I  N #  (          

      -( &  !   !  !!  +?! ,( ?M 6N!8 J N ( #      = ( ?!

4   !  " "    (

6> 8 3 >  ( 5    )        5     (    " +! ,( "MB 6 "8  3   (       ( 6 Q??8 K 3    K Q ( ???



   ! " +?",( ?M

#     &!   !( II  (

6G G ?8  G   Q G9  ( #&                   ( &  !       +? ?,( MB 6GB8 I G  - ( 5  )    I  )     ( 7   +?B,( !M" 63 ! 8  # 3 (                ( &     !  !! +?! ,( M" 6#!B8 1 #(    *  C)     (   ! +?!B,( B M 6# B8  K # ( #     -(



  &

&  !   

  %   *  !+?

B,( ?M

6# 8  K # ( 5        -  a   *   ( &%   !      " +? ,( ??MB 6# 8  K # ( E  &                (     -   -  

(      +? ,( "MB 6E$1!B8  E- ( Q $ C- (  = 1)(        



&         -( &  !      ! +?!B,( ?M?? 6?8 G    ( ! ( J N  ( $ ( ??

#   (  # =

6 8 # A (  2      )  ( I" +? ,( !M

)   I 

&  !      

6 !"8       I ( E              (  ! 2 )!  !  +?!",( ?M 

556

Chapter 6

65 8 5 5  # A ( 1 ( ? 

ALGEBRAIC GRAPH THEORY

 # !    (4 -!(

65"8 # J 5 5   G    ( 1  +$  ,( ?"

# !* (4 -!   " !(

65?8 G      # J 5 5 ( 1  +$  ,( ?? 6?8 1  ( #     ( !M

  

# !8     " !(

 ! 2      

?B +??,(

6 B8 1  (      

      )         (         +? B,( ?BM?! 6 8 1  ( 7      (

  

 +? ,( B"M!

6PI"B8 K P   3 E I(    )                ( &  !   !  !! ! +?"B,( " M" 6P8 E P) (

 !!  !(    # 5 ( ?

61B8 N A 1(

&     #   (    =

618 = 1 (     (

( BB

7    +?,( !M"

61 #!8  1 1    3 # #& (            

         )  ( &     B +?!,( "M"? 61 !B8 N = 1  (                    -( &  !   !  !! ! +?!B,(  M!

Section 6.5

6.5

557

Spectral Graph Theory

SPECTRAL GRAPH THEORY

 %&      &    A  # &      1 -   5  

 3    (   5 (  >   A   N       5   I  C    3    

Introduction 5                      +   ,            + )  ,         

        A    

  &    )  B 9  &  )9          ) 3 I C  ' 5    C 6I 5 !8  ?! 5      )9                                (         )  

6.5.1 Basic Matrix Properties #                    &    -      &     )        6# # 8        6 B8 DEFINITIONS



2  )      + ,      :   & 0 + 0 ,                 0 4



! B

      9   

2          

 9  &

2 2

    

    

 +C

0, 

            

 

           6    )                

 



2                7          (        

558

Chapter 6

ALGEBRAIC GRAPH THEORY



2           6            0 4 6 FACTS



2                  )  9  &    

 (       .  ( (     :    &  9   +      =

   &    ,

2 2 2

      )               :                      

 9  & 0       )    C(  (     : 

 & @ +    ,   @ 0@  4 @ 0@ ½       &            



2     9  &     (  (            (  B(    9  &  B      



2                         (              9 ) -         9  &



2 $             (  6       6      +5   9  &               ) (        -   7 )    M  6# # 8,



2 $       (              $             +       :     7 )    , 5   9  &  

 ( ) 

   :        )  )   



2 3  )                  )       

        

2

1        )     ) 

 )      +   

    7 ?,

2 6

     )              

    B(  (

          6     

REMARK

2

A  7 (                   

 )    )  (        

EXAMPLES

                            &  + (  

  -        ,

2 2

+  ,½   ½ * ½    )        2  ,  B

     



2

 *, 

Section 6.5

2 2

559

Spectral Graph Theory

       2

  +'#) H ,½  ' 4      

2

-

           2   +'#),½ ' 4       J                    (                



 (



2         I+,                   5   2 +  ,½ B  ½

 2  2

      )

2

1



+  ',+,  ' 4 B     

    +   H    ,   9     *         & 5   2   +'#),½  ' 4             H 

2

            



2  

           + + 4 I+,,2  B  *  *       2     B       *  * 

     2        )   

1

2

6.5.2 Walks and the Spectrum Walks and the Coefficients of the Characteristic Polynomial DEFINITIONS



2               )                

2





        & 9         % 

FACTS

2



2

$ '

$ 0   9  &     (    '    &    

2 2  2  2

     )   - 

  9  &     (     &     0

0

     )     -

0

      )     -  

   

0

   

0

   

0

'

    



     )       



  &     )         

65 8 $  H   H    H  H        

     (  4    4 B   (      )           )          +         &     

 +C  0,,

560

Chapter 6

2

ALGEBRAIC GRAPH THEORY



65 8 $   H  ½ ½ H    H ½  H        

     (   4 +,    (        )  %      '   (  +4 ,    )       4 (   +4 ,    )      4  REMARK

2

7 "         Æ!   $         

 6IN 5?8 $ &    7 !    Æ        

    Æ     ) 

 )      &  ' %&  +  , 7     (            +           ,         +             , (    

   Æ            )  %      '    7  (     )  % (                )    

 +   - (     - ,      )    

 Walks and the Minimal Polynomial DEFINITIONS



2                

 >+,      (   >+0 , 4 B



2         * +     )            + , H  FACTS

2



  

       ,+, 4 -        

+  6 ,     



2             $        9  & 0(   0 4 B ' + $(  0 4 B

2

$            ,      (  ,  H    )        )  $    7 B

2 2

    

  

             

          + ,      &        



2        

 )      +    

7 (       )     \ -          \ :    )    , EXAMPLES

2

J       & (     (  ( I+,( - (  (  1          ) 

2

     &   )           

Section 6.5

561

Spectral Graph Theory

OPEN PROBLEM

4

I  C               )       :  E              (      

  )  Regular Graphs DEFINITION



2  '         (         

 + 6 ,        )         ,

2 2

 D   

2

           

0



D





                  9  & : 0 C  =                      6 (   6        0   :  

6= 8 7           9  & 

     )  / $ 

 

              

    ! + ,(    



  +       ,  

  

      9  (   (     

)    

   )         )       (    (   0 



2

$ 

,   

D + ,(       

 



) 

      9  (  )(          

        

  )      ' (  )(            

 '

EXAMPLES



2



! + ,         )    1 

$       

   



2

D + ,             A+ , $       

   

566

Chapter 6

ALGEBRAIC GRAPH THEORY

Distance-Regular Graphs and the Hoffman Polynomial 

           + / ,   (      = 0  

 

DEFINITIONS



2

 F

  

)     %   0 4 C "

0 4 0    9  &(  0

     &(

   &      + *,   

              F     B   



2

 F

  

 /

  

          & -        

  + *,  

FACTS ABOUT THE MATRIX 0"

      2

  ( 2

 0

 

7              (   0 0



0

4 D (  



  / 0 

   &

  )    )



4





   0

 

0     0 



      H  +    0

   , 



   0

    

 )   ' 4 B      

 

2

  )          9  & 0    

            H 

 

2

 = 0  

                 



    

 

2

               ) 

FACTS ABOUT THE PARAMETERS / 

 

2

 

- -

4





 / - (

   

   )    )

         )

 

2

0      0 

-     -



  

  0  -    (   0  -  

       

 

2

     -   

2

              

     

  (         

Strongly Regular Graphs DEFINITION



2



      

             







      +  6 ,       )    (     ( 6 4 /   4

 / 

       (

              

EXAMPLES

 

2

     2 A+ ,      ++

2

3    2 A+





 ,)       ,

,      +  

     ,

Section 6.5

567

Spectral Graph Theory



2



    2 - +/ ,            %  %  7+/ ,  

    9 (  %    (   0    :     +



      ) 

  /

  +/  +/

 ,) +/

 ,) +/

 )   ,            ,),

FACTS                     

 -   & 

    )            &       0       



             &(   

  )      (         9      &(     

 2 +



6             

7                +  6 ,(   + 



, 4

6,

¾

 2

5                0( 0 (  C (       

   +     : ( 9(   9   , *     C  = 0  



               

$

    (                 +  6 ,(  

¾

0

 2

H +

6,0 H +

,C 4 D

                    +  6 ,    

     

 

 2

¾

H +

6, H +

,

                         

   $                  (          (           (      0  B

 2

7                +  6 ,(      

6½ 4 ( 6¾ 4 +6 

,) H F

½¾

 6¿ 4 +6

,)

F

½¾(

¾

¾

  F 4 

6 H 6

6            ( ,¾ (  ,¿   ,¾ H ,¿ 4 

,¾ 6¾ H ,¿ 6¿ 4

 2

$ F  7 !     : (  ,¾ 4 ,¿  5      

 2

E       



 



 5  6¾ 4 6¿ (      ,¾  ,¿   :  

      +  6 ,  

  

   )

              ,¾  ,¿    

EXAMPLE

2

¾

7      ( 

 ½¾ +  /

¾,(

H +

 ,¾ 4 ,¿ 4 +/

 6, H +  , 4 ¾ H   +/  ,)

H ,)(

6¾ 6¿ 4

FURTHER READING 7                    )     &

   6  B8               

6A I J"?8

568

Chapter 6

ALGEBRAIC GRAPH THEORY

6.5.5 Spectral Characterization E          :           -     2         C )     Y 7                                    )  

    

EXAMPLES

2 7                      (   

½ B    &      )  :    + -    )    ,    ) 

       5

 (      :        ) 

 )     

Figure 6.5.3

 **     *  

2 7                              

  )      +  ,+     H ,+ H ,

Figure 6.5.4

 **     "  *  

2 7                    )   ) 

              +    ,  B             

       + H   ,+    ,

Figure 6.5.5 1 *  -   $  2 

Section 6.5

569

Spectral Graph Theory

2

7                                ½   5                       (  (                     % $       (                 9            A+  ,               +    , A      (      +    - " ,  )               a

b

c

d

a

e

e

f

f

g

g

a

b

c

d

a

0    *% *  *  

Figure 6.5.6

Eigenvalues and Graph Operations

E                )           DEFINITIONS



2              (    )  (    &    )    +  ,       &        &         9  (     (            9    

2

      + 9 ,                  (      (    )       (  (            )      &  9                        

FACTS

 2

      &             

          

 2 6

           )         )    H 6(   6         6       



2

3    )                7 $ 4 B      ,(  % ! ) -   I     )    )  )  )    )    $      ,  $           !               

 2

65!8 3

+ , )      

     

-# 

+ , 4 - ½ +,- ¾  ¾ +, H - ½  ½ +,- ¾ +,  - ½ 

-½ ¾ 

 2















!

 

½ -¾



¾

65!8    )       (  ))                

570

Chapter 6

ALGEBRAIC GRAPH THEORY

EXAMPLES  %  &               )  K = 0 



+ K = 0   6# !8, 3 ½   )         

2



     N% !

) -  $      ,

   (  $ 4 B      ,   !



  

   

$      - 

    (  (  

     



2

 =

    ! + ,   

)  )

(     ) 

   

REMARK



2

      )   C   J>5    ) N I-  S 

6IN 5?8

6.5.6 The Laplacian  3           9  &   )   9        

$        ( (       

    -  )     

     3       ( 

  -           )  

DEFINITIONS



2



-   

       :   &         

                 &<  0        

$   ( A 4 

    0   

 

           

            9  B  0(        

 &     

9  &

$        (   4 C (       0  A   ) )     

           9  &  

3       



2

67 !8 

    6

    



6



6

         3   A

 %  ) 6 

FACTS     )   3        )            3 ;

4 ; + , )   )           

)  )        *     A



3 A

)   &

  (

 9 A ) 

9   A

  



  +A , 

2

; + , 4 +

2

9+A, 4 ; D 

2

      B       A    )     

 

,

     2

6



4 ; + ,

Section 6.5

571

Spectral Graph Theory

2 5  6¾ 4 6¿ 4    4 6 4    ( ; +  , 4  ¾ 2   )                        2

+

6¾ ½

) ¾, 4

6¾+ ½ , 6¾+ ¾ ,

 2 6JBB8 $         ( 

½  + , 



EXAMPLES

 2

6¾ -

 2

6¾ 

2 2



2



+

, 4 +   +#),,

+

, 4 +   +#),,

6¾ 1

+

, 4 

+

, 4 

+  , 4

, 

FURTHER READING

              3      ) A #  6# ?8   &      ) # J  6JBB8

References 6A I J"?8  > A  (  # I (   J   ( )! 5  P ( ?"? 6I"?8  1 I  (

%"  # !(

  # ! 2  ( K  1  D 5 ( ?"?

6I 5 !8 3 I C  ' 5    C( 5 -     ( $  "  +?!,( !M 

  

6IN "8 N I-  S(* # N )(  $  ( E    1  5     N  J  >& + H ,½¾(  !    +?",( M? 6IN5"8 N I-  S( # N )( 5 5

S(   C    ( +?",( "M?? 6IN 5?8 N I-  S( # N )(  = 5(   A ( ??

 #    

  2 # !( K   ) 

6I5 ?8 N I-  S   5 5

S( E               *   & +   ,)( )!    +??,( M! 6N?8 >   N (            (  " +??,( ?M 

  "  !  

6N=B8 >   N  1 = =  ( 1       

 )     Y(   "  &!  (    

572

Chapter 6

ALGEBRAIC GRAPH THEORY

6N !B8 # N )(                   (     2       *  

* ( +?!B,(  M 67 !8 # 7   (  )          ( ?"MB 6 B8 7    ( 

'! -    +?!,(

  2  !* P  $( $$( I ( ?

B

6I55! 8 K #   (  I  ( K 5  ( > 5 ( 3    (          (   "   +?! ,( BM! 6 ?8 I   (  " 

 !( I   =

6  B8 I       (  " 

( ??

"   ( 5  P ( BB

6=?8 1 =  ( $         (   "  !    # +??,( ?M   6= 8  K = 0 ( E  

     ( BM 

       +?

6= !8  K = 0 ( >      (  M   !  &&( N  7 -  ( >( #         +?!B,

,(

#   *

63 ?8 K 3 (    " ! 2 " !(  N  ( '     #  )( ?? 6# # 8 = #   # # (    2  5     ( 1) D 5

( ?  6# ?8 A #  ( 3        \  ( !M"

  5 &1  !(

)!   +??,(

6# !8  #   C(      

     (  +?!,( !!M? 6JBB8 # J ( #  )( BBB

   

   !  2 " !* #   ( '    

6B8 #   S  O   9 S( 5 ( '     G 9( BB

 

  !  " !( 7  

65 8 = 5( AC  C           G       -    

 (     )   +? ,( ?M 65!8  K 5-(   ! 

 !    !  (  J N           +>2 7 =  ,( 

  ( ?!( !MB! 65 ?8 * 5 5

S( 5                    +   ,)(       "   +??,( ?M!

Section 6.5

573

Spectral Graph Theory

65 !B8 K = 5

( 5              (  BMB       !     !( >2  ( = = ( J 5 (  K 5L  (     A  +?!B, 61 J?8 E                  M" +??,( !!M?



*

(

  "  !

574

6.6

Chapter 6

ALGEBRAIC GRAPH THEORY

MATROIDAL METHODS IN GRAPH THEORY '  $( )         # 2 A  N%    >&        & 5         

  N    #  '   $ I :   7  E     !   I       #   "        '   #   ? >& #  I  C   B 1 ( 1 (   5   

   )  I     #    '      #    I     

Introduction >           (          

   :    (                E   (               C      

- )                        1   +?!MBB,   6!?82 .$    )      ) &              ))  & %       ) 

 /                 )          

6.6.1 Matroids: Basic Definitions and Examples            

              &    

    =  1  +?B!M?"?,        

     %    ? 618 DEFINITIONS



2    9        %    +9 , +    9 ,      +9 ,       )  )       (    ½  ¾       )   +9 ,    ½  ¾(       ) ¿  +9 ,   ¿  +½  ¾ ,  

  7 : (  +9 ,  +9 ,   ))      

Section 6.6

575

Matroidal Methods in Graph Theory



2  )               )  (          

2 2

   +  ,   &    

   9½       

     G   +9½ ,   +9¾ ,  

 G+ ,       9¾ 

(   9½  4 9¾(   

      9½    

9¾ 

           )   -+9 ,(    

9

    ) ,+9 ,

REMARK

2

$       %         )           EXAMPLES

2

   0     &          )   

$*   3*   "  #E$N 9

+ ,( %*  " 

9

  

E'JN 5>  +9 ,

I$I'$5 +9 ,

$JN>>JN>J 5>5( ,+9 ,

A5>5 -+9 ,

   

C   + , 2 C      

7   2       

   )   0

 

   

      

C   2 C )    

 

      

& 

 

      

      

   2   4 , H 

C   2  C  ,

4   2 4  4 ,

+ ,(   





2   "  6 8(

9 0

 & 0  %  7

)   "(  @

+B , ,

2

3 9 )       +9 , 4         +9 , 4           9 4 9 + ½ , 4 9 + ¾,(   ½  ¾          7       -+9 , 4               (  9 4 9 608(   0       &  



 B B B

  B B

 B  B

 B B 



B B    

576

Chapter 6

ALGEBRAIC GRAPH THEORY

1 1 2

3

4

2 G

3

1

5

4 G 2

6 5

6

Figure 6.6.1 9 ½ "  %*"    " 9 

2 $ )   (          %    9      %      %        $*   /  *    "  I 

I   

   

9 4 9 + ,      

 )   

9 4 9 608     & 0   %  

)  

 )   7 +,(     % 

  

 )   7 +,

 

 )    % 

FACTS

$      ( 9    

2   :            @  2 $ 9        (  9  4 9 + ,          2 +1 * $     618,          

         ) )     )  :        2 + ,     &               < +

,     + ,< +

,        ) )     9            )                     (         )   ( (                

   :    

2          :  

 )      2 $ 9        (  9      2    9         9  )       )  )       (   &     )

    B  

Section 6.6

577

Matroidal Methods in Graph Theory

6.6.2 Alternative Axiom Systems #   )   C )     0  &    &        E   )  (  & (  6E&?8   ( 

  %    $     )

""  3    ) ,  $           





    

: ;       ,< : ;   )    )  ,   , +,   ,<  : ;      ,        (      

  











   





    ,

& 

  @

 @

)  

@

 

@  7  7



I 

>& 

 

  

@  @  7  7

        





@  7  7  9



+  , 9  +  , 

+

,

+

@  7  7  9   9 

,

2           

                    )            

CONJECTURES

      9         )       

588

Chapter 6

ALGEBRAIC GRAPH THEORY

1! + * I 9  6 !8, 7  %  %  (     %    & 

         )    1! 7  %  %  (  /   

                ) (      %    & 

   / REMARKS

2

7 "  ))              (   

           Æ    7 ?    7 "     &       9  )              7 "  ) &) 

 2

7 )    (  >   (     & 

       7 +>,  )     %   (   (  G 6GBB8          7 +,(   )  &   & 

       * I 9           > &   5          I 9  I  )  )    1   61B8  )  (   (  1   61B8

6.6.10 Wheels, Whirls, and the Splitter Theorem  6 8  %     )  )   ) -         5): (    C       6 8  5    (      C      (      ) 5  65"B8 (   (     ) J

6J"8 DEFINITIONS



2 7  (    0               )      &  9     )      +  ,     &    

2

7  (     0          0                 0 &   (                     -



2 3 9 

    B 

B

)   

9

 

B

 

9

 



2

      /   -                   ½             

  /  (   '   (      '            - ' H  

EXAMPLES

2

7           0 (           (               9 +0 ,  0         9 +0 ,       0 

Section 6.6

589

Matroidal Methods in Graph Theory 1 5

1

6

1

(a)

(b)

6

5

(c)

6

5

2

3

2

4

Figure 6.6.5 :;

3

2

3

4

  0 

4

  " :$; 9 +0 , " :; 0  

2 A   7   7     &    - 2   : - )    -         & 6C C  8  +,   C     & )  )     C        

   & C (          

7

FACTS

2 6 8 3 :  2



)                   

+ , 7      (   +

,



  )  )      



              -

2 6 8 3 9 )                 :   2

+ , 7      +

,

9

9   9)   

     9 +0 , 0      



9

(  

2 + 5    65"B8, 3 9  B )      

B  

  9 (    +B , (  9                5    B  4 9 +0 ,(  4 0  (  9   0  

 <   B  9   9 +0 ,

       :      9  9      9

  9 4 9 < 9  4 B < (           (               9  

       

9

   )    5          (   I    6I "8 +   6I E&?8,(  5  *      5            )        $   -      7      )          (  %        5    

2 61 B8 3

   7     

!

)             

     

  )      4 !(   !     #L

Figure 6.6.6

 # .' $ *""7

!



590

Chapter 6



2 6=8 3 )                  4  



ALGEBRAIC GRAPH THEORY



2 65"B8 3 9 )    )         9    9  4 7  

 2

3  4 0 

 2

  



)         

6E&"?8 3





 

9





  

  7 

  

  0 

     

)         



  0

  

+ ,          

           7    !< +

,    ' (      )    )        9               &     )    

Figure 6.6.7

   -  #-*  

        ) 6?8        (  (   (         

2

6E E&?8 7              

 B

2

(      B       

     0  

6N E E&P?!8 7     (      B             B     

     

@

@



+

 9 

  , 9 +  , 9 +0 , 0

   -

6.6.11 Removable Circuits     #            '             )         '    

    C        ' 4           =  (     # *                       DEFINITIONS



2       '       &      )  

)          ' 



'

2 7 '   (      



  '    9   & 

9

 

Section 6.6

Matroidal Methods in Graph Theory

591

FACT

 2 +# , 6#!8 $     '      

      ' H (     )         # *      + , ½ +' H , + ,  &

          )     )      

     &    )    

 2 63E&??8 3 9 )                 )        9  $  +9 , +9 , H   +9 ,(  9          9       9      +9  , 4 +9 , $     (  + , 4 +9 ,   +9 , +9 , H (  9    )      2 63E&??8 3 9 )                 )        9  $

 +9 ,

"

 +9 , H   +9 , 4 +9 , H ( +9 , H   +9 ,   

 9          9       9      +9  , 4 +9 ,  &     )  )             

 2 3 )           )        $  + ,

 + ,  + ,(     )       

      $     (   

     + ,  + ,(     )     2 3 )            )        5  

 + ,

"

 + ,  

  

  (  + ,    + ,   

         

           

 2 6 #?!8 3 )        

         $  

          (     9   )   

 2 6#BY8 3 )                $  

      (    )      )     7     (               # *   +7 B,  )   )    )   

   

 2 65 ?"8 3 )        

      % 

   )    >&  >? )                C      &        C                )      &  )    

 2 6 K??8 3 9 )    )                 %    $ 9     

      )  7  7 (  9    )        +9  , 4 +9 ,

592

Chapter 6

ALGEBRAIC GRAPH THEORY

REMARKS

 2     7        ( )       



  

       ) 

2 7       )     )    (    ( 

             (                   )       )  (    (    (     

2   = ))            )    ) -       >       

             )    EXAMPLES

 2 63E&??8 I                2 )   

      &           ! " ? B<       )            ! " ? B(       &  E&  9      )                                       )    C      9  + ,                 C      A 9  + ,    )     )   )               C   7 B          

)  ' 4  

 2 K-  6K"B8 (   (  )   +  6K"B8,   = ))* :   +?,    )     %       7    "+, 2 6 #?!8 7   )  (      7    "+),   

)   )      )           9 (   #    7 

2 7  (      @    (                  H (     )    

(a) G 1

(b) G 2

Figure 6.6.8 8

+

9 

,  

9

 + , 

   2$* 

PROBLEMS

4:;! 6 K??8 $     $       )                 $       )    Y 4:;! 6 K??8 $ 9     )                    (   

9

   )    Y

Section 6.6

593

Matroidal Methods in Graph Theory

6.6.12 Minimally '-Connected Graphs and Matroids 7 ' (  '                '          ' 7 '   (                    DEFINITIONS



2 7 ' (  '          ' 





   '        

2 7 '   (  '             9  ' 

 2 3

9



9

  

)          

   9







9

'

     

     

EXAMPLES

2

$ , ' (   

   '  7   (   -  0 

             0  

      

2

       7  7    ) 

    

FACTS FOR ARBITRARY CONNECTIVITY

 

2 6#!8 7   &    '

'

(      

   '      

 2

6#!?8 7  ' (   )               

'

 

   '

'

 

   '

+'  , + , H ' '  

 2

6E&")8 7  ' (   )                 + ,   + , H  '   REMARKS

!

7 !B    ' 4  ) N  6N !8   

 6 "8(    (   ' 4  ) =  6= ?8       7 ! ) 

!

 )   7 !(    )   7 ? )       

    (  :     )   7 !B

!

6#? 8       )     -     )        9     &    

     )    

      &      7 ?   )           )   ' 

594

Chapter 6

ALGEBRAIC GRAPH THEORY

FACTS FOR SMALL CONNECTIVITY

 2 $ 9        9 4 9 + ,          

    (   )     +9 ,             9                   &    2 6N !(  "( = ?8 7 '   (      

   '    

          '

 2 6E&"( E&")8 7 '   (          + ,       +

,

9

 2 61?"8 3

9

   

9

  

 2 6= ?8 3



  +9 , H + '

) 

     )          

+ ,        +

,

) 

   '     

    '      <   , '        '  

9

  

9

               
 A &)( G  - *  1 *      ( 

     +?!!,( M

 

6A !?8  > A &)( E  *   C        ( 

     +?!?,( !MB

 

6A E&?8  A  -  K E& (   

     (  M   + J 1 ,( I )  '     ( ??

 

6I "8 I  I   ( .#      #   9   A   #  /( N  ( J   '   ( ?" 6I E&?8 I  I     K  E& ( >&   * 1 1    (         +??,( BMB 6I"8 1 = I  ( E      ( +?!?,( ?M??

       B

6N E E&P?!8  N ( A E - ( K E& (  N P  ( ' ) 

        (        ! +??!,( M?? 6> 8 K > ( 3 *             J 1  (  %! (    !   ?A +? ,( !M! 6> ?8  > U      ( E &          (    "  B +??,( !M 

 

61B8 K     1  ( A     *  9 (       " +BB,( MB

 

596

Chapter 6

ALGEBRAIC GRAPH THEORY

6GBB8 K 7  (  # =   (   G (  & 

  

7 +,M  )   ( 

      !? +BBB,( !M?? 61B8 K  (  # =   (   1  ( A     :          (        " +BB,( "!



6 K??8 3     A K- (  )      )    (     +???,( ?M

6 #?!8 3   ( K   = (  5 # (  )    

     (        ! +??!,( BM 6?8 A 5 ) (         

 ( )!  ?M! 6=8 N 1 = (    

  -  ( M!



B +??,(



      ? +?,(

6= ?8  = ( '   L)

     (   " +? ?,( !M""

 C

L 



6= ?8  = ( O     C

L   (  $  "  +? ?,( M  6$1"8  $-  3 1 ) ( 1        ( )!   !  +?",( M

 

&   "

6K"B8 A K- (  )          

        (        9  +?"B,( "M? 6GB8 G G  - ( 5  ) d     )     ( 7   +?B,( !M" 63"8  3C  (     )      (     +?",( M 63 8  3 (       5      (   +? ,( "!M! 63!?8  3 ( E     : ( BM!



   

   & !  

  " " !

+?!?,(

63E&B8 # 3   K E& (   )     C      (  !       +BB,( B?MB  6#!8 1 # ( >-     

     (     +?!,( ?M



 C

L 

6#!8 1 # ( G C    1      (   "  +?!,( "!MB

  $

6#!?8 1 # ( I          %    (  M?   !   ! + A A )S,( I )  '    ( ?!?

Section 6.6

597

Matroidal Methods in Graph Theory

6#? 8 1 # ( E        

             (   !*  :

! ! " 3  9 + N # - S( P  5S (   5CU  ,( KS   A  # 5 ( A ( ?? ( M? 6#BY8 5 # ( I                &  

 ( )

 6#BY8 5 # ( I   )  )     ( )

 6J 8 I 5K  J1  ( > 9        %    (       +? ,( MB

  

6J 8 I 5K  J1  (             (   

2 # ! +$  5 (  ,( N (  ( ? (  M  6J"8 5 J

(    C                 (         +?",( ?M! 6J ' ??8 P J 3 ( >   I (  K '  (                 ) ( )!   ?!R?" +???,( M   6E E&?8 A E - ( K E& (    (   )          (        ! +??,( ?M! 6E&"8 K  E& ( E      C         (      ?B +?",( B!M 6E&"8 K  E& ( E      ( ?MB"

6     ,52  9  +?",(

6E&")8 K  E& ( E           (     +?",( !M"

 !   

6E&"?8 K  E& (         

 (     +?"?,( ?MB 6E&?8 K  E& (

  

   

   ( E&  '     ( ??

6E&B8 K  E& ( E    )      (  !    !* 9;;< + K 1  =  ,( 3   # 5  3  J  ""( I )  '     ( BB( ??M? 6 !8 I  ( I )    (   (    +J ( 5  ?!B,(   P  (  ( ?!( ?M

&  " 

6 5BY8 J  )     N 5  (   

  [[ 1 *  9 (       (     65" 8  5 9 (

  2   &"  " "( 1 ( ?"

65!?8  N 5  ( #       +?!?,( ?M!



7 +,(       

598

Chapter 6

ALGEBRAIC GRAPH THEORY

65"B8  N 5  ( N        (  +?"B,( BM?

      "

65 ?"8   5   ( .5  5 -      >  I      /(  N  ( '     3  ( ??" 6"8 1  (          $(  ! +?",( M B 6"8 1  (          $$( "" +?",(  M! 6?8 1  ( #     ( !M

    

""

 !     

 !      

+??,(

6 8 1  ( E  )               (         +? ,( MB 6 8 1  ( 3    ( +? ,( M!

 %! (    !  

6 8 1  ( I      (

  

" +?

L 61!8 G 1 ( ')   >      5C   G  - (  +?!,( "BM" 61 B8 G 1 ( A  - C =   P ( M 61??8 N 1 (   

 ( BM" 618 = 1 (       (

?A

,( BM

)  

 

 +? B,(

%    !  " ! 

+???,(

     +?,( M

618 = 1 ( E  )        ( ! +?,( B?M

   

61?"8 = 1( E  &     )    (

  ! +??",( "M?!

  

61?!8 3 1(    )     )         (

     +??!,( B!M 61BB8 3 1( >&         )          ( )!    +BBB,( ??MB"

599

Chapter 6 Glossary

GLOSSARY FOR CHAPTER 6 "?% 3 M

2  B  & 0       

(      )            

      

        

          9 (

F # "2 

   %  

9  &( 

0"

0

4

C

     &(

           

F

      

*   2       M   %     2

          %    )     

4

0

 

    B   

*$  2%        3     6 

*   2 2

0

   &      + * ,     

  

    

6

 6

2

     

%$+ ,   

   

#2

    -      

# 2 2

   





           

+ ,         

               

 % 2



               

     

2

M     

   

        ( 

               ( 

    M (

  

%$+ ,

    2            

$ "" M   %     2

           

)      )    &   

$  @2 $ 

  & 9         % 

M    

$%*

92

 &           

9

M     2  )     )       

$% 2  M     )           2                      B    $* + M

 )9         2  )

1

        

 (

# +4 ,

      

 2*2

4

   (

  

  )9 #  1 ( 

(        

4

 ) -  

  9  

4

(      (      )9 

          

$ "

M     

2



 

        



  

 )     

$

M    &

$

M       2         

2

  



   

"2

 &  )   



 



            

1* $ 2  :   )  % )  4   4   H    H    H   1%*% " M

   

    





%          2       %   (       %  

           

  (  +%  ,

    

         &



  &



I

 

600

Chapter 6

1%*% ½2

ALGEBRAIC GRAPH THEORY

                   I 

   

1%*% 2

 I     

1%*% 2

             )     

1%*% 



 

2              ) ) (   



     

   *% * M

 

    2  

 +C

 0,   9

 &

 "

M       2       

1 #2 1 # 2 

 % 2 ,     +% 2 ,  4  +% 2 ,(  %+%,     4 + ,

 I      +

&         

%

%

    I     

 

  I$  

M     2         9         

 (



M     2  )                

""

M       2        

     

      (

 2$*

M   '    9 2  ' 

 (

     9 

        9  ' 

 3

M      +   ,2   &      

     (             

 

M        2    

 )     

 $ 

      



` + , % (     ) 

M        2    

      <  

` ) + ,

 2 

M       2  )   ,        

  

 2 

M       2  ,           < 

                            

* 2

   I          

* " " "*% * 

M    

/

  

/

  2  



    ) 

/



M         9 2  &  )  +9 ,     

     -   

 *   2 

M   + 9 ,       (           

          )           <   

     (

 

M     9 2       

 +* % 

I+,2

   9 

         

+     

      

 *   $    

M      2    



     


7 >

2              

-

          

   7 " $*%  22             

      )9

   7 22               ) -

     

   7 *2         )       



  

   7 *2                %   

(             :      2

       1 %&      



      
  

)   )   %    

 ) 

  ) 

   **% ""2              ( *#2  )          &    B     ( ""2    &   : $½  $¾      $  , B   )  (

         

   &        9 

)         

) 

""2         ( 

"2         &(  (      (

   

                               %        

609

Chapter 6 Glossary

2* 2

           &   

 "* 32

  &  

 &     :

 

M   

 (

9½  9     9

       

   

9

 

2   "   32

  

 

   

*

2

   

 C      C

 

   

)     &

)   

<


  #!       #! 0

 !  !      (      !     +   & &

 &       +    + !    AO F D

622

Chapter 7

TOPOLOGICAL GRAPH THEORY

EXAMPLES

* /  &   #   ! 2 0  / !    !  

! !0     ! &  +  !     !    !   2    + !        ! !   ! !     





 



  

 







 









   

!

3 "    $"

   $"







$"





$

3 "  $"  $"  $"  $"  $"   $



!        ! !   6       #!   0 + #!!      !   #1  !      N     !   

     !0  &  !    # ! &  

*

!   #         





 



  

 





 











 !    

   

 

!   !  0      F0    

* / !    2       !   "  ! !   / ! !  ! # ! !     !  +      a

c

b

a

c

b

Figure 7.1.11 #   ,&  !   

"



 "      !+ !  %   !         #1



3 "  $



3 "  $



3 "  $

  +   &  +   !  %        !

3 # * "$



* "     $

* / !    2       !   "  !    / ! !  ! # !      !  +        

Section 7.1

623

Graphs on Surfaces

a c

b

b

c a

Figure 7.1.12   ,&  !   

"¿



/      #1 +  ! !  %  

3 "  ½   ½   ½$

       !  %  !

3 # * "$



* " ½  ½ ½ $

* / !    2       !   "¿  ! 7     / ! !  ! # !      !  +        

a

c

b

b

a c

Figure 7.1.13 ) & ,&  !   

"¿



/      #1 +  ! !  %  

3 "  ½   ½   ½$

      (     !  %  !

3 # * "$



* " ½  ½  ½ $ L 3





FACTS

"*

!          !   6 &      #! ! 

   +      ! !

* O  (                 

  *

!     !  %      (              !              #! 

624

Chapter 7

TOPOLOGICAL GRAPH THEORY

References A/HCD  /!  +    ! ! ?  & + &   ! !  " 2  + /+ HHK$     "HHC$+ KPK

           

     + !  !  + !  N&  + HCF

A/CFD O / +

A:;! HD I G : + /  ;! +       GGI +  N&   

+ H H

    +

ACCD  / 1 + !   +     +  :      !+ ! "   "HCC$+ F PF  AO--D             

* AOHD !    =    > !   !         + !        !+ &  0

   REMARK

1* 2 F  F   !   ! M        !  

        

638

Chapter 7

TOPOLOGICAL GRAPH THEORY

References A/Q CD 7 /   ; Q1 + .&      0   + "   F "H C$+ P  

 & 

A/FD  /!  + / 7 # 1 !     !  6 &  + !  %  K "HF$+ P C A/,- D  /!  + ?@ ! &     ! . ?@ !  ! 7 4 /   > ?@ ! &    ! . ?@ > " + ,    ?@

 ( . .  1 

:    7  ?& " @  0 ?@8 &  ? Æ @   ! !  %       

 ?@  C? @  C     

Applications of the Uniformity and Blow-up lemmas

 2!! .    N%  .   %   ! /     E     %     !  !&! 8 ! &8     &!  !    &!   !    !/   %   FACTS

):

. & 2".  &"#

 ? @8 &  !

     > ?@  Æ ?@   

 G





   /   &!   %    -!! & & 

)+: 9  B ? 2@8 &  !  !  /     2 %! *? @ > 

     > ?2@  Æ ?@   







G  2

   /   &!   &

):

. & 2".  &"#    !    > ? @   >  ? @ &  !     > ?2@  Æ ?@   







2 G 

   &!   &

):

. & 2".  &"#

 ?@ %! Æ ?@  ? G @  &! 7        &  C ? @   / 

8.1.10 Asymptotic Enumeration 4 !!/!/ 6 ! ! %  /  %! /!7   !      L & !   !  !$ A !   B  A   !&  /  ! !&   B !& %  7   !  DEFINITIONS

:

4     !  /  ! &    ! !

Section 8.1

805

Extremal Graph Theory

: 4 /    / ! &  /   



  

!   / ! !    /  7 

: 4 /    / ! &  !&  /   



 

!   / ! !    /  7 

:

L  /    / 8   /  >  :   / ?@ >      /  !  7 

 ?/ @ > ?/ / @

 









: .  3     ! /  4 /   ! &  ?  @   ! ! 7 !&  &  &  ! &8    7 !&  &  %!  & &   &!6    &  8   !      %! 



:      ?/ @     !   / !  /  ! /  &    8  ! / &! 7  ?  @ & /  NOTATION

 !7     !   / 8     ? / @     !    /  !  /   > ?@  %!&   !  /   > ?@ %!  ? @ >  ? @  0 ? @  0 ?@ > 8   7  /   %!         /  / 

FACTS

) . # .  $-#

:







G +?@ 

): .  .  $2   2     /      ! /!7    !& 

/ 2 >

)





G  



G +?@ 

 ##. ?2.  $-#

: 

):

4   / !  !   !   !   6 &  /        &  / !  & &!  /  7!/  /  ! !&    

):

4   / !   ! !   !   !   6 &  /        &  / !  & &!  /  7!/  !&  /  ! !&      &!/    ?/ @ ! &   ! &    3      ! ?  @ & 

806

Chapter 8

) : ?2  &8  





?@

 % 

> 3 8

< 0=   !  

.

%!  !& 



>

> ?  G

ANALYTIC GRAPH THEORY







&  

! /!7  

¾ +?@@    

 

)): ?2  &8 < 0=8 < 0= L!

8  B

 / 

!   A   !&  /  ! !& 







  ? / @

!



> 



  

/

    

 





?/ @

++: 9

!



?/ @

!

+: &-#   #